DOCUMENTED RELEASE SAMPLING REPORT

FOR

JOHNNY M URANIUM MINE GRANTS LEGACY URANIUM SITES SAN MATEO AREA, MCKINLEY COUNTY, NEW MEXICO

Prepared for

U.S. Environmental Protection Agency Region 6

Linda Carter, Project Officer 1445 Ross Avenue Dallas, Texas 75202

Contract No. EP-W-06-042
Technical Direction Document TO-0035-11-11-01
WESTON Work Order No. 20406.012.035.0694.01
NRC No. N/A
CERCLIS No. NMN000607139
FPN N/A
EPA SAM: Lisa Price
START-3 PTL: Patrick Buster

Prepared by

Weston Solutions, Inc.

Robert Beck, VP, P.E., Program Manager 70 NE Loop 410, Suite 600 San Antonio, Texas 78216 (210) 308-4300

May 2012

EXECUTIVE SUMMARY

The U.S. Environmental Protection Agency (EPA) tasked Weston Solutions, Inc. (WESTON®), the EPA Region 6 Superfund Technical Assessment and Response Team (START-3) contractor, to conduct Documented Release Sampling (DRS) at the Johnny M Uranium Mine located near San Mateo, McKinley County, New Mexico.

The Johnny M Uranium Mine was identified as a potential hazardous waste site and entered into the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) under CERCLIS No. NMN000607139. On 08 October 2009, the EPA conducted an Airborne Spectral Photometric Environmental Collection Technology (ASPECT) overflight of the San Mateo area and collected measurements for exposure rate, total count rate, and elemental uranium. Results from the ASPECT overflight indicated elevated radiation exposure rates and gamma radiation activity (total count rate). The ASPECT overflight results also indicated that elemental uranium was detected at concentrations that were greater than 45 picocuries per gram (pCi/g).

START-3 conducted DRS at the Johnny M Mine Site on 28 and 29 January 2012 that included collecting surface gamma radiation measurements in addition to conducting sampling and performing chemical/radiological analyses of surface soil. The specific sampling objectives for the DRS were to collect data that could be used to document a potential release of hazardous substances to the environment and to potentially warrant further site investigation and/or reclamation. Based on the results of the DRS sampling event, soil contamination attributable to the Johnny M Uranium Mine was documented via these contributing factors:

- Fifty-one of the 99 stationary 1-minute gamma measurement locations had readings higher than two times the mean background average reading of 11,720 cpm, indicating a documented release at the Johnny M Uranium Mine.
- Ra-226 soil sampling results from the Johnny M Uranium Mine ranged from 2.64 to 317 pCi/g. All eleven sample results exceeded three times the background Ra-226 result average of 2.69 pCi/g for the mine. This indicates a documented release at the Johnny M Uranium Mine.

Arsenic, barium, calcium, molybdenum, selenium, uranium, vanadium, and zinc were
detected in soil samples that exceeded three times background concentrations, indicating a
documented release at the Johnny M Uranium Mine.

START-3 has prepared this Documented Release Sampling Report to describe the technical scope of work that was completed as part of the Technical Direction Document (TDD) No. TO-0035-11-11-01 under Contract No. EP-W-06-042 for EPA Region 6. The EPA Site Assessment Manager (SAM) was Lisa Price, and the START-3 Project Team Leader (PTL) was Patrick Buster.

	The EPA Task Monitor did not provide final approval of this report prior to the
	completion date of the work assignment. Therefore, Weston Solutions, Inc. has
	submitted this report absent the Task Monitor's approval.
X	The EPA Task Monitor has provided final approval of this report. Therefore, Weston Solutions, Inc. has submitted this report with the Task Monitor's approval.

TABLE OF CONTENTS

Sec	Section		
EX	ECU'	TIVE SUMMARY	ES-1
1.	INT	RODUCTION	1-1
	1.1		
	1.2	OBJECTIVES OF THE INVESTIGATION	1-2
	1.3	SCOPE OF WORK	1-2
	1.4	REPORT FORMAT	
2.	SITE CHARACTERISTICS		2-1
	2.1		
	2.2	SITE HISTORY	
3.	DOO	CUMENTED RELEASE SAMPLING	3-1
	3.1	OVERVIEW	
	3.2	FIELD OBSERVATIONS	3-2
	3.3	BACKGROUND DETERMINATION	
	3.4	GAMMA SCANNING	3-3
	3.5	STATIONARY GAMMA MEASUREMENTS	3-3
	3.6	SOIL SAMPLING	3-3
	3.7	DEVIATIONS FROM THE QASP	3-4
4.	SUM	MMARY	4-1
5.	REF	FERENCES	5-1

LIST OF APPENDICES

Appendix	Title
A	Digital Photographs
В	START-3 Site Logbook
C	START-3 Quality Assurance Sampling Plan
D	Laboratory Data Packages
E	Laboratory Data Validation Packages
F	Reference Documentation
G	TDD No. TO-0035-11-11-01 and Amendments A-C
F	Reference Documentation

LIST OF FIGURES*

Figure	Title
Figure 1-1	Site Location Map
Figure 1-2	Exposure Rate Map EPA ASPECT Overflight
Figure 2-1	Johnny M Mine Historical Mine Features Map
Figure 3-1	Assessment Area Map
Figure 3-2	Stationary Readings Map

^{*}All figures are provided as separate portable document format (PDF) files.

LIST OF TABLES*

Table

- Table 3-1 Site Gamma Radiation Distribution
- Table 3-2 Stationary Gamma Measurements Summary
- Table 3-3 Laboratory Results for Radioisotopes
- Table 3-4 Laboratory Results for Metals
 - *All tables are provided as separate portable document format (PDF) files.

1. INTRODUCTION

WESTON, the EPA Region 6 START-3 Contractor, was tasked by EPA under Contract Number EP-W-06-042, TDD No. TO-0035-11-11-01 and Amendments A and B (Appendix G) to conduct Documented Release Sampling (DRS) at the Johnny M Uranium Mine located in McKinley County, New Mexico. Site coordinates are Latitude 35.362134° North and Longitude 107.724344° West. A Site Location Map is provided as Figure 1-1. All figures and tables are provided as separate portable document format (PDF) files. START-3 has prepared this DRS Report to provide the EPA with the field radiation scanning results and present the analytical data obtained during the field investigation performed at the Johnny M Uranium Mine.

1.1 SITE BACKGROUND

Under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA), WESTON was tasked to perform DRS at the Johnny M Uranium Mine ("the Site") located near San Mateo, McKinley County, New Mexico.

The Johnny M Uranium Mine was identified as a potential hazardous waste site and entered into the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) under CERCLIS No. NMN000607139. On 08 October 2009, EPA conducted an Airborne Spectral Photometric Environmental Collection Technology (ASPECT) overflight of the San Mateo area and collected measurements for exposure rate, total count rate, and elemental uranium. Results from the ASPECT overflight indicated elevated radiation exposure rates and gamma radiation activity (total count rate). Figure 1-2 presents the ASPECT overflight exposure rate results. The ASPECT overflight results also indicated that elemental uranium was detected at concentrations that were in excess of 45 picocuries per gram (pCi/g). Additionally, according to the New Mexico Environment Department (NMED) Ground Water Quality Bureau Pre-CERLCIS Screening Assessment of the Johnny M Mine, issued August 2010, the last documented site reconnaissance was performed in July 2010 by the New Mexico Energy, Minerals and Natural Resources Department (NMEMRD).

START-3 has prepared this report to provide available background information collected for the Johnny M Uranium Mine, discuss the DRS activities, and present the analytical data obtained as part of the investigation.

1.2 OBJECTIVES OF THE INVESTIGATION

After reviewing the NMED memorandum and reviewing the results obtained from the ASPECT overflight, EPA concluded that an investigation was needed to determine if hazardous substances have been released to the environment from past historical mining activities and despite reclamation histories of the mine. This investigation is designed to provide a high-confidence determination by direct observation, field measurement, and laboratory analysis that a hazardous substance has been released at the mine site, termed a "documented release." The definition of a release under CERCLA (Section 101(22) is "[A]ny spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment (including the abandonment or discarding of barrels, containers, and other closed receptacles containing any hazardous substance or pollutant or contaminant)..." For the purpose of this investigation, a documented release can be established by chemical analysis that requires attributing the hazardous substance to the site, determining background concentrations, demonstrating that the concentration of the hazardous substance in a release sample is significantly increased above site background concentrations, and attributing some portion of the significant increase to the site. EPA will use this information obtained during the DRS to determine if additional investigation and/or reclamation is warranted and to prioritize those actions for all uranium mines in the Grants Mining District.

1.3 SCOPE OF WORK

The DRS Scope of Work is intended to describe the tasks requiring completion in order to evaluate the Johnny M Uranium Mine. As part of this DRS, START-3 performed the following major tasks:

• Prepared a site-specific Quality Assurance Sampling Plan (QASP), approved by the EPA, and Health and Safety Plan (HASP) prior to sampling activities.

- Evaluated the available information from the on-site observations, historical aerial photographs, area environmental information, and historical documents provided by the EPA.
- Conducted DRS field sampling/scanning activities on 28 and 29 January 2012. Samples
 were collected at various locations with the highest 1-minute stationary gamma
 measurements. The samples were collected in general accordance with the site-specific
 QASP and HASP to document the presence and migration of hazardous substances
 attributable to the Site.
- Submitted the DRS samples to National Environmental Laboratory Accreditation Program (NELAP) certified laboratories for analysis and reviewed and tabulated the resulting data.
- Compared the laboratory results to three times the background concentrations to establish a documented release.
- Prepared this report to present the findings of the DRS.

1.4 REPORT FORMAT

The DRS report contains the following sections:

- Section 1 Introduction
- Section 2 Site Characteristics
- Section 3 Documented Release Sampling
- Section 4 Summary
- Section 5 References

Additional information is provided in the following appendices:

- Appendix A Digital Photographs
- Appendix B START-3 Site Logbook
- Appendix C START-3 Quality Assurance Sampling Plan
- Appendix D Laboratory Data Packages
- Appendix E Laboratory Data Validation Packages
- Appendix F Reference Documentation
- Appendix G TDD No. 0035-11-11-01 and Amendments A-C

Tables and figures cited in this report are provided as separate PDF files. Photographs taken during the DRS activities are provided as Appendix A. The START-3 field logbook notes are provided as Appendix B. The site-specific QASP is provided as Appendix C.

2. SITE CHARACTERISTICS

Information regarding the site location, description, and site history is included in the following subsections.

2.1 SITE LOCATION AND DESCRIPTION

The Johnny M Uranium Mine is within the Ambrosia Lake Mining District, located 17 miles north-northeast of Grants and 5 miles west of San Mateo in McKinley County, New Mexico. The reclaimed area of the Johnny M Mine Site is approximately 65 acres in size. The Johnny M Uranium Mine can be reached from Grants, New Mexico via Highway 605 north for 16.5 miles, then turning north onto a private gravel road for 0.5 miles until a locked gate is reached at the entrance to the Site.

2.2 SITE HISTORY

The Johnny M Mine was operated by Ranchers Exploration and Development Corporation (predecessor to Hecla Limited) from early 1972 to early 1982. The mining operations initially included mining uranium ore from approximately 900 feet below ground surface (bgs) followed by mining from approximately 1,200 feet bgs. To access the ore body, groundwater was discharged from the mine at a rate of approximately one million gallons per day and discharged ultimately to an outfall in San Mateo Creek. Two surface impoundments were created to treat the mine water discharge beginning in 1978 to meet New Mexico water quality criteria; the impoundments were approximately 100 feet x 400 feet x 15 feet each and were located just south of the mine operation. To prevent collapse of the underground mine as farther underground mining operations continued, Ranchers Exploration and Development Corporation slurried uranium mill tailings obtained from the Kerr-McGee Mill (now known as the Rio Algom Mill) as structural sand support in the stopes. Two surface locations were used for storage of the uranium tailings prior to injection into the mine stopes (Figure 2-1). According to New Mexico records, these two areas covered approximately 1 acre at the north injection site and 1 acre at the south injection site. An estimated 286,000 tons of tailings were injected into the mine. Injection

depths ranged from 1,134 feet to 1,148 feet and from 1,162 feet to 1,183 feet bgs (using the shaft for datum), or about 1,100 to 1,300 feet, depending on the terrain.

Reclamation of the mine property began in early 1982. The mine shaft was sealed with a 4-foot-thick water-ring, reinforced concrete plug set between the Dakota and the Westwater members of the formation. The portal was sealed with a 12-inch-thick reinforced concrete plug, and a 20-inch-diameter capped, steel pipe was set in the concrete. The surface was then covered with earthen materials during site recontouring. The location of the shaft is not presently obvious due to the revegetated surface (Reference 1).

3. DOCUMENTED RELEASE SAMPLING

The specific information regarding field observations, sampling activities, background determination, gamma scanning and measurements, soil sampling, and deviations from the QASP are included in the following subsections (Reference 2).

3.1 OVERVIEW

START-3 was tasked to conduct DRS of the Johnny M Uranium Mine, including collecting environmental samples, gamma scanning approximately 10% of the Site, and collecting 100 stationary 1-minute gamma measurements. The specific sampling objectives were to collect data that could be used to document a release of hazardous substances to the environment as a result of historical mining operations. The Contaminants of Concern (CoCs) include all identifiable gamma emitting radioisotopes, specifically, the daughters of uranium-238 (U-238) and radium-226 (Ra-226). Additional CoCs include arsenic, molybdenum, selenium, and total uranium.

START-3 implemented the Quality Assurance Sampling Plan (QASP) at the Johnny M Uranium Mine Site on 28 and 29 January 2012. START-3 collected gamma measurements sufficient to provide approximately 10% coverage of the surface area of the Site. Figure 3-1 illustrates the assessment area. Mine area gamma radiation distribution results are presented in Table 3-1. In addition, 1-minute stationary gamma measurements were collected at 99 evenly spaced grid locations throughout the mine area. The stationary gamma measurements are listed in Table 3-2 and the locations are presented on Figure 3-2. In addition, 10 soil samples and 1 duplicate soil sample were collected at the 1-minute stationary locations that had elevated gamma activity. Sample locations are illustrated on Figure 3-2. Two background soil samples (Figure 3-1) were collected to the northeast and northwest beyond the perimeter of the mine area, and 1-minute stationary readings were collected at each location. The locations of the background samples are presented on Figure 3-1, and the 1-minute gamma measurements are listed in Table 3-2.

Surface soil samples were collected and submitted to a National Environmental Laboratory Accreditation Program (NELAP) certified laboratory for the following analyses: total metals including arsenic, molybdenum, selenium, and total uranium by Methods SW846 6010/6020 and

7470/7471, and all identifiable gamma emitting radioisotopes by Method LANL ER-0130 gamma spectrometry. The analytical data were validated by START-3. Laboratory analytical results for radioisotopes and metals are presented in Tables 3-3 and 3-4, respectively. The laboratory data packages are included in Appendix D. The validated laboratory data packages are included in Appendix E.

3.2 FIELD OBSERVATIONS

The site reconnaissance took place on 28 and 29 January 2012. The weather was sunny, with a high temperature of 40 degrees Fahrenheit and light winds. The mine area was generally flat, despite multiple deep ravines in the arroyo area, and was fairly uniformly covered in desert grass vegetation and shrubs, although grass/shrub density varied depending on location. During the site reconnaissance, it was noted that the surface of the mine area mostly consisted of a gray soil that appeared to be some type of fill and/or capping material. The site had significant snow cover accumulation and in the late afternoon became very muddy and wet. Gamma readings around the grayish colored fill were significantly more elevated than on other areas of the Site.

3.3 BACKGROUND DETERMINATION

The START-3 QASP (Reference 2) protocol determined the background for the individual site as the mean of the field measurements and laboratory results of samples collected from four locations at the perimeter of the property. These four sample locations correspond to the four cardinal directions of the compass (north, east, south, and west). The protocol indicates that a site background location should have similar physical, chemical, geological, radiological, and biological characteristics of the legacy mine site if there are no impacts from uranium mining and milling at the Site. START-3 collected two background soil samples to the northeast and northwest of the Johnny M Uranium Mine, where 1-minute stationary gamma measurements were also collected. It was determined that a representative background sample could not be collected south of the Johnny M Uranium Mine because the area appeared disturbed and was deemed to be an unsuitable background sample location.

3.4 GAMMA SCANNING

Due to the size of the Johnny M Uranium Mine, it was determined that approximately 10% of the surface area would be scanned using a 2 inch X 2 inch NaI detector held approximately 1 meter above the ground surface in conjunction with a Global Positioning System (GPS) unit. Although the reclaimed area of the Johnny M Uranium Mine is approximately 65 acres, only 31 acres of the primary historical mining area was assessed. Evenly placed transects were walked across the mine site from one end of the disturbed claim boundary to another. Each transect was approximately 10 meters apart. One-second measurements of gamma activity were recorded and electronically attached to the appropriate GPS designation for the subsequent plotting and depiction of the ambient gamma activity. A total of 11,172 gamma radiation measurements were collected from the mine-site, ranging from 9,261 cpm to 665,629 cpm. Johnny M Uranium Mine gamma radiation results and statistics are provided in Table 3-1 and on Figure 3-1.

3.5 STATIONARY GAMMA MEASUREMENTS

Stationary 1-minute gamma measurements were collected at 99 (10-meter) evenly spaced grid locations across the Johnny M Uranium Mine site, using the same type of instrumentation and at the same height above the ground surface as the gamma scanning measurements. Because the stationary measurements are integrated over 1-minute intervals versus 1-second intervals, the measurements provide a more accurate measurement of the ambient gamma activity at that point. The QASP protocol states that a single-point measurement greater than two times the background average concentration indicates a documented release at the mine (Reference 2). At the 99 total stationary locations, gamma measurements ranged from 6,288 counts per minute (cpm) to 381,092 cpm, with 83 measurements exceeding two times the background average measurement of 11,720 cpm. The stationary measurement locations and measurements are illustrated in Figure 3-2 and presented in Table 3-2.

3.6 SOIL SAMPLING

START-3 collected 10 soil samples (including 2 background and 1 duplicate sample) at 0 to 6-inch depths at locations identified by the stationary measurements as being suspect. Figure 3-2 depicts the sampling locations, and Table 3-2 presents the 1-minute stationary gamma

THIS DOCUMENT WAS PREPARED BY WESTON SOLUTIONS, INC., EXPRESSLY FOR EPA. IT SHALL NOT BE RELEASED OR DISCLOSED IN WHOLE OR IN PART WITHOUT THE EXPRESS, WRITTEN PERMISSION OF EPA.

measurements at each sample location. Surface soil samples were collected and submitted for total metals including total uranium, molybdenum, tin, and mercury by Methods SW846 6010/6020 and 7470/7471, and all identifiable gamma emitting radioisotopes by Method LANL ER-0130 Gamma Spectrometry. The QASP states that if any sample contains U-238 as determined by alpha spectrometry or Ra-226 as determined by gamma spectrometry at a concentration equal to or greater than three times the mean background average concentration, the Site will be identified as having a documented release (Reference 2). All 11 soil samples from the Johnny M Uranium Mine exceeded three times the background average concentration for Ra-226. The analytical data were validated by START-3. The metals and radioisotopes laboratory results are included in Tables 3-3 and 3-4. Laboratory data are presented in Appendix D, and the validated laboratory data packages are included in Appendix E.

3.7 DEVIATIONS FROM THE QASP

The following deviations from the QASP occurred during the field work:

- A suitable background sampling location on the southern side of the Site was not located due to the topography and disturbed nature of the site. Background locations should have similar physical, chemical, geological, radiological, and biological characteristics as the legacy mine site.
- Only 99 of the 100 stationary measurements were collected. One of the locations was omitted due to very deep snow levels.
- During the site reconnaissance, significant amounts of snow were present on the site (up to 5 inches deep in some areas). During the afternoon hours, the site became very moist and muddy. Moisture in soil serves to both increase and decrease the gamma signal when compared to an identical situation without moisture when the main contributor to terrestrial radiation is uranium. The moisture fills the normally empty soil pores with water and thereby increases the shielding effects of the soil and decreases the detectability of gamma rays that are emitted. Also, water reduces the rate of radon emanation from the soil, holding in a higher percentage of the radioactive gas and its decay products. However, due to the substantially elevated levels of gamma radiation activity on the site, this is not expected to have an effect on the findings of this DRS report.

4. SUMMARY

START-3 conducted DRS at the Johnny M Mine Site on 28 and 29 January 2012 that included collecting surface gamma radiation measurements in addition to conducting sampling and performing chemical/radiological analyses of surface soil. The specific sampling objectives for the DRS were to collect data that could be used to document a potential release of hazardous substances to the environment and to potentially warrant further site investigation and/or reclamation. Based on the results of the DRS sampling event, soil contamination attributable to the Johnny M Uranium Mine was documented via these contributing factors:

- Fifty-one out of the 99 stationary 1-minute gamma measurement locations had readings higher than two times the mean background average of 11,720 cpm, indicating a documented release at the Johnny M Uranium Mine.
- Ra-226 soil sampling results for the Johnny M Uranium Mine ranged from 2.64 to 317 pCi/g. All eleven soil sample results significantly exceeded three times the background Ra-226 result average of 2.69 pCi/g. This indicates a documented release at the Johnny M Uranium Mine.
- Arsenic, barium, calcium, molybdenum, selenium, sodium, uranium, vanadium, and zinc were detected in soil samples that exceeded three times the background concentrations, indicating a documented release at the Johnny M Uranium Mine.

5. REFERENCES

- URFO (Uranium Recovery Field Office). Termination Of The Source Material License Issued To Hecla Mining Company For The Johnny M Mine, San Mateo, New Mexico. 21 December 1990.
- 2. Weston Solutions, Inc. Quality Assurance Sampling Plan for the Johnny M Uranium Mine, Grants, McKinley County, New Mexico. December 2011.

CERCLIS ID: NMN0006607139

APPENDIX A

DIGITAL PHOTOGRAPHS

To View Photographs:

Open the folder: Appendix A Digital Photographs

Double Click on the file: Click here to view Photo

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: IMAG0366.jpg

Photo Type: Overview

Direction: N/A

Date/Time: Jan 28 2012 9:37AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Vent hole present on property adjacent to mine site, immediately north of the arroyo.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: IMAG0361.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 28 2012 10:05AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View across the site to the south. Picture was taken south of the arroyo.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281045.jpg

Photo Type: Overview

Direction: NE

Date/Time: Jan 28 2012 11:06AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Exposed pipe across the top of the arroyo.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281047.jpg

Photo Type: Overview

Direction: SW

Date/Time: Jan 28 2012 11:07AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View along the arroyo towards the Zuni Mountains.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281048.jpg

Photo Type: Overview

Direction: NE

Date/Time: Jan 28 2012 11:07AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: General view of the site on the south side of the arroyo.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident

Johnny M Uranium Mine ORS

Name: Photo Name:

P1281046.jpg

Photo Type: Ov

Overview

Direction:

N.I

Date/Time: Jan 28 2012 11:07AM

Latitude: 0

. . .

Longitude:

Photographer: Patrick Buster

Witness:

Patrick Buster

What appears to be a pump station located on the minesite, immediately north of the arroyo. Note the exposed pipe trending across the

Caption:

arroyo.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281049.jpg

Photo Type: Overview

Direction: E

Date/Time: Jan 28 2012 11:07AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View across the site along the bank of the arroyo.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281050.jpg

Photo Type: Overview

Direction: SE

Date/Time: Jan 28 2012 11:07AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Southern bank of the arroyo. The picture was taken from the bottom of the arroyo bed, which was dry during the site reconnaissance.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281051.jpg

Photo Type: Overview

Direction:

Date/Time: Jan 28 2012 11:24AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View along the arroyo and adjacent property boundary towards the old Johnny M Mine entrance.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281052.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 28 2012 11:24AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View along arroyo and adjacent property boundary.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281054.jpg

Photo Type: Overview

Direction: N

Date/Time: Jan 28 2012 11:31AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Close-up view of what appears to be an old pumphouse on the mine site.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281053.jpg

Photo Type: Overview

Direction: SE

Date/Time: Jan 28 2012 11:31AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View across the arroyo near the old pump station.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: IMAG0362.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 28 2012 11:49AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster
Witness: Patrick Buster

Caption: View to the south from the northeast corner of the mine site.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: IMAG0362-1.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 28 2012 11:49AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View to the south from the far northeast corner of the mine site.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281055.jpg

Photo Type: Overview

Direction: SE

Date/Time: Jan 28 2012 12:34PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: The old Johnny M mineshaft entrance.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281056.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 28 2012 12:46PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Old concrete pad located on the north side of the Johnny M Mine area.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281057.jpg

Photo Type: Overview

Direction:

Date/Time: Jan 28 2012 12:46PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Close-up view of old concrete pad.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281058.jpg

Photo Type: Overview

Direction: SW

Date/Time: Jan 28 2012 12:50PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View down the old road which comes into the Johnny M Mine from the north.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281059.jpg

Photo Type: Overview

Direction: N

Date/Time: Jan 28 2012 12:51PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: START-3 using GPS to place pinflags across the site within a grid system.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281060.jpg

Photo Type: Overview

Direction: N/A

Date/Time: Jan 28 2012 12:53PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Collapsed feature on the northeast side of the minesite. Underground pipes were noted inside of the feature.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281061.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 28 2012 12:57PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Underground pipe exposed in the arroyo bed.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281064.jpg

Photo Type: Overview

Direction: E

Date/Time: Jan 28 2012 3:26PM

Latitude: 0

Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: What appears to be an old venthole near the old mineshaft entrance.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281062.jpg

Photo Type: Overview

Direction: E

Date/Time: Jan 28 2012 3:26PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: General view across the site towards the old mineshaft entrance.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281063.jpg

Photo Type: Overview

Direction: W

Date/Time: Jan 28 2012 3:26PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: The old Johnny M mineshaft entrance.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: IMAG0365.jpg

Photo Type: Overview

Direction: N/A

Date/Time: Jan 28 2012 3:42PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster
Witness: Patrick Buster

Caption: Shovel which was buried in what appeared to be fill material.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: IMAG0366.jpg

Photo Type: Overview

Direction: N/A

Date/Time: Jan 28 2012 4:18PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Vent hole present on property adjacent to the mine site, immediately north of the arroyo.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281066.jpg

Photo Type: Overview

Direction: NE

Date/Time: Jan 28 2012 6:48PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: General view across the site. Note the powerlines in the background.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1281065.jpg

Photo Type: Overview

Direction:

Date/Time: Jan 28 2012 6:48PM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: General view across the northeast area of the mine site.

Page 1 of 1 Photo Report

Browse Photos Search Photos

Johnny M ORS **Event Name:**

Incident Name:

Johnny M Uranium Mine ORS

Photo Name:

IMAG0370.jpg

Photo Type:

Overview

Direction:

SE

Date/Time:

Jan 29 2012 9:37AM

Latitude:

Longitude:

Photographer: Patrick Buster

Witness:

Patrick Buster

Caption:

encountered.

View across what appears to be fill material on the mine site. Significantly elevated gamma activity was measured when this material was

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291069.jpg

Photo Type: Overview

Direction: NE

Date/Time: Jan 29 2012 11:01AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Gate separating the old mine site from the adjacent property.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291070.jpg

Photo Type: Overview

Direction: SE

Date/Time: Jan 29 2012 11:09AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Background location to the northwest of the mine.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291071.jpg

Photo Type: Overview

Direction: E

Date/Time: Jan 29 2012 11:10AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: Background location to the northeast of the mine.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291072.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 29 2012 11:30AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View down an old road leading to the mine site from the north.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291073.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 29 2012 11:30AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: General view across the mine site from the old access road.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291074.jpg

Photo Type: Overview

Direction: E

Date/Time: Jan 29 2012 11:32AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: General view of the northeast background location.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291076.jpg

Photo Type: Overview

Direction:

Date/Time: Jan 29 2012 11:46AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: View across the Lee Ranch near the northeast background area.

Browse Photos Search Photos

Event Name: Johnny M ORS

Incident Name: Johnny M Uranium Mine ORS

Photo Name: P1291075.jpg

Photo Type: Overview

Direction: S

Date/Time: Jan 29 2012 11:46AM

Latitude: 0
Longitude: 0

Photographer: Patrick Buster

Witness: Patrick Buster

Caption: General view of the northeast background area.

APPENDIX B

START-3 SITE LOGBOOK

START-3 EPA REGION 6

"Rite in the Rain".
ALL-WEATHER
JOURNAL
No. 391

JOHNNY M. MINE DRS

TDD# TD-0035-11-11-01

WD# 26466, D12.035, 0494.01

JANUARY 2012

Name Wester Solutions, Inc.

Address 5599 Son Felipe, Ste #700

Houston, TX 77056

Phone 713-985-6600

Project Juhany M Mine

McKinley County, NM

ToD# TO-0035-11-11-51

1	
3	
3	
	: 1
** I	
	_
,	

Clear Virty! Protective Stipcovers (flem No. 30) are available for this style of notebook. Helps protect your notebook fors weer 5 test Centect your design or the J. I. Darking Corporation.

T5 - 0035-11-11-01 2 Jahrang M Visnium Mine START-3 Field Team Lead (FTL) Patrick Boster receives gamma scumning unit from START-3 Alberrague, Now Mexico office. The sofie a Trimble 600XT 6000 Series, paired with a Lillia model 2221 detector (4 163607) - 3 WIT Proper model 44 10 6498 8B (# 149759) and NAI Probe model 44-10 (#PROJECTE) STROT-3 will also collect 1-minute stationery gumma measurements with a squark hidler model 2221 (4103687) and NAJ probe model 44-10 (#PRINZEMO). Each fruhe was calibrated by a qualified and registered collibration render on 21 September 2041 and 20 September 2011, respectively. For data Validation purposes START-3 cellected 20 1-minute background measurements and 20 7-minute sevice mousements (co-60) to compare growt deviation between the two instruments. Each unit will have a one marke background and one minute source that at the beginning and end of each Field day, which is compared to the mean background and some realing. If the instrument is 1/- 20% derace From the mean on any day, it will not be used for Field gamma seaming. The 20 background/source thick marbine muchs can be deen on the table on page 3 of this logbook

START-3	Johnny M Vrai	1	1/27/201
82112840	pet-163687	PR033018/11	wh-149959
Beckgood	Source	Buckground	Source
1) 10609	34191	965%	32561
U 10706	34 119	10244	70955
3) 10639	31315	10073	33224
4) 10769	343.66	10161	3.312.9
5) 10640	34493	10171	33026
(2) 10633	34579	10017	33011
7) 10407	342578	16330	2245
8) 10723	34248	10230	32681
9) 10572	34348	10220	33620
10) 10568	34530	10185	32986
11) 10649	34345	10075	53171
12) 10635	34319	10104	72913
13) (0810	343/1	10232	33227-
14) 10761	34327	10418	23165
15) 10807	34345	9756	33114
16) 10662	34574	9846	33124
17) 10590	34188	10007	73119
18) 10851	34390	9940	33114
19) 10774	34450	10165	33027-LD
20) 10624	345.34	[0343	33204
Avg: 10682	34371	10104	33639
Buckground	7- deration=/1001	-35039) (34371 =	

To-0035-11-11-01 Johnny M Dranism Mine Accide at Grants EPA command post to gather supplies and source duck luther units. Zero out 4 lainedus Range # 465.751 is assigned to START-3 86. Budge# 903067 is assigned to START-3 Derenck Colo (OC), START-3 Ameits with of EM SAM Libour Turner and START-3 CHP ROS Schoonfelder. Comot access property until 02:0 as pr EPA/LEFRANCH QUESS engraved. 1045 Seva (Independ that 1381 Jans PR11946 165687 buckyod reading 10345, PROBESONS (44754 : 10107, Some readings : 34342; 34361, respectively both instrument is within 1 20% devious from yesterlays 20 - rendinger both we within 1600 desines PB 073- Met with EMSAM. Don't for site. Discuss access. -1) 1805 how at Thomas Jackson's oph, Will seess Johnny M. after garing permission from Mr. Jackson on 1/27/12, -0820 to over this planget physical concerns, rad とというなが 0849 START-D begins laying partings, other Town looks he potential metasons locations -110 Train I (Stort -3 Colob + Books) complete laying out 100 and speed pirtings. One I-mark sinter reading will be collected at each bantion; 10 elevated location will be sampled. NOTE: Lots of Some cover and

	To	-0035-11-11-01	1 1 5
START-	3 30	-0035-11-11-01 Anny M. Uranism M.	ار 1/28/12
Very	INT. EPA 1	us praviously (1)	24) instructed START-)
+00	alket rudial	ier museums	I surples regardless
			TART-3 inhabed to
			odo accurate do.
-	المنصا	Carry, Lan	would START-3 to
ITHO O	COLUMN TO THE PARTY OF THE PART		- L 11 / L
1210	inglete gam.	m sinn, som wh	ins were limited du
	er god tenus	s. Collect 11, DI7	Note ports, 18
	1	100 WIND	*
	- 5mg	le point chata	
Time	Location	Read of	cornet
1554	10 × 100	1-240	andro ; show
15:50	5	16737	through some
1555	6	17446	Erroya Snow
551	7	17879	grego sand
1004	2	15 (1)	Snow wound
16196	3	15653	SAOLA WIND
1800	1	113416	snow arend "1
1911	- 8	22388	Snow grand
	complete 1	minute count facet	
	locations -		that I cheose sample
1730 Co	illect samples	for locations 3	1,88,84,82,77,73,
7.	· (dodiate)	65 66,55,54 -	
1540 Day	obilize - ite.	Will collect backers	und sumple and pin Flags
to	or (no.)		18
1-0,00			1,500

To-11-11-81-01 Johny M Warism Min 1/28/12 START-3 1510 Acrica of Great EPA comment part to Afford equip, upload later, and some that fullums -1985 fetrolog: Wasther today: Suny light West wind, high large 42°F, LOW TEMP 15°F. - 10 1830 Sto1366 1H6624 Brothery. 4818 clw PRO33090 149954 Source: 32923 8E112840 163687 Buckground 10577 12112846 163687 Source: 37430 1902 will process soil tomorrow for shipping End of games counts . long havy. collect sample -Samle-

To-0015-11-11-01 Johnny M Uranism Mine 1/29/12 8615 Arrive at Greats EPA Commend Post . -0630 Belgions & source check hollow wit PROSSONE 149959. will not use other lodlom today; no it is not medel Sura: 32755 Backgood: 10215 coss Wanther +-day Sonny, light and, high 48F, Low 18F. 0640 Will collect background samples, 1-minute counts, and 6PS constinutes tokay and part up pintlags - one today's logher entry is blossed not, place see the following pages for a couplete somery of all I-month 0720 Process soil samples, will discuss soil at the mine. Load equipment. Almit quival of EPA SAM -- PB 0735 Depart CP for s.le. Arcin at Ton Tacksons Front gate Change shows - 16 By to pick up pinflags -First public of profley, dispose of execusion on mines to the O'III Background-NW I-month costt: 13,502 cpm again Backy and - NE I-mark count 9,930 Cpm - collect 1005 Complet collecting buckground samples. 1015 ETA sam ages to we the two background sumples selected as the six buckeyound . -1050 Demoke s.t. for Grants EPA Commend Post - 93 1120 Artist at commend pool Unbad apripment. -

8 TARTS		M Warian M	e 453/12	START-3	Johny M	Urmine Mine	1/20/12
	100		14959, Portyon 1: 10 438	Time	LOWATION	READING	CHIMENT
Suv	10: 33,066	. —	Pa	1527	20	12.742	
			missing samples for shipport,	1515	21	15872	grassy
		E. Plut 615		1515	32	13060	3
			note Court summary X	1513	23	20269	
TIME	LOCATION	READING	Commerst	1501	. ३५	21234	
1608	i	11346	som would	1453	25	8726	
1604	2	15(1)	Snow would	1442	26	7357	
1606	3	15653	snow everad	1202	27	89629	Arroya edge
1550	ч	17240	arrayo; show	1542	3.6	23179	
1553	5	16:733	armyo' show	1532	39	إل بالدلا	
1555	G	17446	Arrayo; snow	1523	30	31714	grassy
1558	7	17819	arrays; snow	1517	31	35038	
1611	8	72181	snow hround	1510	32	24034	
1545	9	12 233		Pası	33	13612	grassy
1548	10	7624	soft	1457	34	9059	
1550	11	799(1444	35-	6288	
1554	12	\$ 38%	most to snow	1439	36	15668	
1556	13	6107		1205	37	103,446	
1601	14	8884	snow, regulation	1536	38	29449	
1604	15	18836		1534	39	23509	
1454	16	(3)17	snow armed	1521	40	39937	
1200	17	21452		1519	41	32671	*
1539	18	10441		1508	42	14,245	brassy
15 29	19	10306		1506	H3	9338	

10 START-3	76-0035-11	Granium Mine	1/29/12	STALT-3	70-0035. Johnny M	-11-11-01 1 Uraniu- Mia	1/28/12
Time	LOCATION	READING	COMMENT	TIME	LOCATION	REPOINS	
1449	44	12885		1219	65	89, 914	
1446	45	-6415pg 11	575	1212	69	167,740	Vegetation
1437	46	6415		1337	70	381,092	muldy/snow
14(8	47	35205		1345	71	64 580	modely
1420	He	34040		1344	72	-209, 993 - PO	34168 Snow
1422	49	36084		1216	73	201,993	
1424	50	30 876		1534	74	225, 252	t
1427	51	21 572		133/	75	79640	snow around
1433	SZ	11596		1328	76	45 278	snow around
1414	53	33069		12/8	77	282, 248	wet/moddy
1210	54	251,115		1320	78	245,546	Stanling unter
1414	65	156 052		1322	74	122,636	muddy/grassy
141(56	87 152		1325	08	33214	wet/Show
1408	57	12 139		N/A	81	NA	culled; very deep sour
1358	58	158,956	s.f+	1270	82	228,461	, , , ,
1400	Si	181,572	soft-	1224	83	223,936	muddy/grass
1402	60	177,434		1226	84	117,322	well noddy / yrussy
1404	61	45 968		1313	85	96 349	wet/moddy/grassy
1406	62	27 285		1310	86	63323	wet founding from snow
1355	63	187, 179		1308	87	24853	Snow week
1353	64	241, 988		1227	38	265,129	muldy
1350	45	342,018		1232	89	39,725	1
1331	66	264, 876	moldy/saci	1234	90	24,281	modly
1347	47	31 167	Snow	1305	91	20139	muddy/wed/grass
	一干	B		_	TE		

APPENDIX C

START-3 QUALITY ASSURANCE SAMPLING PLAN

OBSERVED RELEASE SAMPLING

QUALITY ASSURANCE SAMPLING PLAN

FOR

JOHNNY M URANIUM MINE ORS GRANTS LEGACY URANIUM SITES GRANTS, MCKINLEY COUNTY, NEW MEXICO

Prepared for

U.S. Environmental Protection Agency Region 6

Linda Carter, Project Officer 1445 Ross Avenue Dallas, Texas 75202

Contract No. EP-W-06-042
Technical Direction Document TO-0035-11-11-01
WESTON Work Order No. 20406.012.035.0694.01
NRC No. N/A
CERCLIS No. NMN0006607139
FPN N/A
EPA SAM: Lisa Price
START-3 PTL: Patrick Buster

Prepared by

Weston Solutions, Inc.

Robert Beck, VP, P.E., Program Manager 70 NE Loop 410, Suite 600 San Antonio, Texas 78216 (210) 308-4300

December 2011

TABLE OF CONTENTS

Sec	ction		Page
1.	INT	RODUCTION	1-1
	1.1	PROJECT OBJECTIVES	1-1
	1.2	PROJECT TEAM	
	1.3	QASP FORMAT	1-2
2.	SITE	E BACKGROUND	2-1
	2.1	SITE LOCATION AND DESCRIPTION	2-1
	2.2	SITE HISTORY	2-1
3.	SAM	MPLING APPROACH AND PROCEDURES	3-1
	3.1	OBJECTIVE	
	3.2	CRITERIA FOR OBSERVED RELEASE AND DATA	QUALITY
		OBJECTIVES	
	3.3	DETERMINATION OF BACKGROUND	3-2
	3.4	DIRECT OBSERVATION	3-4
	3.5	GAMMA SCANNING	
	3.6	STATIONARY GAMMA MEASUREMENTS	
	3.7	SOIL SAMPLING	3-7
4.	LAB	BORATORY ANALYSES	4-1
	4.1	ANALYTICAL METHODS	
	4.2	DATA INTERPRETATION	4-1
5.	DAT	TA VALIDATION	5-1
	5.1	FIELD INSTRUMENTS	5-1
	5.2	LABORATORY ANALYSES	5-1
6.	WA	TER SAMPLING	6-1
	6.1	WATER SAMPLING PROCEDURES	6-1
	6.2	GROUNDWATER PATHWAY SAMPLING	6-1
	6.3	SURFACE WATER PATHWAY SAMPLING	6-1
7.	QUA	ALITY ASSURANCE	7-1
	7.1	SAMPLE CUSTODY PROCEDURES	7-1
	7.2	PROJECT DOCUMENTATION	7-2
		7.2.1 FIELD DOCUMENTATION	7-3
		7.2.2 REPORT PREPARATION	7-5
		7.2.3 PESPONSE MANAGER	7_5

LIST OF APPENDICES

Appendix	Title
A	EPA Guidance Documents and WESTON Standard Operating Procedures
В	Site-Specific Data Quality Objectives
C	TDD No. 0035-11-11-01

LIST OF TABLES

Table	Page
Table 4-1 Requirements for Containers, Preservation Techniques, Sample Volumes, a	C

LIST OF FIGURES

Figure Title

Figure 1-1 Site Location Map

All figures are provided as separate portable document format (PDF) files.

1. INTRODUCTION

Weston Solutions, Inc. (WESTON®), the Superfund Technical Assessment and Response Team (START-3) Contractor, has been tasked by the U.S. Environmental Protection Agency (EPA) Region 6 under Contract Number EP-W-06-042, Technical Direction Document (TDD) No. TO-0035-11-11-01 (Appendix C) to conduct Observed Release Sampling (ORS) at the Johnny M Uranium Mine located in McKinley County, New Mexico. Site coordinates are Latitude 35.454367° North and Longitude -107.723603° West. A Site Location Map is provided as Figure 1-1. All figures are provided as separate portable document format (PDF) files. START-3 has prepared this Quality Assurance Sampling Plan (QASP) to describe the technical scope of work to be completed as part of the TDD.

1.1 PROJECT OBJECTIVES

START-3 is providing technical assistance to EPA Region 6 for conducting ORS activities at legacy uranium mines. The purpose of the ORS is to determine if past mining activities resulted in releases of hazardous substances to the environment at uranium mine sites that have a wide range of reclamation histories. START-3 will assess the existence and migration of hazardous substances and identify the receptors or targets potentially exposed to the hazardous substances. This Quality Assurance Sampling Plan (QASP) provides the generic guidance for conducting ORS and specific field sampling plans for the Johnny M Uranium Mine.

The ORS objective will be achieved by evaluating data obtained during the site assessment using a 2 inches by 2 inches Sodium Iodide (NaI) detector in conjunction with a Global Positioning System (GPS) unit. The detector will be mounted on a cart or hand-held approximately 15 inches above the soil surface. The instrument will be set with an "open" window to allow detection of the broad spectrum of gamma energies associated with the naturally occurring radionuclides. Samples will be collected from surface soil and potential surface water on-site, downgradient, and at background locations. Sediment samples in the surface water pathway may also be collected during this ORS. Additional samples may be collected to determine specific conditions in anomalous features on-site, if warranted. Section 4.1 describes the laboratory analyses that will be used as part of this investigation.

1.2 PROJECT TEAM

The Project Team will consist of START-3 personnel including Patrick Buster as the Project Team Leader (PTL), a Data Manager (DM), and a START-3 Field Team Leader (FTL) who will also act as the Field Safety Officer (FSO). The FTL will oversee collection of the samples as necessary, record the activities at each sample location in the field logbook, and verify sample documentation. Sample documentation and preparation is also the responsibility of the START-3 FTL. The FTL will be responsible for documenting the work performed and will serve as START-3 liaison to EPA Region 6.

1.3 QASP FORMAT

This QASP has been organized in a format that is intended to facilitate and effectively meet the objective of the removal assessment. The QASP is organized as follows:

- Section 1 Introduction
- Section 2 Site Background
- Section 3 Sampling Approach and Procedures
- Section 4 Laboratory Analyses
- Section 5 Data Validation
- Section 6 Water Sampling
- Section 7 Quality Assurance

2. SITE BACKGROUND

Information regarding the site location, description, and site history is included in the following subsections.

2.1 SITE LOCATION AND DESCRIPTION

The Johnny M Uranium Mine Site is within the Ambrosia Lake Mining District, located 19 miles north-northwest of Grants in McKinley County, New Mexico. The reclaimed area of the Johnny M Uranium Mine Site is approximately 65 acres in size.

2.2 SITE HISTORY

The Johnny M Mine, located near San Mateo, New Mexico, was operated by Ranchers Exploration and Development (predecessor to Hecla) from early 1973 to early 1982. The mining sequence at the mine included backfilling of the mined-out areas with mill tailings returned to the site from the mill that processed the ore. To accomplish this, two surface injection locations were used for storage of the uranium tailings prior to disposal in the mine stopes. According to New Mexico records, these two areas covered approximately 1 acre at the north and 1 acre at the south injection site. The tailings were slurried and then pumped into the mine to prevent caving and "reduce the vulnerability of possible breaks in the integrity of the Dakota aquifer located above the mine." An estimated 286,000 tons of tailings were injected into the mine. Disposal depths range from 1,134 feet to 1,148 feet and from 1,162 feet to 1,183 feet below the surface (using the shaft for datum), or about 1,100 to 1,300 feet underground, depending on the terrain.

Reclamation of the mine property began in early 1982. The mine shaft was sealed with a 4-foot-thick water ring reinforced concrete plug set between the Dakota and the Westwater members of the formation. The portal was sealed with a 12-inch-thick reinforced concrete plug, and a 20-inch-diameter capped, steel pipe was set in the concrete. The surface was then covered with earthen materials during site recontouring. The location of the shaft is not presently obvious due to the revegatated surface.

3. SAMPLING APPROACH AND PROCEDURES

3.1 OBJECTIVE

The objective of this QASP is to develop a standardized assessment process for legacy uranium mines that includes site reconnaissance and limited sampling that can be accomplished by a small work crew of three to five staff members in one work day or less. The QASP includes direct observation, field measurements, soil and water sampling, and laboratory analyses to determine with high confidence if a release of hazardous substances has occurred at the mine site. EPA and Weston Standard Operating Procedures (SOPs) are provided as Appendix A.

3.2 CRITERIA FOR OBSERVED RELEASE AND DATA QUALITY OBJECTIVES

The criteria against which each site will be evaluated are taken from the New Mexico Environmental Department (NMED) draft document "Generic Field Investigation and Soil/Sediment Sampling Work Plan Guidance to Assess a Legacy Uranium Mine Site for An Observed Release" dated July, 2011. That document describes the following three numerical criteria that define whether a hazardous substance is present and represents an observed release.

- 1. The on-site gamma count rate will be compared to the mean background gamma count rate to determine if the count rate is equal to or greater than two times the background mean.
- 2. Laboratory analyses of soil/sediment samples will be compared to the background isotopic concentrations to determine if the concentration is equal to or greater than three times the background mean.
- 3. Laboratory analyses of soil/sediment samples will be compared to the background isotopic concentrations to determine if the concentration is equal to or greater than two standard deviations above the background mean.

An observed release is part of the Site Investigation strategy for computing a Hazardous Ranking System (HRS) under CERCLA, which is the program administered primarily by the EPA for evaluation of sites for the Superfund National Priorities List (NPL) ("Guidance for Performing Site Inspections Under CERCLA, EPA/540-R-92-021"). For the purposes of this QASP, the only radioisotopes of concern related to Criteria 2 and 3 above are U-238 and Ra-226. The laboratory analyses will generate data for other radioisotopes (such as Potassium-40 [K-40]) as a

bi-product of the analyses, but these other isotopic data are not relevant to the project objectives and will not be evaluated or compared to any criteria because they are unrelated to uranium mine operations.

More detailed instructions as to how to apply these criteria are discussed in the sections below. However, these criteria are applied to individual measurements or laboratory analyses for each sampling/measurement point. If measurements or laboratory analyses exceed any of these criteria, the site is determined to demonstrate conditions of an "observed release" and is to be considered for further evaluation and possible follow-on action. The criteria are not based on risk or dose, nor are they based on the area size of the impacted soil.

The objective of soil sampling is to determine if a hazardous substance is present and represents an observed release. To accomplish this, data quality objectives (DQOs) have been established and are included in Appendix B. The DQOs presented were developed using the seven-step process set out in the EPA Guidance for Quality Assurance Project Plans: EPA QA/G-5.

3.3 DETERMINATION OF BACKGROUND

As stated above, the numerical criteria are relative to either the count rate or soil concentration at some level above the background mean. Therefore, it is critical to accurately identify the background mean for each property or mining claim site. Background radiation has many sources including cosmic, terrestrial, and man-made sources, all of which can contribute to the natural variability of the ambient gamma background count rate level. When considering the natural background concentration of various radioisotopes, uranium 238 (U-238) and its daughter products (particularly Radium [Ra-226]), in equilibrium, are commonly found in U.S. soils at concentrations ranging from about 0.5 to 1.5 picocuries per gram (pCi/g). However, since uranium mines are normally located in areas geologically enhanced in uranium, the background levels of U-238 and daughters near legacy uranium mines may be above these concentrations. Other radionuclides found in natural background soils include K-40 at typical concentrations ranging from 10 to 25 pCi/g; Thorium-232 (Th-232) and daughters ranging from 0.5 to 1.5 pCi/g; and Caesium-137 (Cs-137), a man-made radioisotope from nuclear weapons testing, at about 0.5 pCi/g. Establishing background concentrations that describe a distribution of

measurement data is necessary to identify and evaluate contributions attributable to legacy mines.

A site background location should have similar physical, chemical, geological, radiological, and biological characteristics as the legacy mine site if there were no impacts from uranium mining or milling at the site. For purposes of this QASP, the background for each legacy mine site is determined following guidance provided by the HRS protocol. The HRS protocol determines the background for the individual site as the mean of field measurements and laboratory analyses of samples collected from four locations at the perimeter of the property corresponding to the four directions of a compass (N, S, E, and W). After locating the four background locations at the perimeter of the mining claim (or at the boundary of the property), each location should be gamma-scanned (the technique of gamma scanning is described in a following section) to verify that the area appears to have a homogenous gamma ambient level and a visual confirmation that the other four characteristics listed above appear satisfied. The gamma-scan data (count rate and location) should be saved for data validation and quality control purposes.

Due to the nature of the extended uranium mining in the area, a pre-designated background location may exhibit radiological characteristics that do not appear to meet the HRS requirement for a site background to have a similar chemical, physical, radiological, geological, and biological characteristics as the legacy mine site if there were no impacts from uranium mining/milling. If the FTL determines that significantly elevated readings are encountered or physical conditions indicate possible impacts from past mining or milling activities, that background location may be moved to another area reasonably close by. If a more suitable background location cannot be located, a sample will still be collected and data will be recorded from the most suitable location in that immediate area. That background location may be used or omitted from consideration based on final data evaluation when the site report is developed.

At each background location, a 1-minute stationary gamma count rate measurement will be collected with the detector held approximately 15 inches above the ground surface. The count rate and location, as recorded by GPS, will be saved and the mean calculated from these four measurements. At each background location, a soil sample will be collected for radiochemical and stable chemical analyses. A sample of approximately 6-inch depth and 1 kilogram (kg) mass

will be collected in pre-cleaned containers provided by the laboratory. Rocks of greater than approximately 0.25-inch-diameter should be discarded, as should any biological material such as grass or twigs. Samples should be analyzed by gamma spectrometry for all detectable radioisotopes by this method and by alpha spectrometry for isotopes of the U-238 and Th-232 decay chains. The suite of metal analytes to be analyzed in each soil sample include the 23 Target Analyte List (TAL) metals plus total uranium and molybdenum. Additional information and specific analytical techniques are discussed in a subsequent section.

3.4 DIRECT OBSERVATION

An observed release means that hazardous substances have been documented on the mine site or surrounding area soil or water, and that the substances are attributable, at least in part, to the site that is being evaluated. An observed release can be established by direct observation if hazardous substances such as mine ore and/or waste rock that are geologically foreign and mineralogically distinct from the native surface soil and rock composition on the surface of the mine property are present. An observed release can also be established by observation of ore or waste rock transported off-site by wind or water erosion, particularly into nearby drainage channels. Determination of mine surface or off-site contamination by direct observation should be documented by photographs and logbook entries that clearly demonstrate that the site remains impacted by prior mining activities. Determination by direct observation does not quantitatively demonstrate that the numerical criteria have been exceeded, but it is highly likely that subsequent stationary gamma measurements and soil sampling in the areas noted by direct observation will conclusively demonstrate conditions of "observed release."

3.5 GAMMA SCANNING

Like direct observation, scanning does not provide a quantitative assessment of site conditions but is an excellent tool to assess the relative gamma activity of the area. Scanning is useful in quickly determining the general radiological condition of the site and determining where background radiological conditions exist. It literally paints a picture that depicts where areas of elevated gamma activity are present and identifies where additional measurements and sampling efforts should be placed.

Gamma scanning will be conducted using a 2 inches by 2 inches NaI detector in conjunction with a GPS unit. The detector will be mounted on a cart or hand-held approximately 15 inches above the soil surface. The instrument will be set with an "open window" to allow detection of the broad spectrum of gamma energies associated with the naturally occurring radionuclides. The technician will walk transects at approximately 0.5 meter-per-second from one end of the mine claim boundary to another. One-second measurements of gamma activity are recorded and electronically attached to the appropriate GPS designation for subsequent plotting and depiction of ambient gamma activity. The field-of-view for this detector system is approximately 1 meter wide perpendicular to the direction of the travel. The overall Johnny M Uranium Mine Site is approximately 65 acres in size; however, an area of approximately 31 acres will be assessed as part of this ORS event. Ten percent coverage will be the objective, and transects will be walked at a distance of approximately 10 meters apart. With a 10-meter transect spacing, the technician can gamma-scan 4.4 acres/hour. It is expected that these transects can be completed within five to seven hours with one monitoring team. The FTL may modify the transect spacing as necessary to ensure maximum site coverage and compliance with project scheduling and time constraints based on actual site conditions encountered in the field.

In addition to walking the transects, the technician will visually search for suspect areas such as waste rock or ore piles, mine portals (adits, shafts, vents, bore holes), machinery, building foundations, haul roads, arroyos, stream beds, or surface impoundments to gamma-scan. The technician should use the audible signal from the instrument system to help guide him to areas of elevated gamma activity. If there are many suspect areas needing to be gamma-scanned, a second gamma-scanning system should be employed to help with the survey load.

Data are recorded and plotted in units of gamma counts per minute (CPM). However, the data are collected in counts per second and then multiplied by 60 seconds/minute to arrive at CPM. Therefore, any slight variation in the collected count rate is magnified by this multiplication. For this reason, it is not unusual for isolated measurements to be significantly elevated above background. These isolated measurements are usually statistical outliers and are not indicative of actual elevated gamma activity. However, any significantly elevated gamma measurements

(greater than 2 times background) should be re-investigated, particularly if there is a locus of elevated measurements around a common point.

Data from these gamma scans provide a useful representation of site conditions and will be presented in the site report with a color-coded display to clearly show the various levels of elevated readings. Because of the statistical variation in the readings, the gamma-scanning data are not used for comparison to the observed release criteria for gamma measurements. These data are useful to identify areas where soil samples should be collected and stationary gamma measurements made.

3.6 STATIONARY GAMMA MEASUREMENTS

Stationary 1-minute gamma measurements will be collected at grid points across the property, and at additional suspect locations identified by the gamma-scanning data. Because these stationary measurements are integrated over 1-minute intervals versus 1-second intervals for the scanning measurements, the stationary measurements will be a more accurate measurement of the ambient gamma activity at that point. Stationary measurements will be made with the same type of instrumentation and at the same height above ground surface as the gamma-scanning measurements. The instrument set will again be a 2 inches by 2 inches NaI detector coupled to a GPS system, operated in the "open window" mode, and held at about 15 inches above the ground surface.

The approximate size of the area to be assessed is 31 acres. To collect thorough and sufficient data, grid spacing will be placed at approximately 125-foot-square spacing. This 125-foot grid spacing will generate 100 evenly spaced locations across the property. Assuming 1 minute to collect the data plus 4 minutes of additional time to walk to the next grid point, 100 measurements would require one person approximately 8 hours to collect, allowing the task to be completed in one work day if performed in parallel with the other site activities. Visual Sample Plan (VSP) software will be used to precisely generate sample locations using the designated grid spacing once the perimeter of the site is established. Each measurement location will be assigned its applicable GPS coordinates and located in the field using an appropriate electronic device. If the size of the mine site is altered or other site conditions change during the site

reconnaissance, VSP software will be used to re-establish the number of grids and grid spacing most suitable for the mine site as determined by the FTL.

In addition to the grid locations, stationary 1-minute measurements will be collected at suspect areas as identified by direct observation of the site or by gamma-scanning. These measurements will again be collected using the same instrument and GPS system. It is presumed that a second instrument set will be required for these measurements at suspect areas.

Interpretation of these data compares each count rate measurement, collected either from grid points or suspect areas, with the mean gamma background count rate measurement. If any count rate measurement is equal to or greater than two times (2X) the mean background count rate, the property is identified as having an observed release. It is important to note that a property identified as having an observed release may require no further action eventually if, for instance, the majority of the property has levels equal to background. Clean-up levels for these sites are not established in the document, and the observed release criteria are not the clean-up criteria.

3.7 SOIL SAMPLING

Soil samples of 0 to 6-inch depths and approximately 1 kg mass will be collected at locations identified by the stationary measurements as being suspect. It is recommended that the locations with the highest 1-minute stationary readings be the primary locations considered for sampling. It is expected that about 10 samples will be collected from a typical mine site. When a suspect location is selected for sampling based on the stationary measurement, the potential location will first be carefully examined both visually and by radiological scanning to confirm that the site is free of nuggets of ore or waste rock, or other hot particles that can significantly impact analytical results. It is the intent of soil sample analyses to quantify the residual uranium concentration averaged over the entire 1 kg mass, and therefore a reasonably homogeneous sample is desired.

If the suspect area has a few obvious nuggets or hot spots of contamination that are not typical of a broad area being sampled and can be excised, remove the hot spots and re-survey the potential location. Document in the field log what the conditions were and the number of nuggets or hot spots removed. If the ambient gamma activity is still significantly elevated and the location is therefore a good candidate for sampling, continue with the collection of the soil sample at this

THIS DOCUMENT WAS PREPARED BY WESTON SOLUTIONS, INC., EXPRESSLY FOR EPA. IT SHALL NOT BE RELEASED OR DISCLOSED IN WHOLE OR IN PART WITHOUT THE EXPRESS, WRITTEN PERMISSION OF EPA.

location, and re-collect the 1-minute stationary measurement at the location. If removing the hot spots has also removed the elevated gamma activity, then another sampling spot should be selected. If the potential sample location is obviously composed of multiple nuggets or hot spots that will likely be excluded when the sample is collected, the sample should not be collected, and another location should be selected for that sample. Again, any non-radioactive rocks of greater than 0.25-inch diameter and any biological material should be removed from the sample, possibly using a sieve. Alternately, if nuggets of elevated radioactivity appear to be widespread and typical for the site, they may be included in the sample if the laboratory has a procedure for crushing and grinding the sample prior to homogenizing, and the laboratory is directed to do so.

4. LABORATORY ANALYSES

4.1 ANALYTICAL METHODS

All samples from the background locations and the suspect locations will be submitted to a qualified radiological laboratory for gamma spectrometry analyses. Sample preparation should include drying and homogenization of the entire 1 kg sample. The minimum gamma spectrometry aliquot size should be 0.5 kg. The laboratory will be requested to report all identifiable gamma emitting radioisotopes, and specifically the daughters of U-238, Ra-226, Th-232, and K-40. The requested sensitivity should be 0.1 pCi/g. The requested analytical procedure for Ra-226 should be by quantification of Bi-214 after an ingrowth period of at least 21 days. The suite of metal analytes to be analyzed in each soil sample include the 23 Target Analyte List (TAL) metals plus two additional metals, total uranium and molybdenum. Information regarding laboratory, analytical methods, container size, preservation techniques, and hold times is included in Table 4-1.

Since these samples are from legacy mine sites, it is assumed that the U-238 and Th-232 radioisotope decay chains will be in equilibrium. However, due to different solubilities of the chemical species found naturally in the environment, it is possible that the daughters may not be in equilibrium with the parents. Also, it is possible that mill tailings may have been returned to the mine site for storage and/or disposal. If this is the case, then the concentrations of the residual radioisotopes will not be in equilibrium. If it is suspected that any sample may not be in equilibrium, or if verification of equilibrium is desired, then additional analyses for isotopic uranium and isotopic thorium by alpha spectrometry will be requested of the laboratory. Analytical sensitivity of 0.1 pCi/g and a minimum aliquot size of 10 g will be required. It is recommended that one laboratory be selected for both types of analyses.

4.2 DATA INTERPRETATION

Interpretation of these data compares analytical results of each sample with the background mean concentration. If any sample contains U-238 as determined by alpha spectrometry or Ra-226 as determined by gamma spectrometry at a concentration equal to or greater than three times (3x)

the mean background concentration or at a concentration equal to or greater than two times (2x) the standard deviation above the mean concentration, the property will be identified as having an observed release. No other isotopic results will be compared to background concentrations. However, the project Certified Health Physicist (CHP) will review any analytical data for isotopes other than U-238 and Ra-226 for which the results appear to exceed the two previously described criteria.

Table 4-1 Requirements for Containers, Preservation Techniques, Sample Volumes, and Holding Times Johnny M Uranium Mine Grants, McKinley County, New Mexico

Name	Analytical Methods	Container	Preservation	Minimum Sample Volume or Weight	Maximum Holding Time
TAL Metals plus total uranium, molybdenum, tin and mercury	SW846 6010/6020 SW846 7470/7471	Polyethylene (water), Glass (solid)	HNO ₃ to pH<2 (water), 4°C	500 mL, 8oz	28 days for mercury 180 days all other metals
U-238, Ra-226	Gamma Spectrometry	Polyethylene (water), Glass (solid)	NA (soil/water)	1 gallon, 1 kg (32 oz)	6 months
Uranium/Thorium if determined in field	Alpha Spec ASTM 3972- 90M	Polyethylene (water), Glass (solid)	HNO ₃ to pH< 2 (water), NA (soil)	1 liter, 8 oz	6 months

Radiological methods to be conducted by Eberline Analytical, Oakridge, Tennessee.

TAL Metals analyzed by ALS Laboratories, Fort Collins, Colorado.

5. DATA VALIDATION

5.1 FIELD INSTRUMENTS

Each field instrument will be calibrated on an annual basis by a qualified and registered calibration vendor. Validation of field measurements will be accomplished by maintenance and review of daily background and source checks of the instrument sets. Prior to initiation of field activities, 20 one-minute background counts and 20 one-minute source check counts will be collected and a mean calculated. During field operations, a one-minute background count and one-minute source check count will be made at the start and end of each work day. If the individual one-minute count falls outside of the mean +/- 20%, the instrument will not be used until evaluated by the project CHP. Individual control charts will be maintained for the background and source check on each instrument to monitor instrument performance for trends.

5.2 LABORATORY ANALYSES

Analytical laboratory reports will be reviewed by a CHP to confirm compliance with the technical specifications and reasonableness of the analytical results. Technical specifications reviewed will be that the requested isotopes are reported, that the minimum sensitivity was attained, and the required 21-day in-growth time for Ra-226 was observed. The reasonableness of the data will be evaluated by review of the various gamma spectrometry results to determine if they are in equilibrium, if appropriate, and if the results are within the expected range of results.

6. WATER SAMPLING

6.1 WATER SAMPLING PROCEDURES

WESTON Standard Operating Procedures (SOPs) 1002-01 for Surface Water Sample Collection and 1002-02 for Groundwater Monitoring Well Sample Collection (Appendix A) will be utilized if either groundwater or surface water is observed on or in the vicinity of the mine site. The specific sampling procedures are described below.

6.2 GROUNDWATER PATHWAY SAMPLING

EPA has requested that groundwater surface pathway sampling not be included in this ORS event.

6.3 SURFACE WATER PATHWAY SAMPLING

An attempt will be made to collect a surface water sample and a sediment sample from any existing surface water impoundments, streams, or stock ponds that exist either on-site or within 1,000 meters of the nearest property boundary to document a release to the surface water pathway from the site. Samples will be analyzed for the same list of radionuclides and TAL metals as were identified for soil samples.

7. QUALITY ASSURANCE

Quality assurance will be conducted in accordance with the WESTON Corporate Quality Management Manual, dated March 2004; the WESTON START-3 Quality Management Plan, dated August 2007; and EPA Quality Assurance/Quality Control Guidance for Removal Activities, dated April 1990. Following receipt of the TDD from EPA, a Quality Control (QC) officer will be assigned and will monitor work conducted throughout the entire project including reviewing interim report deliverables and field audits. The START-3 PTL will be responsible for QA/QC of the field investigation activities. The designated laboratory utilized during the investigation will be responsible for QA/QC related to the analytical work. START-3 will also collect samples to verify that laboratory QA/QC is consistent with the required standards and to validate the laboratory data received.

7.1 SAMPLE CUSTODY PROCEDURES

Because of the evidentiary nature of sample collection, the possession of samples must be traceable from the time the samples are collected until they are introduced as evidence in legal proceedings. After sample collection and identification, samples will be maintained under chain-of-custody (COC) procedures. If the sample collected is to be split (laboratory QC), the sample will be allocated into similar sample containers. Sample labels completed with the same information as that on the original sample container will be attached to each of the split samples. All personnel required to package and ship coolers containing potentially hazardous material will be trained accordingly.

START-3 personnel will prepare and complete chain-of-custody forms using the Scribe Environmental Sampling Data Management System (SCRIBE) for all samples sent to a START-3 designated off-site laboratory. The chain-of-custody procedures are documented and will be made available to all personnel involved with the sampling. A typical chain-of-custody record will be completed each time a sample or group of samples is prepared for shipment to the laboratory. The record will repeat the information on each sample label and will serve as documentation of handling during shipment. A copy of this record will remain with the shipped samples at all times, and another copy will be retained by the member of the sampling team who

originally relinquished the samples. At the completion of the project, the data manager will export the SCRIBE chain-of-custody documentation to the Analytical Service Tracking System (ANSETS) database.

Samples relinquished to the participating laboratories will be subject to the following procedures for transfer of custody and shipment:

- Samples will be accompanied by the COC record. When transferring possession of samples, the individuals relinquishing and receiving the samples will sign, date, and note the time of the sample transfer on the record. This custody records document transfer of sample custody from the sampler to another person or to the laboratory.
- Samples will be properly packed for shipment and dispatched to the appropriate laboratory for analysis with separate, signed custody records enclosed in each sample box or cooler. Sample shipping containers will be custody-sealed for shipment to the laboratory. The preferred procedure includes use of a custody seal wrapped across filament tape that is wrapped around the package at least twice. The custody seal will then be folded over and stuck to seal to ensure that the only access to the package is by cutting the filament tape or breaking the seal to unwrap the tape.
- If sent by common carrier, a bill of lading or airbill will be used. Bill of lading and airbill receipts will be retained in the project file as part of the permanent documentation of sample shipping and transfer.

SOPs 1101.01 and 1102.01 describe these procedures in more detail.

7.2 PROJECT DOCUMENTATION

All documents will be completed legibly and in ink and by entry into field logbooks, Response Manager, or SCRIBE. Response Manager is the Enterprise Data Collection System designed to provide near real-time access to non-analytical data normally collected in logbooks. Response Manager provides a standard data collection interface for modules of data normally collected by START-3 field personnel while on-site. These modules fall into two basic categories for Response and Removal. The modules include Emergency Response, Reconnaissance, Facility Assessment, Shipping, Containers, Materials, Calls, HHW, and General/Site-Specific data. The system provides users with a standard template for laptop/desktop/tablet PCs that will synchronize to the secure web interface using merge replication technology to provide access to field collected data on the RRC-EDMS EPA Web Hub. Response Manager also includes a PDA application that provides some of the standard data entry templates from Response Manager to

users for field data entry. Response Manager also includes an integrated GPS unit with the secure PDA application, and the coordinates collected in Response Manager are automatically mapped on the RRC-EDMS interactive mapping site. GIS personnel can then access this data to provide comprehensive site maps for decision-making support.

Response Manager also includes an Analytical Module that is designed to give SCRIBE users the ability to synchronize the SCRIBE field data to the RRC-EDMS Web Hub. This allows analytical data managers and data validators access to data to perform reviews from anywhere with an Internet connection. The Analytical Module is designed to take the analytical data entered into EPA SCRIBE software and make it available for multiple users to access on one site. START-3 personnel will utilize SCRIBE for all data entry on-site and will upload to the Response Manager Analytical module.

7.2.1 Field Documentation

The following field documentation will be maintained as described below.

Field Logbook

The field logbook is a descriptive notebook detailing site activities and observations so that an accurate, factual account of field procedures may be reconstructed. All entries will be signed by the individuals making them. Entries should include, at a minimum, the following:

- Site name and project number.
- Names of personnel on-site.
- Dates and times of all entries.
- Description of all site activities, including site entry and exit times.
- Noteworthy events and discussions.
- Weather conditions.
- Site observations.
- Identification and description of samples and locations.
- Subcontractor information and names of on-site personnel.
- Dates and times of sample collections and chain-of-custody information.
- Records of photographs.
- Site sketches.
- Calibration results.

Sample Labels

Sample labels will be securely affixed to the sample container. The labels will clearly identify the particular sample and include the following information:

- Site name and project number.
- Date and time the sample was collected.
- Sample preservation method.
- Analysis requested.
- Sampling location.

Chain-of-Custody Record

A chain-of-custody will be maintained from the time of sample collection until final deposition. Every transfer of custody will be noted and signed for and a copy of the record will be kept by each individual who has signed it. The chain-of-custody is discussed in Subsection 7.1 Sample Custody Procedures.

Custody Seal

Custody seals demonstrate that a sample container has not been tampered with or opened. The individual who has custody of the samples will sign and date the seal and affix it to the container in such a manner that it cannot be opened without breaking the seal.

Photographic Documentation

START-3 will take photographs to document site conditions and activities as site work progresses. Initial conditions should be well documented by photographing features that define the site-related contamination or special working conditions. Representative photographs should be taken of each type of site activity. The photographs should show typical operations and operating conditions as well as special situations and conditions that may arise during site activities. Site final conditions should also be documented as a record of how the site appeared at completion of the work.

All photographs should be taken with either a film camera or digital camera capable of recording the date on the image. Each photograph will be recorded in the logbook and within Response

THIS DOCUMENT WAS PREPARED BY WESTON SOLUTIONS, INC., EXPRESSLY FOR EPA. IT SHALL NOT BE RELEASED OR DISCLOSED IN WHOLE OR IN PART WITHOUT THE EXPRESS, WRITTEN PERMISSION OF EPA.

Manager with the location of the photographer, direction the photograph was taken, the subject of the photograph, and its significance (i.e., why the picture was taken). Where appropriate, the photograph location, direction, and subject will also be shown on a site sketch and recorded within Response Manager.

7.2.2 Report Preparation

At the completion of the project, START-3 will review and validate all laboratory data and prepare a draft report of field activities and analytical results for EPA OSC review. Draft deliverable documents will be uploaded to the EPA TeamLink website for EPA OSC review and comment.

7.2.3 Response Manager

START-3 will use the Response Manager module located on the EPA Web Hub, https://solutions.westonproject.net/epawebhub/, to collect and organize the data collected from project activities. The information to be included encompasses some or all of the following depending on the specific project needs:

- General Module site-specific data including location and type of site. It also includes an area for all key site locations including geo-spatial data associated with the key site locations.
- Emergency Response Module includes the following sub-modules: Basic Info, HAZMAT, Release, Time Line Log, Incident Zones, Photos, Sensitive Receptors, Evacuations, Source, Cause, and Weather.
- Reconnaissance Module provides standard templates with the flexibility of adding any
 additional questions of values to the drop-down lists for targeted reconnaissance efforts.
 Typically the data in this module is associated with ESF-10 deployments and the cleanup of orphaned containers and hazardous debris, but the module can be utilized for any
 and all reconnaissance activities.
- Facility Assessment Module provides standard templates with the flexibility of adding
 any additional questions of values to the drop-down lists for assessments of structures.
 Typically utilized for EPA-regulated program facilities during an ESF-10 deployment of
 resources. This module can be utilized to track the assessment of any facilities including
 multiple assessments of the fixed facilities.
- Shipping Module provides standard templates for creating a cradle-to-grave record of all waste shipments from the site until they are recycled or destroyed. This includes the

ability to capture manifest and manifest line items and upload photos/original documents to support the records.

- Container Module provides standard templates for cataloguing containers including HAZCAT and Layer information in each container. The module also allows for the tracking of which containers are bulked.
- Properties Module provides standard templates with the flexibility of adding any
 additional questions of values to the drop-down lists for collection of property data
 including access agreements and assessments of the property and current status of
 property with regard to the site removal action.
- Materials Module provides standard templates for tracking materials that are brought on-site or that are removed from the site.
- Daily Reports provides standard templates for tracking daily site activities, daily site personnel, and daily site notes for reporting back to the EPA OSC in a POLREP or SITREP.
- HHW Module provides standard templates with the flexibility of adding any additional questions of values to the drop-down lists for tracking the amount of HHW collected at individual collection stations by HHW type.
- Data Files data files can be uploaded in the photo module section and be associated with individual records or with the site in general. The meta data associated with that data file can be filled in using the photo log fields.

The data stored in the Response Manager database can be viewed and edited by any individual with access rights to those functions. At any time deemed necessary, POLREPs and/or SITREPs can be generated by exporting the data out of Response Manager into Microsoft Excel/Word. The database is stored on a secure server and backed up regularly.

APPENDIX A

EPA GUIDANCE DOCUMENTS AND WESTON STANDARD OPERATING PROCEDURES

EPA Ground Water Issue

LOW-FLOW (MINIMAL DRAWDOWN) GROUND-WATER SAMPLING PROCEDURES

by Robert W. Puls¹ and Michael J. Barcelona²

Background

The Regional Superfund Ground Water Forum is a group of ground-water scientists, representing EPA's Regional Superfund Offices, organized to exchange information related to ground-water remediation at Superfund sites. One of the major concerns of the Forum is the sampling of ground water to support site assessment and remedial performance monitoring objectives. This paper is intended to provide background information on the development of low-flow sampling procedures and its application under a variety of hydrogeologic settings. It is hoped that the paper will support the production of standard operating procedures for use by EPA Regional personnel and other environmental professionals engaged in ground-water sampling.

For further information contact: Robert Puls, 405-436-8543, Subsurface Remediation and Protection Division, NRMRL, Ada, Oklahoma.

I. Introduction

The methods and objectives of ground-water sampling to assess water quality have evolved over time. Initially the emphasis was on the assessment of water quality of aquifers as sources of drinking water. Large water-bearing units were identified and sampled in keeping with that objective. These were highly productive aguifers that supplied drinking water via private wells or through public water supply systems. Gradually, with the increasing awareness of subsurface pollution of these water resources, the understanding of complex hydrogeochemical processes which govern the fate and transport of contaminants in the subsurface increased. This increase in understanding was also due to advances in a number of scientific disciplines and improvements in tools used for site characterization and ground-water sampling. Ground-water quality investigations where pollution was detected initially borrowed ideas, methods, and materials for site characterization from the water supply field and water analysis from public health practices. This included the materials and manner in which monitoring wells were installed and the way in which water was brought to the surface, treated, preserved and analyzed. The prevailing conceptual ideas included convenient generalizations of ground-water resources in terms of large and relatively homogeneous hydrologic units. With time it became apparent that conventional water supply generalizations of homogeneity did not adequately represent field data regarding pollution of these subsurface resources. The important role of *heterogeneity* became increasingly clear not only in geologic terms, but also in terms of complex physical,

¹National Risk Management Research Laboratory, U.S. EPA ²University of Michigan

Superfund Technology Support Center for Ground Water

National Risk Management Research Laboratory **Subsurface Protection and Remediation Division** Robert S. Kerr Environmental Research Center Ada, Oklahoma

Technology Innovation Office Office of Solid Waste and Emergency Response, US EPA, Washington, DC

Walter W. Kovalick, Jr., Ph.D. Director

chemical and biological subsurface processes. With greater appreciation of the role of heterogeneity, it became evident that subsurface pollution was ubiquitous and encompassed the unsaturated zone to the deep subsurface and included unconsolidated sediments, fractured rock, and *aquitards* or low-yielding or impermeable formations. Small-scale processes and heterogeneities were shown to be important in identifying contaminant distributions and in controlling water and contaminant flow paths.

It is beyond the scope of this paper to summarize all the advances in the field of ground-water quality investigations and remediation, but two particular issues have bearing on ground-water sampling today: aguifer heterogeneity and colloidal transport. Aguifer heterogeneities affect contaminant flow paths and include variations in geology, geochemistry, hydrology and microbiology. As methods and the tools available for subsurface investigations have become increasingly sophisticated and understanding of the subsurface environment has advanced, there is an awareness that in most cases a primary concern for site investigations is characterization of contaminant flow paths rather than entire aquifers. In fact, in many cases, plume thickness can be less than well screen lengths (e.g., 3-6 m) typically installed at hazardous waste sites to detect and monitor plume movement over time. Small-scale differences have increasingly been shown to be important and there is a general trend toward smaller diameter wells and shorter screens.

The hydrogeochemical significance of colloidal-size particles in subsurface systems has been realized during the past several years (Gschwend and Reynolds, 1987; McCarthy and Zachara, 1989; Puls, 1990; Ryan and Gschwend, 1990). This realization resulted from both field and laboratory studies that showed faster contaminant migration over greater distances and at higher concentrations than flow and transport model predictions would suggest (Buddemeier and Hunt, 1988; Enfield and Bengtsson, 1988; Penrose et al., 1990). Such models typically account for interaction between the mobile aqueous and immobile solid phases, but do not allow for a mobile, reactive solid phase. It is recognition of this third phase as a possible means of contaminant transport that has brought increasing attention to the manner in which samples are collected and processed for analysis (Puls et al., 1990; McCarthy and Degueldre, 1993; Backhus et al., 1993; U. S. EPA, 1995). If such a phase is present in sufficient mass, possesses high sorption reactivity, large surface area, and remains stable in suspension, it can serve as an important mechanism to facilitate contaminant transport in many types of subsurface systems.

Colloids are particles that are sufficiently small so that the surface free energy of the particle dominates the bulk free energy. Typically, in ground water, this includes particles with diameters between 1 and 1000 nm. The most commonly observed mobile particles include: secondary clay minerals; hydrous iron, aluminum, and manganese oxides; dissolved and particulate organic materials, and viruses and bacteria.

These reactive particles have been shown to be mobile under a variety of conditions in both field studies and laboratory column experiments, and as such need to be included in monitoring programs where identification of the *total* mobile contaminant loading (dissolved + naturally suspended particles) at a site is an objective. To that end, sampling methodologies must be used which do not artificially bias *naturally* suspended particle concentrations.

Currently the most common ground-water purging and sampling methodology is to purge a well using bailers or high speed pumps to remove 3 to 5 casing volumes followed by sample collection. This method can cause adverse impacts on sample quality through collection of samples with high levels of turbidity. This results in the inclusion of otherwise immobile artifactual particles which produce an overestimation of certain analytes of interest (e.g., metals or hydrophobic organic compounds). Numerous documented problems associated with filtration (Danielsson, 1982; Laxen and Chandler, 1982; Horowitz et al., 1992) make this an undesirable method of rectifying the turbidity problem, and include the removal of potentially mobile (contaminant-associated) particles during filtration, thus artificially biasing contaminant concentrations low. Sampling-induced turbidity problems can often be mitigated by using low-flow purging and sampling techniques.

Current subsurface conceptual models have undergone considerable refinement due to the recent development and increased use of field screening tools. So-called hydraulic *push* technologies (e.g., cone penetrometer, Geoprobe®, QED HydroPunch®) enable relatively fast screening site characterization which can then be used to design and install a monitoring well network. Indeed, alternatives to conventional monitoring wells are now being considered for some hydrogeologic settings. The ultimate design of any monitoring system should however be based upon adequate site characterization and be consistent with established monitoring objectives.

If the sampling program objectives include accurate assessment of the magnitude and extent of subsurface contamination over time and/or accurate assessment of subsequent remedial performance, then some information regarding plume delineation in three-dimensional space is necessary prior to monitoring well network design and installation. This can be accomplished with a variety of different tools and equipment ranging from hand-operated augers to screening tools mentioned above and large drilling rigs. Detailed information on ground-water flow velocity, direction, and horizontal and vertical variability are essential baseline data requirements. Detailed soil and geologic data are required prior to and during the installation of sampling points. This includes historical as well as detailed soil and geologic logs which accumulate during the site investigation. The use of borehole geophysical techniques is also recommended. With this information (together with other site characterization data) and a clear understanding of sampling objectives, then appropriate location, screen length, well diameter, slot size, etc. for the monitoring well network can be decided. This is especially critical for new in situ remedial approaches or natural attenuation assessments at hazardous waste sites.

In general, the overall goal of any ground-water sampling program is to collect water samples with no alteration in water chemistry; analytical data thus obtained may be used for a variety of specific monitoring programs depending on the regulatory requirements. The sampling methodology described in this paper assumes that the monitoring goal is to sample monitoring wells for the presence of contaminants and it is applicable whether mobile colloids are a concern or not and whether the analytes of concern are metals (and metalloids) or organic compounds.

II. Monitoring Objectives and Design Considerations

The following issues are important to consider prior to the design and implementation of any ground-water monitoring program, including those which anticipate using low-flow purging and sampling procedures.

A. Data Quality Objectives (DQOs)

Monitoring objectives include four main types: detection, assessment, corrective-action evaluation and resource evaluation, along with *hybrid* variations such as site-assessments for property transfers and water availability investigations. Monitoring objectives may change as contamination or water quality problems are discovered. However, there are a number of common components of monitoring programs which should be recognized as important regardless of initial objectives. These components include:

- Development of a conceptual model that incorporates elements of the regional geology to the local geologic framework. The conceptual model development also includes initial site characterization efforts to identify hydrostratigraphic units and likely flow-paths using a minimum number of borings and well completions;
- Cost-effective and well documented collection of high quality data utilizing simple, accurate, and reproducible techniques; and
- 3) Refinement of the conceptual model based on supplementary data collection and analysis.

These fundamental components serve many types of monitoring programs and provide a basis for future efforts that evolve in complexity and level of spatial detail as purposes and objectives expand. High quality, reproducible data collection is a common goal regardless of program objectives.

High quality data collection implies data of sufficient accuracy, precision, and completeness (i.e., ratio of valid analytical results to the minimum sample number called for by the program design) to meet the program objectives. Accuracy depends on the correct choice of monitoring tools and procedures to minimize sample and subsurface disturbance from collection to analysis. Precision depends on the repeatability of sampling and analytical protocols. It can be assured or improved by replication of sample analyses including blanks, field/lab standards and reference standards.

B. Sample Representativeness

An important goal of any monitoring program is collection of data that is truly representative of conditions at the site. The term representativeness applies to chemical and hydrogeologic data collected via wells, borings, piezometers, geophysical and soil gas measurements, lysimeters, and temporary sampling points. It involves a recognition of the statistical variability of individual subsurface physical properties, and contaminant or major ion concentration levels, while explaining extreme values. Subsurface temporal and spatial variability are facts. Good professional practice seeks to maximize representativeness by using proven accurate and reproducible techniques to define limits on the distribution of measurements collected at a site. However, measures of representativeness are dynamic and are controlled by evolving site characterization and monitoring objectives. An evolutionary site characterization model, as shown in Figure 1, provides a systematic approach to the goal of consistent data collection.

Figure 1. Evolutionary Site Characterization Model

The model emphasizes a recognition of the causes of the variability (e.g., use of inappropriate technology such as using bailers to purge wells; imprecise or operator-dependent methods) and the need to control avoidable errors.

1) Questions of Scale

A sampling plan designed to collect representative samples must take into account the potential scale of changes in site conditions through space and time as well as the chemical associations and behavior of the parameters that are targeted for investigation. In subsurface systems, physical (i.e., aguifer) and chemical properties over time or space are not statistically independent. In fact, samples taken in close proximity (i.e., within distances of a few meters) or within short time periods (i.e., more frequently than monthly) are highly auto-correlated. This means that designs employing high-sampling frequency (e.g., monthly) or dense spatial monitoring designs run the risk of redundant data collection and misleading inferences regarding trends in values that aren't statistically valid. In practice, contaminant detection and assessment monitoring programs rarely suffer these over-sampling concerns. In corrective-action evaluation programs, it is also possible that too little data may be collected over space or time. In these cases, false interpretation of the spatial extent of contamination or underestimation of temporal concentration variability may result.

2) Target Parameters

Parameter selection in monitoring program design is most often dictated by the regulatory status of the site. However, background water quality constituents, purging indicator parameters, and contaminants, all represent targets for data collection programs. The tools and procedures used in these programs should be equally rigorous and applicable to all categories of data, since all may be needed to determine or support regulatory action.

C. Sampling Point Design and Construction

Detailed site characterization is central to all decision-making purposes and the basis for this characterization resides in identification of the geologic framework and major hydro-stratigraphic units. Fundamental data for sample point location include: subsurface lithology, head-differences and background geochemical conditions. Each sampling point has a proper use or uses which should be documented at a level which is appropriate for the program's data quality objectives. Individual sampling points may not always be able to fulfill multiple monitoring objectives (e.g., detection, assessment, corrective action).

Compatibility with Monitoring Program and Data Quality Objectives

Specifics of sampling point location and design will be dictated by the complexity of subsurface lithology and variability in contaminant and/or geochemical conditions. It should be noted that, regardless of the ground-water sampling approach, few sampling points (e.g., wells, drive-points, screened augers) have zones of influence in excess of a few

feet. Therefore, the spatial frequency of sampling points should be carefully selected and designed.

2) Flexibility of Sampling Point Design

In most cases *well-point* diameters in excess of 1 7/8 inches will permit the use of most types of submersible pumping devices for low-flow (minimal drawdown) sampling. It is suggested that *short* (e.g., less than 1.6 m) screens be incorporated into the monitoring design where possible so that comparable results from one device to another might be expected. *Short*, of course, is relative to the degree of vertical water quality variability expected at a site.

3) Equilibration of Sampling Point

Time should be allowed for equilibration of the well or sampling point with the formation after installation. Placement of well or sampling points in the subsurface produces some disturbance of ambient conditions. Drilling techniques (e.g., auger, rotary, etc.) are generally considered to cause more disturbance than *direct-push* technologies. In either case, there may be a period (i.e., days to months) during which water quality near the point may be distinctly different from that in the formation. Proper development of the sampling point and adjacent formation to remove fines created during emplacement will shorten this water quality *recovery* period.

III. Definition of Low-Flow Purging and Sampling

It is generally accepted that water in the well casing is non-representative of the formation water and needs to be purged prior to collection of ground-water samples. However, the water in the screened interval may indeed be representative of the formation, depending upon well construction and site hydrogeology. Wells are purged to some extent for the following reasons: the presence of the air interface at the top of the water column resulting in an oxygen concentration gradient with depth, loss of volatiles up the water column, leaching from or sorption to the casing or filter pack, chemical changes due to clay seals or backfill, and surface infiltration.

Low-flow purging, whether using portable or dedicated systems, should be done using pump-intake located in the middle or slightly above the middle of the screened interval. Placement of the pump too close to the bottom of the well will cause increased entrainment of solids which have collected in the well over time. These particles are present as a result of well development, prior purging and sampling events, and natural colloidal transport and deposition. Therefore, placement of the pump in the middle or toward the top of the screened interval is suggested. Placement of the pump at the top of the water column for sampling is only recommended in unconfined aquifers, screened across the water table, where this is the desired sampling point. Low-

flow purging has the advantage of minimizing mixing between the overlying stagnant casing water and water within the screened interval.

A. Low-Flow Purging and Sampling

Low-flow refers to the velocity with which water enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective is to pump in a manner that minimizes stress (drawdown) to the system to the extent practical taking into account established site sampling objectives. Typically, flow rates on the order of 0.1 - 0.5 L/min are used, however this is dependent on site-specific hydrogeology. Some extremely coarse-textured formations have been successfully sampled in this manner at flow rates to 1 L/min. The effectiveness of using low-flow purging is intimately linked with proper screen location, screen length, and well construction and development techniques. The reestablishment of natural flow paths in both the vertical and horizontal directions is important for correct interpretation of the data. For high resolution sampling needs, screens less than 1 m should be used. Most of the need for purging has been found to be due to passing the sampling device through the overlying casing water which causes mixing of these stagnant waters and the dynamic waters within the screened interval. Additionally, there is disturbance to suspended sediment collected in the bottom of the casing and the displacement of water out into the formation immediately adjacent to the well screen. These disturbances and impacts can be avoided using dedicated sampling equipment, which precludes the need to insert the sampling device prior to purging and sampling.

Isolation of the screened interval water from the overlying stagnant casing water may be accomplished using low-flow minimal drawdown techniques. If the pump intake is located within the screened interval, most of the water pumped will be drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone. However, if the wells are not constructed and developed properly, zones other than those intended may be sampled. At some sites where geologic heterogeneities are sufficiently different within the screened interval, higher conductivity zones may be preferentially sampled. This is another reason to use shorter screened intervals, especially where high spatial resolution is a sampling objective.

B. Water Quality Indicator Parameters

It is recommended that water quality indicator parameters be used to determine purging needs prior to sample collection in each well. Stabilization of parameters such as pH, specific conductance, dissolved oxygen, oxida-

tion-reduction potential, temperature and turbidity should be used to determine when formation water is accessed during purging. In general, the order of stabilization is pH, temperature, and specific conductance, followed by oxidation-reduction potential, dissolved oxygen and turbidity. Temperature and pH, while commonly used as purging indicators, are actually quite insensitive in distinguishing between formation water and stagnant casing water; nevertheless, these are important parameters for data interpretation purposes and should also be measured. Performance criteria for determination of stabilization should be based on water-level drawdown, pumping rate and equipment specifications for measuring indicator parameters. Instruments are available which utilize in-line flow cells to continuously measure the above parameters.

It is important to establish specific well stabilization criteria and then consistently follow the same methods thereafter, particularly with respect to drawdown, flow rate and sampling device. Generally, the time or purge volume required for parameter stabilization is independent of well depth or well volumes. Dependent variables are well diameter, sampling device, hydrogeochemistry, pump flow rate, and whether the devices are used in a portable or dedicated manner. If the sampling device is already in place (i.e., dedicated sampling systems), then the time and purge volume needed for stabilization is much shorter. Other advantages of dedicated equipment include less purge water for waste disposal, much less decontamination of equipment, less time spent in preparation of sampling as well as time in the field, and more consistency in the sampling approach which probably will translate into less variability in sampling results. The use of dedicated equipment is strongly recommended at wells which will undergo routine sampling over time.

If parameter stabilization criteria are too stringent, then minor oscillations in indicator parameters may cause purging operations to become unnecessarily protracted. It should also be noted that turbidity is a very conservative parameter in terms of stabilization. Turbidity is always the last parameter to stabilize. Excessive purge times are invariably related to the establishment of too stringent turbidity stabilization criteria. It should be noted that natural turbidity levels in ground water may exceed 10 nephelometric turbidity units (NTU).

C. Advantages and Disadvantages of Low-Flow (Minimum Drawdown) Purging

In general, the advantages of low-flow purging include:

- samples which are representative of the mobile load of contaminants present (dissolved and colloid-associated);
- minimal disturbance of the sampling point thereby minimizing sampling artifacts;
- less operator variability, greater operator control;

- reduced stress on the formation (minimal drawdown);
- less mixing of stagnant casing water with formation water;
- reduced need for filtration and, therefore, less time required for sampling;
- smaller purging volume which decreases waste disposal costs and sampling time;
- better sample consistency; reduced artificial sample variability.

Some disadvantages of low-flow purging are:

- · higher initial capital costs,
- · greater set-up time in the field,
- need to transport additional equipment to and from the site,
- · increased training needs,
- resistance to change on the part of sampling practitioners.
- concern that new data will indicate a change in conditions and trigger an action.

IV. Low-Flow (Minimal Drawdown) Sampling Protocols

The following ground-water sampling procedure has evolved over many years of experience in ground-water sampling for organic and inorganic compound determinations and as such summarizes the authors' (and others) experiences to date (Barcelona et al., 1984, 1994; Barcelona and Helfrich, 1986; Puls and Barcelona, 1989; Puls et. al. 1990, 1992: Puls and Powell, 1992: Puls and Paul, 1995). Highquality chemical data collection is essential in ground-water monitoring and site characterization. The primary limitations to the collection of *representative* ground-water samples include: mixing of the stagnant casing and fresh screen waters during insertion of the sampling device or groundwater level measurement device: disturbance and resuspension of settled solids at the bottom of the well when using high pumping rates or raising and lowering a pump or bailer; introduction of atmospheric gases or degassing from the water during sample handling and transfer, or inappropriate use of vacuum sampling device, etc.

A. Sampling Recommendations

Water samples should not be taken immediately following well development. Sufficient time should be allowed for the ground-water flow regime in the vicinity of the monitoring well to stabilize and to approach chemical equilibrium with the well construction materials. This lag time will depend on site conditions and methods of installation but often exceeds one week.

Well purging is nearly always necessary to obtain samples of water flowing through the geologic formations in the screened interval. Rather than using a general but arbitrary guideline of purging three casing volumes prior to sampling, it is recommended that an in-line water quality measurement device (e.g., flow-through cell) be used to establish the stabilization time for several parameters (e.g., pH, specific conductance, redox, dissolved oxygen, turbidity) on a well-specific basis. Data on pumping rate, drawdown, and volume required for parameter stabilization can be used as a guide for conducting subsequent sampling activities.

The following are recommendations to be considered before, during and after sampling:

- use low-flow rates (<0.5 L/min), during both purging and sampling to maintain minimal drawdown in the well.
- maximize tubing wall thickness, minimize tubing length;
- place the sampling device intake at the desired sampling point;
- minimize disturbances of the stagnant water column above the screened interval during water level measurement and sampling device insertion;
- make proper adjustments to stabilize the flow rate as soon as possible;
- · monitor water quality indicators during purging;
- collect unfiltered samples to estimate contaminant loading and transport potential in the subsurface system.

B. Equipment Calibration

Prior to sampling, all sampling device and monitoring equipment should be calibrated according to manufacturer's recommendations and the site Quality Assurance Project Plan (QAPP) and Field Sampling Plan (FSP). Calibration of pH should be performed with at least two buffers which bracket the expected range. Dissolved oxygen calibration must be corrected for local barometric pressure readings and elevation.

C. Water Level Measurement and Monitoring

It is recommended that a device be used which will least disturb the water surface in the casing. Well depth should be obtained from the well logs. Measuring to the bottom of the well casing will only cause resuspension of settled solids from the formation and require longer purging times for turbidity equilibration. Measure well depth after sampling is completed. The water level measurement should be taken from a permanent reference point which is surveyed relative to ground elevation.

D. Pump Type

The use of low-flow (e.g., 0.1-0.5 L/min) pumps is suggested for purging and sampling all types of analytes. All pumps have some limitation and these should be investigated with respect to application at a particular site. Bailers are inappropriate devices for low-flow sampling.

1) General Considerations

There are no unusual requirements for ground-water sampling devices when using low-flow, minimal drawdown techniques. The major concern is that the device give consistent results and minimal disturbance of the sample across a range of *low* flow rates (i.e., < 0.5 L/min). Clearly, pumping rates that cause minimal to no drawdown in one well could easily cause *significant* drawdown in another well finished in a less transmissive formation. In this sense, the pump should not cause undue pressure or temperature changes or physical disturbance on the water sample over a reasonable sampling range. Consistency in operation is critical to meet accuracy and precision goals.

2) Advantages and Disadvantages of Sampling Devices

A variety of sampling devices are available for low-flow (minimal drawdown) purging and sampling and include peristaltic pumps, bladder pumps, electrical submersible pumps, and gas-driven pumps. Devices which lend themselves to both dedication and consistent operation at definable low-flow rates are preferred. It is desirable that the pump be easily adjustable and operate reliably at these lower flow rates. The peristaltic pump is limited to shallow applications and can cause degassing resulting in alteration of pH, alkalinity, and some volatiles loss. Gas-driven pumps should be of a type that does not allow the gas to be in direct contact with the sampled fluid.

Clearly, bailers and other *grab* type samplers are illsuited for low-flow sampling since they will cause repeated disturbance and mixing of *stagnant* water in the casing and the *dynamic* water in the screened interval. Similarly, the use of inertial lift foot-valve type samplers may cause too much disturbance at the point of sampling. Use of these devices also tends to introduce uncontrolled and unacceptable operator variability.

Summaries of advantages and disadvantages of various sampling devices are listed in Herzog et al. (1991), U. S. EPA (1992), Parker (1994) and Thurnblad (1994).

E. Pump Installation

Dedicated sampling devices (left in the well) capable of pumping and sampling are preferred over <u>any</u> other type of device. Any portable sampling device should be slowly and carefully lowered to the middle of the screened interval or slightly above the middle (e.g., 1-1.5 m below the top of a 3 m screen). This is to minimize excessive mixing of the stagnant water in the casing above the screen with the screened interval zone water, and to minimize resuspension of solids which will have collected at the bottom of the well. These two disturbance effects have been shown to directly affect the time required for purging. There also appears to be a direct correlation between size of portable sampling devices relative to the well bore and resulting purge volumes and times. The key is to minimize disturbance of water and solids in the well casing.

F. Filtration

Decisions to filter samples should be dictated by sampling objectives rather than as a $\it fix$ for poor sampling practices, and field-filtering of certain constituents should not be the default. Consideration should be given as to what the application of field-filtration is trying to accomplish. For assessment of truly dissolved (as opposed to operationally $\it dissolved$ [i.e., samples filtered with 0.45 μ m filters]) concentrations of major ions and trace metals, 0.1 μ m filters are recommended although 0.45 μ m filters are normally used for most regulatory programs. Alkalinity samples must also be filtered if significant particulate calcium carbonate is suspected, since this material is likely to impact alkalinity titration results (although filtration itself may alter the CO $_2$ composition of the sample and, therefore, affect the results).

Although filtration may be appropriate, filtration of a sample may cause a number of unintended changes to occur (e.g. oxidation, aeration) possibly leading to filtration-induced artifacts during sample analysis and uncertainty in the results. Some of these unintended changes may be unavoidable but the factors leading to them must be recognized. Deleterious effects can be minimized by consistent application of certain filtration guidelines. Guidelines should address selection of filter type, media, pore size, etc. in order to identify and minimize potential sources of uncertainty when filtering samples.

In-line filtration is recommended because it provides better consistency through less sample handling, and minimizes sample exposure to the atmosphere. In-line filters are available in both disposable (barrel filters) and nondisposable (in-line filter holder, flat membrane filters) formats and various filter pore sizes (0.1-5.0 µm). Disposable filter cartridges have the advantage of greater sediment handling capacity when compared to traditional membrane filters. Filters must be pre-rinsed following manufacturer's recommendations. If there are no recommendations for rinsing, pass through a minimum of 1 L of ground water following purging and prior to sampling. Once filtration has begun, a filter cake may develop as particles larger than the pore size accumulate on the filter membrane. The result is that the effective pore diameter of the membrane is reduced and particles smaller than the stated pore size are excluded from the filtrate. Possible corrective measures include prefiltering (with larger pore size filters), minimizing particle loads to begin with, and reducing sample volume.

G. Monitoring of Water Level and Water Quality Indicator Parameters

Check water level periodically to monitor drawdown in the well as a guide to flow rate adjustment. The goal is minimal drawdown (<0.1 m) during purging. This goal may be difficult to achieve under some circumstances due to geologic heterogeneities within the screened interval, and may require adjustment based on site-specific conditions and personal experience. In-line water quality indicator parameters should be continuously monitored during purging. The water quality

indicator parameters monitored can include pH, redox potential, conductivity, dissolved oxygen (DO) and turbidity. The last three parameters are often most sensitive. Pumping rate, drawdown, and the time or volume required to obtain stabilization of parameter readings can be used as a future guide to purge the well. Measurements should be taken every three to five minutes if the above suggested rates are used. Stabilization is achieved after all parameters have stabilized for three successive readings. In lieu of measuring all five parameters, a minimum subset would include pH, conductivity, and turbidity or DO. Three successive readings should be within \pm 0.1 for pH, \pm 3% for conductivity, \pm 10 mv for redox potential, and ± 10% for turbidity and DO. Stabilized purge indicator parameter trends are generally obvious and follow either an exponential or asymptotic change to stable values during purging. Dissolved oxygen and turbidity usually require the longest time for stabilization. The above stabilization guidelines are provided for rough estimates based on experience.

H. Sampling, Sample Containers, Preservation and Decontamination

Upon parameter stabilization, sampling can be initiated. If an in-line device is used to monitor water quality parameters, it should be disconnected or bypassed during sample collection. Sampling flow rate may remain at established purge rate or may be adjusted slightly to minimize aeration, bubble formation, turbulent filling of sample bottles, or loss of volatiles due to extended residence time in tubing. Typically, flow rates less than 0.5 L/min are appropriate. The same device should be used for sampling as was used for purging. Sampling should occur in a progression from least to most contaminated well, if this is known. Generally, volatile (e.g., solvents and fuel constituents) and gas sensitive (e.g., Fe²⁺, CH₄, H₂S/HS⁻, alkalinity) parameters should be sampled first. The sequence in which samples for most inorganic parameters are collected is immaterial unless filtered (dissolved) samples are desired. Filtering should be done last and in-line filters should be used as discussed above. During both well purging and sampling, proper protective clothing and equipment must be used based upon the type and level of contaminants present.

The appropriate sample container will be prepared in advance of actual sample collection for the analytes of interest and include sample preservative where necessary. Water samples should be collected directly into this container from the pump tubing.

Immediately after a sample bottle has been filled, it must be preserved as specified in the site (QAPP). Sample preservation requirements are based on the analyses being performed (use site QAPP, FSP, RCRA guidance document [U. S. EPA, 1992] or EPA SW-846 [U. S. EPA, 1982]). It may be advisable to add preservatives to sample bottles in a controlled setting prior to entering the field in order to reduce the chances of improperly preserving sample bottles or

introducing field contaminants into a sample bottle while adding the preservatives.

The preservatives should be transferred from the chemical bottle to the sample container using a disposable polyethylene pipet and the disposable pipet should be used only once and then discarded.

After a sample container has been filled with ground water, a Teflon $^{\text{TM}}$ (or tin)-lined cap is screwed on tightly to prevent the container from leaking. A sample label is filled out as specified in the FSP. The samples should be stored inverted at 4° C.

Specific decontamination protocols for sampling devices are dependent to some extent on the type of device used and the type of contaminants encountered. Refer to the site QAPP and FSP for specific requirements.

I. Blanks

The following blanks should be collected:

- (1) field blank: one field blank should be collected from each source water (distilled/deionized water) used for sampling equipment decontamination or for assisting well development procedures.
- (2) equipment blank: one equipment blank should be taken prior to the commencement of field work, from each set of sampling equipment to be used for that day. Refer to site QAPP or FSP for specific requirements.
- (3) trip blank: a trip blank is required to accompany each volatile sample shipment. These blanks are prepared in the laboratory by filling a 40-mL volatile organic analysis (VOA) bottle with distilled/deionized water.

V. Low-Permeability Formations and Fractured Rock

The overall sampling program goals or sampling objectives will drive how the sampling points are located, installed, and choice of sampling device. Likewise, site-specific hydrogeologic factors will affect these decisions. Sites with very low permeability formations or fractures causing discrete flow channels may require a unique monitoring approach. Unlike water supply wells, wells installed for ground-water quality assessment and restoration programs are often installed in low water-yielding settings (e.g., clays, silts). Alternative types of sampling points and sampling methods are often needed in these types of environments, because low-permeability settings may require extremely low-flow purging (<0.1 L/min) and may be technology-limited. Where devices are not readily available to pump at such low flow rates, the primary consideration is to avoid dewatering of

the well screen. This may require repeated recovery of the water during purging while leaving the pump in place within the well screen.

Use of low-flow techniques may be impractical in these settings, depending upon the water recharge rates. The sampler and the end-user of data collected from such wells need to understand the limitations of the data collected; i.e., a strong potential for underestimation of actual contaminant concentrations for volatile organics, potential false negatives for filtered metals and potential false positives for unfiltered metals. It is suggested that comparisons be made between samples recovered using low-flow purging techniques and samples recovered using passive sampling techniques (i.e., two sets of samples). Passive sample collection would essentially entail acquisition of the sample with no or very little purging using a dedicated sampling system installed within the screened interval or a passive sample collection device.

A. Low-Permeability Formations (<0.1 L/min recharge)

1. Low-Flow Purging and Sampling with Pumps

- a. "portable or non-dedicated mode" Lower the pump (one capable of pumping at <0.1 L/min) to mid-screen or slightly above and set in place for minimum of 48 hours (to lessen purge volume requirements). After 48 hours, use procedures listed in Part IV above regarding monitoring water quality parameters for stabilization, etc., but do not dewater the screen. If excessive drawdown and slow recovery is a problem, then alternate approaches such as those listed below may be better.
- b. "dedicated mode" Set the pump as above at least a week prior to sampling; that is, operate in a dedicated pump mode. With this approach significant reductions in purge volume should be realized. Water quality parameters should stabilize quite rapidly due to less disturbance of the sampling zone.

2. Passive Sample Collection

Passive sampling collection requires insertion of the device into the screened interval for a sufficient time period to allow flow and sample equilibration before extraction for analysis. Conceptually, the extraction of water from low yielding formations seems more akin to the collection of water from the unsaturated zone and passive sampling techniques may be more appropriate in terms of obtaining "representative" samples. Satisfying usual sample volume requirements is typically a problem with this approach and some latitude will be needed on the part of regulatory entities to achieve sampling objectives.

B. Fractured Rock

In fractured rock formations, a low-flow to zero purging approach using pumps in conjunction with packers to isolate the sampling zone in the borehole is suggested. Passive multi-layer sampling devices may also provide the most "representative" samples. It is imperative in these settings to identify flow paths or water-producing fractures prior to sampling using tools such as borehole flowmeters and/or other geophysical tools.

After identification of water-bearing fractures, install packer(s) and pump assembly for sample collection using low-flow sampling in "dedicated mode" or use a passive sampling device which can isolate the identified water-bearing fractures.

VI. Documentation

The usual practices for documenting the sampling event should be used for low-flow purging and sampling techniques. This should include, at a minimum: information on the conduct of purging operations (flow-rate, drawdown, water-quality parameter values, volumes extracted and times for measurements), field instrument calibration data, water sampling forms and chain of custody forms. See Figures 2 and 3 and "Ground Water Sampling Workshop -- A Workshop Summary" (U. S. EPA, 1995) for example forms and other documentation suggestions and information. This information coupled with laboratory analytical data and validation data are needed to judge the "useability" of the sampling data.

VII. Notice

The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described herein as part of its in-house research program and under Contract No. 68-C4-0031 to Dynamac Corporation. It has been subjected to the Agency's peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

VIII. References

Backhus, D,A., J.N. Ryan, D.M. Groher, J.K. McFarlane, and P.M. Gschwend. 1993. Sampling Colloids and Colloid-Associated Contaminants in Ground Water. *Ground Water*, 31(3):466-479.

Barcelona, M.J., J.A. Helfrich, E.E. Garske, and J.P. Gibb. 1984. A laboratory evaluation of groundwater sampling mechanisms. *Ground Water Monitoring Review*, 4(2):32-41.

Barcelona, M.J. and J.A. Helfrich. 1986. Well construction and purging effects on ground-water samples. *Environ. Sci. Technol.*, 20(11):1179-1184.

Barcelona, M.J., H.A. Wehrmann, and M.D. Varljen. 1994. Reproducible well purging procedures and VOC stabilization criteria for ground-water sampling. *Ground Water*, 32(1):12-22.

Buddemeier, R.W. and J.R. Hunt. 1988. Transport of Colloidal Contaminants in Ground Water: Radionuclide Migration at the Nevada Test Site. *Applied Geochemistry*, 3: 535-548.

Danielsson, L.G. 1982. On the Use of Filters for Distinguishing Between Dissolved and Particulate Fractions in Natural Waters. *Water Research*, 16:179.

Enfield, C.G. and G. Bengtsson. 1988. Macromolecular Transport of Hydrophobic Contaminants in Aqueous Environments. *Ground Water*, 26(1): 64-70.

Gschwend, P.M. and M.D. Reynolds. 1987. Monodisperse Ferrous Phosphate Colloids in an Anoxic Groundwater Plume, *J. of Contaminant Hydrol.*, 1: 309-327.

Herzog, B., J. Pennino, and G. Nielsen. 1991. Ground-Water Sampling. In **Practical Handbook of Ground-Water Monitoring** (D.M. Nielsen, ed.). Lewis Publ., Chelsea, MI, pp. 449-499.

Horowitz, A.J., K.A. Elrick, and M.R. Colberg. 1992. The effect of membrane filtration artifacts on dissolved trace element concentrations. *Water Res.*, 26(6):753-763.

Laxen, D.P.H. and I.M. Chandler. 1982. Comparison of Filtration Techniques for Size Distribution in Freshwaters. *Analytical Chemistry*, 54(8):1350.

McCarthy, J.F. and J.M. Zachara. 1989. Subsurface Transport of Contaminants, *Environ. Sci. Technol.*, 5(23):496-502.

McCarthy, J.F. and C. Degueldre. 1993. Sampling and Characterization of Colloids and Ground Water for Studying Their Role in Contaminant Transport. In: Environmental Particles (J. Buffle and H.P. van Leeuwen, eds.), Lewis Publ., Chelsea, MI, pp. 247-315.

Parker, L.V. 1994. The Effects of Ground Water Sampling Devices on Water Quality: A Literature Review. *Ground Water Monitoring and Remediation*, 14(2):130-141.

Penrose, W.R., W.L. Polzer, E.H. Essington, D.M. Nelson, and K.A. Orlandini. 1990. Mobility of Plutonium and Americium through a Shallow Aquifer in a Semiarid Region, *Environ. Sci. Technol.*, 24:228-234.

Puls, R.W. and M.J. Barcelona. 1989. Filtration of Ground Water Samples for Metals Analyses. *Hazardous Waste and Hazardous Materials*, 6(4):385-393.

Puls, R.W., J.H. Eychaner, and R.M. Powell. 1990. Colloidal-Facilitated Transport of Inorganic Contaminants in Ground Water: Part I. Sampling Considerations. EPA/600/M-90/023, NTIS PB 91-168419.

Puls, R.W. 1990. Colloidal Considerations in Groundwater Sampling and Contaminant Transport Predictions. *Nuclear Safety*, 31(1):58-65.

Puls, R.W. and R.M. Powell. 1992. Acquisition of Representative Ground Water Quality Samples for Metals. *Ground Water Monitoring Review*, 12(3):167-176.

Puls, R.W., D.A. Clark, B.Bledsoe, R.M. Powell, and C.J. Paul. 1992. Metals in Ground Water: Sampling Artifacts and Reproducibility. *Hazardous Waste and Hazardous Materials*, 9(2): 149-162.

Puls, R.W. and C.J. Paul. 1995. Low-Flow Purging and Sampling of Ground-Water Monitoring Wells with Dedicated Systems. *Ground Water Monitoring and Remediation*, 15(1):116-123.

Ryan, J.N. and P.M. Gschwend. 1990. Colloid Mobilization in Two Atlantic Coastal Plain Aquifers. *Water Resour. Res.*, 26: 307-322.

Thurnblad, T. 1994. Ground Water Sampling Guidance: Development of Sampling Plans, Sampling Protocols, and Sampling Reports. Minnesota Pollution Control Agency.

U. S. EPA. 1992. RCRA Ground-Water Monitoring: Draft Technical Guidance. Office of Solid Waste, Washington, DC EPA/530/R-93/001, NTIS PB 93-139350.

U. S. EPA. 1995. Ground Water Sampling Workshop -- A Workshop Summary, Dallas, TX, November 30 - December 2, 1993. EPA/600/R-94/205, NTIS PB 95-193249, 126 pp.

U. S. EPA. 1982. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA SW-846. Office of Solid Waste and Emergency Response, Washington, D.C.

Figure 2. Ground Water Sampling Log

Project	Site W	/ell No	Date	
Well Depth	Screen Length	Well Diameter	Casing Type	
Sampling Device	Tubing type		Water Level	
Measuring Point	Other Info	r		
Sampling Personnel				

Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes

Type of Samples Collected		

Information: 2 in = 617 ml/ft, 4 in = 2470 ml/ft: Vol_{cyl} = $\pi r^2 h$, Vol_{sphere} = 4/3 π r^3

Figure 3. **Ground Water Sampling Log** (with automatic data logging for most water quality parameters)

Project	Site \	Well No	Date	
Well Depth	Screen Length	Well Diameter	Casing Type	
Sampling Device	Tubing type _		Water Level	
Measuring Point	Other Info	or		
Sampling Personnel				

Time	Pump Rate	Turbidity	Alkalinity	[] Conc	Notes

Type of Samples Collected	
Information: 2 in = 617 ml/ft, 4 in = 2470 ml/ft: \	$Vol_{cyl} = \pi r^2 h$, $Vol_{sphere} = 4/3\pi r^3$

SOP	1001.01					
GROUP	Sampling Procedur	es				
SUB-GROUP	Soil Sampling Proc	Soil Sampling Procedures				
TITLE	Surface Soil Sampling					
DATE	11/19/2001	FILE	1001-01.DOC	PAGE	1 of 3	

INTRODUCTION

The following Standard Operating Procedure (SOP) is to describe the procedures for collecting representative soil samples. Analysis of soil samples may determine whether concentrations of specific soil pollutants exceed established action levels, or if the concentrations of soil pollutants present a risk to public health, welfare, or the environment. This SOP is similar to SOP Number 1001.03 for collecting near surface soil samples with a hand auger.

PROCEDURE

Surface soil samples may be collected using a variety of methods and equipment. The methods and equipment used are dependent on the depth of the desired sample, the type of sample required (disturbed versus undisturbed), and the type of soil. Near-surface soils may be easily sampled using a spade, trowel, or hand scoop.

Sample Preservation

Cooling to $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$, supplemented by a minimal holding time, is suggested.

Interferences and Potential Problems

There are two primary interferences or potential problems associated with soil sampling: cross-contamination of samples and improper sample collection. Cross-contamination problems can be eliminated or minimized through the use of dedicated (disposable) sampling equipment. If this is not possible or practical, then decontamination of sampling equipment is necessary. Improper sample collection can involve using contaminated equipment, disturbance of the matrix resulting in compaction of the sample, or inadequate homogenization of the samples where required, resulting in variable, non-representative results. Homogenization may also affect sample representativeness where the analytical requirements include volatile organic compounds.

Equipment or Apparatus

The equipment used for sampling may be selected from the following list, as appropriate:

- Tape measure
- Survey stakes or flags
- Stainless steel, plastic, or other appropriate homogenization bucket or bowl
- Ziploc plastic bags
- Logbook
- Labels
- Chain-of-custody forms and seals
- Coolers
- Ice
- Decontamination supplies and equipment
- Canvas or plastic sheet
- Spatulas/spades/shovels
- Scoops

SOP	1001.01					
GROUP	Sampling Procedur	res				
SUB-GROUP	Soil Sampling Proc	Soil Sampling Procedures				
TITLE	Surface Soil Sampl	ing				
DATE	11/19/2001	FILE	1001-01.DOC	PAGE	2 of 3	

- Plastic or stainless steel spoons
- Trowel

Preparation

- 1. Determine the extent of the sampling effort, the sampling methods to be employed, and what equipment and supplies are required.
- 2. Obtain necessary sampling and monitoring equipment from the list above.
- 3. Prepare schedules, and coordinate with staff, client, and regulatory agencies, if appropriate.
- 4. Perform a general site survey prior to site entry in accordance with the site-specific health and safety plan.
- 5. Decontaminate or preclean equipment, and ensure that it is in working order.
- 6. Use stakes, buoys, or flagging to identify and mark all sampling locations. Consider specific site factors, including extent and nature of contaminant, when selecting sample locations. If required, the proposed locations may be adjusted based on site access, property boundaries, and surface obstructions. All staked locations will be utility-cleared by the property owner or other responsible party prior to soil sampling.
- 7. Evaluate safety concerns associated with sampling that may require use of personal protective equipment and/or air monitoring.

Surface Soil Sample Collection

Collect samples from the near-surface soil with tools such as spades, shovels, and scoops. Surface material can be removed to the required depth with this equipment, then a stainless steel or plastic scoop can be used to collect the sample. The use of a flat, pointed mason trowel to cut a block of the desired soil can be helpful when undisturbed profiles are required. A stainless steel scoop, lab spoon, or plastic spoon will suffice in most other applications. Avoid the use of devices plated with chrome or other target analyte materials.

The following procedures should be followed when collecting surface soil samples:

- 1. Carefully remove the top layer of soil or debris to the desired sample depth with a precleaned spade.
- 2. Using a pre-cleaned, stainless steel scoop, plastic spoon, or trowel, remove and discard a thin layer of soil from the area which came in contact with the spade.
- 3. If volatile organic analysis is to be performed, transfer a portion of the sample directly into an appropriate, labeled sample container(s) with a stainless steel lab spoon, plastic lab spoon, or equivalent and secure the cap(s) tightly. Place the remainder of the sample into a stainless steel, plastic, or other appropriate homogenization container, and mix thoroughly to obtain a homogenous sample representative of the entire sampling interval. Then, either place the sample into an appropriate, labeled container(s) and secure the cap(s) tightly; or if composite samples are to be collected, place a sample from another sampling interval into the

SOP	1001.01					
GROUP	Sampling Procedur	res				
SUB-GROUP	Soil Sampling Proc	Soil Sampling Procedures				
TITLE	Surface Soil Sampling					
DATE	11/19/2001	FILE	1001-01.DOC	PAGE	3 of 3	

homogenization container and mix thoroughly. When compositing is complete, place the sample into appropriate, labeled container(s) and secure the cap(s) tightly.

- 4. Fill hole created through sampling with unused material or other appropriate backfill material (sand).
- 5. Record applicable information into field log book or appropriate forms as documentation of sampling.

SOP	1002.01					
GROUP	Sampling Procedur	es				
SUB-GROUP	Surface Water	Surface Water				
TITLE	Surface Water Sampling					
DATE	11/19/2001	FILE	1002-01.DOC	PAGE	1 of 3	

INTRODUCTION

The following Standard Operating Procedure (SOP) is to describe the procedures for collecting representative surface water samples. Analysis of surface samples may determine whether concentrations of specific soil pollutants exceed established action levels, or if the concentrations of pollutants present a risk to public health, welfare, or the environment.

PROCEDURE

Surface water samples may be collected using a variety of methods and equipment. The methods and equipment used are usually dependent on the location of the body of water being sampled. Sampling can be performed by merely submerging the sample container, a weighted-bottle sampler with stopper, a bailer, or by pump assisted methods. Several types of pumps can be used for sampling depending on the objectives of sampling and the site conditions.

Sample Preservation

Samples are to be preserved in conformance with the site-specific Quality Assurance Project Plan, Sampling and Analysis Plan or work plan. In general these requirements include refrigeration to 4°C, addition of appropriate additives (HCl, H₂SO₄, NaOH) to adjust and fix pH, and a defined maximum holding time. If a site-specific plan is not available, the analytical laboratory should be consulted for the appropriate preservation procedures.

Interferences and Potential Problems

There are two primary interferences or potential problems associated with surface water sampling: cross-contamination of samples and improper sample collection. Cross-contamination problems can be eliminated or minimized through the use of dedicated sampling equipment. If this is not possible or practical, then decontamination of sampling equipment is necessary. Improper sample collection can involve using contaminated equipment, undue disturbance of the sample matrix, or improper sample location.

Equipment or Apparatus

- Ziploc plastic bags
- Logbook
- Labels
- Chain-of-custody forms and seals
- Coolers

- Ice
- Decontamination supplies and equipment
- Discharge tubing
- Sample containers
- Sampling devices

SOP	1002.01				
GROUP	Sampling Procedur	es			
SUB-GROUP	Surface Water	Surface Water			
TITLE	Surface Water Sam	Surface Water Sampling			
DATE	11/19/2001	FILE	1002-01.DOC	PAGE	2 of 3

Preparation

- 1. Determine the extent of the sampling effort, the sampling methods to be employed, and which equipment and supplies are required.
- 2. Obtain necessary sampling and monitoring equipment.
- 3. Decontaminate or preclean equipment, and ensure that it is in working order.
- 4. Prepare schedules, and coordinate with staff, client, and regulatory agencies, if appropriate.
- 5. Perform a general site survey prior to site entry in accordance with the site-specific health and safety plan.

Surface Water Sampling

Samples from shallow depths can be readily collected by merely submerging the sample container. In flowing surface water bodies, the container's mouth should be positioned so that it faces upstream, while the sampling personnel stand downstream so as not to stir up sediment that could potentially contaminate the sample.

Collecting a representative sample from a larger body of surface water requires that samples be collected near the shore unless boats are feasible and permitted. If boats are used, the body of water should be cross sectioned, and samples should be collected at various depths across the body of water in accordance with the specified sampling plan. For this type of sampling, a weighted-bottle sampler is used to collect samples at a predetermined depth. The sampler consists of a glass bottle, a weighted sinker, a bottle stopper, and a line that is used to open the bottle and to lower and raise the sampler during sampling. The procedure for use is as follows:

- Assemble the weighted bottle sampler.
- Gently lower the sampler to the desired depth so as not to remove the stopper prematurely.
- Pull out the stopper with a sharp jerk of the sampler line.
- Allow the bottle to fill completely, as evidenced by the cessation of air bubbles.
- Raise the sampler and cap the bottle.
- Wipe the bottle clean. The sampling bottle can be also be used as the sample container for shipping.

Teflon bailers have also been used where feasible for collecting samples in deep bodies of water.

SOP	1002.01				
GROUP	Sampling Procedur	res			
SUB-GROUP	Surface Water	Surface Water			
TITLE	Surface Water Sam	Surface Water Sampling			
DATE	11/19/2001	FILE	1002-01.DOC	PAGE	3 of 3

Another method of extending the reach of sampling efforts is the use of a small peristaltic pump. In this method the sample is drawn through heavy-wall Teflon tubing and pumped directly into the sample container. This system allows the operator to reach into the liquid body, sample from depth, or sweep the width of narrow streams.

The general sampling procedures are listed below:

- 1. Collect the sample using whichever technique, submerged bottle, bottle sampler with stopper, pump & tubing, or bailer.
- 2. The collected sample may be collected in the sample containers or may be transferred to the appropriate sample containers in order of the volatile organics first and inorganics last.
- 3. Label sample containers, place on ice in a cooler, remove, and decontaminate equipment as necessary.

REFERENCES

SOP 0110.01	Sample Nomenclature
SOP 1005.01	Field Duplicate Collection
SOP 1005.02	Rinse Blank Preparation
SOP 1005.03	Field Blank Preparation
SOP 1101.01	Sample Custody - Field
SOP 1102.01	Sample Shipping
SOP 1201.01	Sampling Equipment Decontamination
SOP 1501.01	Field Logbook

SOP	1002.04					
GROUP	Sampling Procedur	es				
SUB-GROUP	Soil Sampling Proc	Soil Sampling Procedures				
TITLE	Sediment Sampling	7				
DATE	2/6/2009	FILE	1002-04.DOC	PAGE	1 of 3	

The following Standard Operating Procedure (SOP) is to describe the procedures for collecting representative sediment samples using a trowel, piston corer, WILDCO KB Core Sampler, a Ponar Grab Sampler, or other similar equipment. Analysis of sediment samples may be performed to determine whether concentrations of specific sediment pollutants exceed established action levels, or if the concentrations of sediment pollutants present a risk to public health, welfare, or the environment.

PROCEDURE

Overview

Sediment samples may be collected using trowels, core and Ponar sampler, or a variety of similar methods and equipment. The methods and equipment used are dependent on the depth of the desired sample, the type of sample required (disturbed versus undisturbed), and the type of sediment (fines versus coarse). Sampling in shallow areas or streams near the surface may only require a hand trowel, while sampling at depth may be performed using a core or Ponar sampler.

Sample Preservation

Refrigeration to 4° C \pm 2° C, supplemented by a minimal holding time, is suggested.

Interferences and Potential Problems

There are two primary interferences or potential problems associated with sediment sampling: cross-contamination of samples and improper sample collection. Cross-contamination problems can be eliminated or minimized through the use of dedicated (disposable) sampling equipment. If this is not possible or practical, then decontamination of sampling equipment is necessary. Improper sample collection can involve using contaminated equipment, disturbance of the matrix resulting in mixing of the sample, or inadequate homogenization of the samples where required, resulting in variable, non-representative results. Homogenization may also affect sample representativeness when the analytical requirements include volatile organic compounds.

Equipment or Apparatus

The equipment selected for the sampling effort may include the following as appropriate:

- Tape measure
- Survey stakes or flags
- Stainless steel, plastic, or other appropriate homogenization bucket or bowl
- Ziploc plastic bags
- Logbook
- Labels
- Chain-of-custody forms and seals
- Coolers
- Ice

SOP	1002.04				
GROUP	Sampling Procedur	es			
SUB-GROUP	Soil Sampling Proc	Soil Sampling Procedures			
TITLE	Sediment Sampling	Sediment Sampling			
DATE	2/6/2009	FILE	1002-04.DOC	PAGE	2 of 3

- Decontamination supplies and equipment (i.e. brushes and buckets)
- Canvas or plastic sheeting
- Spatulas
- Scoops
- Plastic or stainless steel spoons
- Trowel
- Auger bucket
- Extension rods
- T-handle
- KB Core Sampler
- Ponar Grab Sampler
- Air monitor

Preparation

- 1. Determine the extent of the sampling effort, the sampling methods to be employed, and which equipment and supplies are required.
- 2. Obtain necessary sampling and monitoring equipment from the list above. Additional equipment may be added to this list as appropriate to perform other sampling.
- 3. Decontaminate or preclean equipment, and ensure that it is in working order.
- 4. Perform a general site survey prior to site entry in accordance with the site-specific health and safety plan.
- 5. Use stakes, buoys, or flagging to identify and mark all sampling locations. Consider specific site factors, including extent and nature of contaminant, when selecting sample locations. If required, the proposed locations may be adjusted based on site access, property boundaries, and obstructions.

Sediment Sampling in Shallow Waters

The following procedures should be used when collecting sediment samples in shallow waters:

- 1. Collect sediments as specified in the work plan or as determined during office preparation activities, using a stainless steel trowel, piston corer or similar device and a stainless steel, tempered glass or aluminum container.
- 2. Standing downstream of the sample stations, collect discrete sediment samples from each station and, if required in the work plan, composite in stainless steel, tempered glass or aluminum container.
- 3. Collect sediment samples of deposited material from the depth specified in the work plan or as determined during the office preparation activities. Record the depth in the logbook. Selective removal of the top sediment layers may be required and should be accomplished by carefully removing the sediments with a stainless steel trowel or scoop. In streams where water velocity is insufficient to disturb sediment fines during sediment sampling, a stainless

SOP	1002.04					
GROUP	Sampling Procedur	es				
SUB-GROUP	Soil Sampling Prod	Soil Sampling Procedures				
TITLE	Sediment Sampling	7				
DATE	2/6/2009	FILE	1002-04.DOC	PAGE	3 of 3	

steel trowel or scoop may be used for sampling. Where water velocities are high, a stainless steel corer will be utilized.

- 4. When applicable, composite discrete sediment samples by placing equal volumes of sediment material collected from the sample points into the container and mixing thoroughly to obtain a homogeneous mixture. Samples may be sieved or hand picked, if necessary, to remove larger materials, such as leaves, sticks, gravel, or rocks. Record in the logbook the nature of any materials removed from the sediment samples.
- 5. Place each sediment sample into the proper clean, unused sample container, as required by the work plan or laboratory. Sampling personnel must avoid placing sediment into the sample container and decanting off the excess liquid in analyzing for volatile organics and water soluble compounds in the sediment and reduces accurate representation of sediment analysis.
- 6. Fill out labels with waterproof ink and attach to the sample container.
- 7. Decontaminate sampling equipment between samples.

Sediment Sampling in Deep Waters

Procedures for sampling in deep waters are the same as for shallow waters except the sampling equipment is different. Soft, fine-grained sediments collected in deep waters will be sampled with a WILDCO KB Core Sampler or similar equipment . Coarse-grained sediments will be collected utilizing a Ponar Grab Sampler or similar equipment. Both samplers will be operated from a boat following appropriate safety procedures. Documentation, containerization, labeling and decontamination procedures are the same as for sediment samples collected in shallow waters.

Sediment Sampling in Drainage Ditches and Intermittent Streams

Procedures for sediment sampling in drainage ditches and the dry portions of intermittent streams are as specified for shallow water sediments.

SOP	1005.01				
GROUP	Sampling Procedur	es			
SUB-GROUP	Field QA/QC Sam	Field QA/QC Sampling			
TITLE	Field Duplicate Collection				
DATE	4/27/2005	FILE	1005-01.DOC	PAGE	1 of 2

The following Standard Operating Procedure (SOP) describes the procedure for collecting field duplicate soil and water samples. When samples are collected for analysis, it is typically desired that independent data allowing evaluation of laboratory precision (i.e., the degree to which a laboratory result can be repeated) on site-specific samples be collected.

A field duplicate sample is a second sample collected at the same location as the original sample. Duplicate samples are collected simultaneously or in immediate succession, using identical recovery techniques, and treated in an identical manner during storage, transportation, and analysis. The sample containers are assigned an identification number in the field such that they cannot be identified (blind duplicate) as duplicated samples by laboratory personnel performing the analysis. Specific locations are designated for collection of field duplicate samples prior to the beginning of sample collection.

The duplicate soil sampling procedure is closely related to SOP Nos. 1001.01, 1001.03, and 1001.10 regarding soil sampling procedures. This procedure serves as an alternative method or extension of sample preparation prior to placing the samples in containers, as described in the 1001 series of the SOPs (e.g. 1001.01 and 1001.03).

DUPLICATE SOIL SAMPLING PROCEDURE

The procedure to be used to physically collect soil samples are described in SOP Nos. 1001.01 and 1001.03. Reference should be made to these SOPs for specific sampling equipment, procedures, and other general guidelines. As soil is collected, the following procedure will be used to prepare a field duplicate sample:

- The soil will be collected in general accordance with SOP 1001.01 or 1001.03, with the exception that samples will generally not be immediately placed into sample containers and an additional preparation step (i.e., sample splitting) will be performed.
- As they are collected, soil samples to be submitted as field duplicates will be staged in a clean mixing bowl or mixing bucket.
- For samples that will be analyzed for volatile organic compounds, the soil sample will be split in half and an equal portion of soil will be placed directly into two or more different sample containers, each container representing a different sample for laboratory analysis. The soil will not be homogenized to minimize the potential for volatilization of the organic compounds potentially in the sample.
- For analyses of chemicals other than volatile organic compounds, the soil removed from the discrete sample location will be homogenized in a clean mixing bowl using a clean scoop or spatula (as described in SOPs 1001.01 and 1001.03). Homogenization will generally continue until the discrete samples being combined are reasonably indistinguishable as individual samples in the soil mixture. However, it is recognized that homogenization can be difficult for highly plastic clays. In this case, equal amounts of the soil core of each clay sample will be cut into small, roughly cubical pieces using a stainless steel knife and placed into a bowl and homogenized to extent practical.

SOP	1005.01				
GROUP	Sampling Procedur	es			
SUB-GROUP	Field QA/QC Sam	Field QA/QC Sampling			
TITLE	Field Duplicate Co	Field Duplicate Collection			
DATE	4/27/2005	FILE	1005-01.DOC	PAGE	2 of 2

• The field duplicate sample (except for volatiles as note above) will be collected from the mixing bowl containing the homogenized samples after homogenization is performed. The composited sample will be collected using a stainless steel or disposable plastic scoop or similar tool. The sample will be placed in a clean sample container and then handled in accordance with soil sampling SOPs 1001.01 and 1001.03.

Another difference from the referenced SOPs is that additional soil volume may need to be collected from a discrete sample location during the sampling process to provide sufficient sample volume for two or more sets of laboratory analyses. If the collection of additional sample volume will result in the sample interval expanding to greater depths or laterally outward, the sampling tools identified in 1001 series of the SOPs can be used at two immediately vertically or laterally adjacent locations, as appropriate. If sampling from two adjacent but distinct locations is necessary to obtain adequate sample volume, the soil from the two locations should be composited in accordance with SOP 1001.10. Field duplicates of composited samples may also be performed using this SOP for field duplicate samples.

Variations on this procedure are allowable to accommodate different soil conditions and any site requirements specifically identified in the site-specific Sampling and Analysis Plan. Equipment that may be used as part of the soil compositing procedure is identified under SOP Nos. 1001.01 and 1001.03 where soil sampling methods are described.

DUPLICATE WATER SAMPLING PROCEDURES

The procedure to be used to physically collect water samples are described in 1002 series of the SOPs (e.g. 1002.01 and 1002.02). Reference should be made to these SOPs for specific sampling equipment, procedures, and other general guidelines. A duplicate water sample will be collected from the same location as the parent sample and within 15 minutes of the collection of the parent sample.

The number of samples that may be submitted as blind field duplicates for the project in question will be specified in the site-specific sampling plan. Blind field duplicates are typically collected at a frequency of 1 per 10 samples of a given environmental media at sites, especially where laboratory analytical data will be used for evaluating regulatory compliance and other engineering judgments. Sampling in support of a routine monitoring program may not require field duplicates. Reference should be made to the site-specific contract and work plans.

REFERENCES

SOP No. 1001.01 - Standard Operating Procedure, Surface Soil Sampling

SOP No. 1001.03 - Standard Operating Procedure, Soil Sampling - Hand Auger Method

SOP No. 1001.10 - Standard Operating Procedure, Soil Compositing

SOP	1005.02				
GROUP	Sampling Procedur	es			
SUB-GROUP	Field QA/QC Sam	Field QA/QC Sampling			
TITLE	Rinse Blank Preparation				
DATE	2/6/2009	FILE	1005-02.DOC	PAGE	1 of 1

The following Standard Operating Procedure (SOP) presents a method to prepare a type of quality control sample specific to the field decontamination process, the equipment rinse blank. The rinse blank provides information on the effectiveness of the decontamination process employed in the field. When used in conjunction with field blanks and trip blanks, the rinse blank can be used to assist in evaluating possible compromise of samples from field related activities.

PROCEDURE

The equipment rinse blank is prepared by passing target analyte-free (i.e., deionized) water over and through a field decontaminated sampling device, then collecting the rinse water in appropriate clean sample containers. Rinse blanks will typically be collected from equipment that comes in contact with samples, such as auger buckets, split spoons, bailers, shelby tubes, and stainless steel spoons/trowels. The collected sample will be coded appropriately prior to logging and shipping. Equipment blanks are not required if dedicated sampling equipment is used. Equipment blanks will be collected periodically during the day immediately after decontamination of the sampling equipment being used.

The frequency for collecting equipment blanks will be determined prior to engaging in field activities, and communicated in site-specific quality assurance project plans, sampling and analyses plans, or a type of work plan. Equipment blanks will be collected at a rate relative to each type of sample collection procedure (i.e., surface sample, sample at depth using a hand auger). Equipment blanks will generally be collected at a frequency of 1 per 20 (normal) samples of a given matrix.

SOP	1101.01				
GROUP	Sampling Handling	7			
SUB-GROUP	Sample Custody	Sample Custody			
TITLE	Sample Custody in	Sample Custody in the Field			
DATE	11/19/2001	FILE	1101-01.DOC	PAGE	1 of 4

The following Standard Operating Procedure (SOP) presents procedures for maintaining sample chain of custody (COC) during activities where samples are collected.

PROCEDURE

Sample custody is defined as being under a person's custody if any of the following conditions exist:

- it is in their possession,
- it is in their view, after being in their possession,
- it was in their possession and they locked it up, or
- it is in a designated secure area.

A designated field sampler will be personally responsible for the care and custody of collected samples until they are transferred to another person or properly dispatched to the laboratory. To the extent practicable, as few people as possible will handle the samples.

Sample tags or labels will be completed and applied to the container of each sample. When the tags or labels are being completed, waterproof ink will be used. If waterproof ink is not used, the tags or labels will be covered by transparent waterproof tape. Sample containers may also be placed in Ziploc-type storage bags to help keep them clean in the cooler. Information typically included on the sample tags or labels will include the following:

- Project Code
- Station Number and Location
- Sample Identification Number
- Date and Time of Sample Collection
- Type of Laboratory Analysis Required
- Preservation Required, if applicable
- Collector's Signature
- Priority (optional)
- Other Remarks

Additional information may include:

- Anticipated Range of Results (Low, Medium, or High)
- Sample Analysis Priority

SOP	1101.01				
GROUP	Sampling Handling	5			
SUB-GROUP	Sample Custody	Sample Custody			
TITLE	Sample Custody in	Sample Custody in the Field			
DATE	11/19/2001	FILE	1101-01.DOC	PAGE	2 of 4

A COC form will be completed each time a sample or group of samples is prepared for transfer to the laboratory. The form will repeat the information on each of the sample labels and will serve as documentation of handling during shipment. The minimum information requirements of the COC form are listed in Table 1101.01-A. An example COC form is shown in Figure 1101.01-A. The completed COC must be reviewed by the Field Team Leader or Site Manager prior to sample shipment. The COC form will remain each sample shipping container at all times, and another copy will be retained by the member of the sampling team who originally relinquished the samples or in a project file.

SOP	1101.01				
GROUP	Sampling Handling	5			
SUB-GROUP	Sample Custody				
TITLE	Sample Custody in the Field				
DATE	11/19/2001	FILE	1101-01.DOC	PAGE	3 of 4

TABLE 1101.01-A CHAIN OF CUSTODY FORM

INFORMATION	COMPLETED BY	DESCRIPTION		
COC	Laboratory	enter a unique number for each chain of custody form		
SHIP TO	Field Team	enter the laboratory name and address		
CARRIER	Field Team	enter the name of the transporter (e.g., FedEx) or handcarried		
Airbill	Field Team	enter the airbill number or transporter tracking number (if applicable)		
PROJECT NAME	Field Team	enter the project name		
SAMPLER NAME	Field Team	enter the name of the person collecting the samples		
SAMPLER SIGNATURE	Field Team	signature of the person collecting the samples		
SEND RESULTS TO	Field Team	enter the name and address of the prime contractor		
FIELD SAMPLE ID	Field Team	enter the unique identifying number given to the field sample (includes MS, MSD, field duplicate and field blanks)		
DATE	Field Team	enter the year and date the sample was collected in the format M/D (e.g., 6/3)		
Тіме	Field Team	enter the time the sample was collected in 24 hour format (e.g., 0900)		
MATRIX	Field Team	enter the sample matrix (e.g., water, soil)		
Preservative	Field Team	enter the preservative used (e.g., HNO3) or "none"		
FILTERED/ Unfiltered	Field Team	enter "F" if the sample was filtered or "U" if the sample was not filtered		
Containers	Field Team	enter the number of containers associated with the sample		
MS/MSD	Field Team or Laboratory	enter "X" if the sample is designated for the MS/MSD		
ANALYSES REQUESTED	Field Team	enter the method name of the analysis requested (e.g., SW6010A)		
COMMENTS	Field Team	enter comments		
SAMPLE CONDITION UPON RECEIPT AT LABORATORY	Laboratory	enter any problems with the condition of any sample(s)		
Cooler Temperature	Laboratory	enter the internal temperature of the cooler, in degrees C, upon opening		
SPECIAL INSTRUCTIONS/COMME NTS	Laboratory	enter any special instructions or comments		
RELEASED BY (SIG)	Field Team and Laboratory	enter the signature of the person releasing custody of the samples		
COMPANY NAME	Field Team and Laboratory	enter the company name employing the person releasing/receiving custody		
RECEIVED BY (SIG)	Field Team and Laboratory	enter the signature of the person receiving custody of the samples		
DATE	Field Team and Laboratory	enter the date in the format M/D/YY (e.g., 6/3/96) when the samples were released/received		
Тіме	Field Team and Laboratory	enter the date in 24 hour format (e.g., 0900) when the samples were released/received		

SOP	1101.01				
GROUP	Sampling Handling	7			
SUB-GROUP	Sample Custody				
TITLE	Sample Custody in	the Field			
DATE	11/19/2001	FILE	1101-01.DOC	PAGE	4 of 4

FIGURE 1101.01-A CHAIN OF CUSTODY FORM

SOP	1201.01				
GROUP	Decontamination	Decontamination			
SUB-GROUP	Sampling Equipme	Sampling Equipment Decontamination			
TITLE	Sampling Equipment Decontamination				
DATE	11/19/2001	FILE	1201-01.DOC	PAGE	1 of 3

The following Standard Operating Procedure (SOP) presents the methods used for minimizing the potential for cross-contamination, and provides general guidelines for sampling equipment decontamination procedures.

PROCEDURE

As part of the Health and Safety Plan (HASP), develop and set up a decontamination plan before any personnel or equipment enter the areas of potential exposure. The decontamination plan should include the following:

- The number, location, and layout of decontamination stations
- Which decontamination apparatus is needed
- The appropriate decontamination methods
- Methods for disposal of contaminated clothing, apparatus, and solutions

Decontamination Methods

Personnel, samples, and equipment leaving the contaminated area of a site will be decontaminated. Various decontamination methods will be used to either physically remove contaminants, inactivate contaminants by disinfection or sterilization, or both. The physical decontamination techniques appropriate for equipment decontamination can be grouped into two categories: abrasive methods and non-abrasive methods.

Abrasive Cleaning Methods

Abrasive cleaning methods work by rubbing/scrubbing the surface containing the contaminant. This method includes mechanical and wet blasting methods.

Mechanical cleaning methods use brushes of metal or nylon. The amount and type of contaminants removed will vary with the hardness of bristles, length of brushing time, and degree of brush contact.

Cleaning can also be accomplished by water blasting which is also referred to as steam cleaning and pressure washing. Pressure washing utilizes high-pressure that is sprayed from a nozzle onto sampling equipment to physically remove soil or (potentially) contaminated material. Steam cleaning is a modification of pressure washing where the water is heated to temperatures approaching 100 °C to assist in removing organic constituents from equipment.

SOP	1201.01				
GROUP	Decontamination	Decontamination			
SUB-GROUP	Sampling Equipme	Sampling Equipment Decontamination			
TITLE	Sampling Equipment Decontamination				
DATE	11/19/2001	FILE	1201-01.DOC	PAGE	2 of 3

Disinfection/Rinse Methods

Disinfectants are a practical means of inactivating chemicals or contaminants of concern. Standard sterilization methods involve heating the equipment which is impractical for large equipment. Rinsing removes contaminants through dilution, physical attraction, and solubilization.

The use of distilled/deionized water commonly available from commercial vendors may be acceptable for decontamination of sampling equipment provided that it has been verified by laboratory analysis to be target analyte free. Tap water may be used from any municipal water treatment system for mixing of decontamination solutions. An untreated potable water supply is not an acceptable substitute for tap water. Acids and solvents are occasionally utilized in decontamination of equipment to remove metals and organics, respectively, from sampling equipment. Other than ethanol, these are avoided when possible due to the safety, disposal, and transportation concerns associated with them.

Equipment or apparatuses that may be selected for use include the following:

- Personal protective clothing
- Non-phosphate detergent
- Selected solvents for removal of polar and nonpolar organics (ethanol, methanol, hexane)
- Acid washes for removal of metals (nitric acid)
- Long-handled brushes
- Drop cloths or plastic sheeting
- Paper towels
- Galvanized tubs or buckets
- Distilled, deionized, or tap water (as required by the project)
- Storage containers for spent wash solutions
- Sprayers (pressurized and non-pressurized)
- Trash bags
- Safety glasses or splash shield

Field Sampling Equipment Cleaning Procedures

The following procedures should be followed:

- 1. Where applicable, follow physical removal procedures previously described (pressure wash, scrub wash)
- 2. Wash equipment with a non-phosphate detergent solution
- 3. Rinse with tap water
- 4. Rinse with distilled or deionized water
- 5. Rinse with 10% nitric acid if the sample will be analyzed for metals/organics
- 6. Rinse with distilled or deionized water
- 7. Use a solvent rinse (pesticide grade) if the sample will be analyzed for organics
- 8. Air dry the equipment completely
- 9. Rinse again with distilled or deionized water

SOP	1201.01				
GROUP	Decontamination	Decontamination			
SUB-GROUP	Sampling Equipme	Sampling Equipment Decontamination			
TITLE	Sampling Equipment Decontamination				
DATE	11/19/2001	FILE	1201-01.DOC	PAGE	3 of 3

10. Place in clean bag or container for storage/transport to subsequent sampling locations.

Selection of the solvent for use in the decontamination process is based on the contaminants present at the site. Solvent rinses are not necessarily required when organics are not a contaminant of concern and may be eliminated from the sequence specified below. Similarly, an acid rinse is not required if the analyses do not include inorganics. Use of a solvent is required when organic contamination is present on-site. Typical solvents used for removal of organic contaminants include acetone, ethanol, hexane, methanol, or water. An acid rinse step is required if metals are present on-site. If a particular contaminant fraction is not present at the site, the tenstep decontamination procedure listed above may be modified for site specificity.

Sampling equipment that requires the use of plastic tubing should be disassembled and the tubing replaced with clean tubing before commencement of sampling and between sampling locations. Plastic tubing should not be reused.

SOP	1501.01				
GROUP	Field Documentation	on			
SUB-GROUP					
TITLE	Field Logbook				
DATE	11/19/2001	FILE	1501-01.DOC	PAGE	1 of 3

The following Standard Operating Procedure (SOP) presents the procedures for documenting activities observed or completed in the field in a field logbook. The documentation should represent all activities of WESTON personnel and entities under WESTON's supervision.

TERMS

FSP - Field Sampling Plan

SAP - Sampling and Analysis Plan

QAPP - Quality Assurance Project Plan

HASP - Health and Safety Plan

PROCEDURE

Field logbooks will be used and maintained during field activities to document pertinent information observed or completed by WESTON personnel or entities that WESTON is responsible for providing oversight. Field logbooks are legal documents that form the basis for later written reports and may serve as evidence in legal proceedings. The Site Manager or Field Team Leader will review field log entries daily and initial each page of entries. Field logbooks will be maintained by the Site Manager or Field Team Leader during field activities and transferred to the project files for a record of activities at the conclusion of the project. General logbook entry procedures are listed below.

- Logbooks must be permanently bound with all pages numbered to the end of the book. Entries should begin on page 1.
- Only use blue or black ink (waterproof) for logbook entries.
- Sign entries at the end of the day, or before someone else writes in the logbook.
- If a complete page is not used, draw a line diagonally across the blank portion of the page and initial and date the bottom line.
- If a line on the page is not completely filled, draw a horizontal line through the blank portion.
- Ensure that the logbook clearly shows the sequence of the day's events.
- Do not write in the margins or between written lines, and do not leave blank pages to fill in later.
- If an error is made, make corrections by drawing a single line through the error and initialing it.
- Maintain control of the logbook and keep in a secure location.

SOP	1501.01				
GROUP	Field Documentation	on			
SUB-GROUP					
TITLE	Field Logbook				
DATE	11/19/2001	FILE	1501-01.DOC	PAGE	2 of 3

Field logbooks will contain, at a minimum, the following information, if applicable:

General Information

- Name, location of site, and work order number
- Name of the Site Manager or Field Team Leader
- Names and responsibilities of all field team members using the logbook (or involved with activities for which entries are being made)
- Weather conditions
- Field observations
- Names of any site visitors including entities that they represent

Sample Collection Activities

- Date(s) and times of the sample collection or event.
- Number and types of collected samples.
- Sample location with an emphasis on any changes to documentation in governing documents (i.e., SAP, FSP). This may include measurements from reference points or sketches of sample locations with respect to local features.
- Sample identification numbers, including any applicable cross-references to split samples or samples collected by another entity.
- A description of sampling methodology, or reference to any governing document (i.e., FSP, SAP, QAPP).
- Summary of equipment preparation and decontamination procedures.
- Sample description including depth, color, texture, moisture content, and evidence of waste material or staining.
- Air monitoring (field screening) results.
- Types of laboratory analyses requested.

Site Health and Safety Activities

• All safety, accident, and/or incident reports.

SOP	1501.01				
GROUP	Field Documentation	on			
SUB-GROUP					
TITLE	Field Logbook				
DATE	11/19/2001	FILE	1501-01.DOC	PAGE	3 of 3

- Real-time personnel air monitoring results, if applicable, or if not documented in the HASP.
- Heat/cold stress monitoring data, if applicable.
- Reasons for upgrades or downgrades in personal protective equipment.
- Health and safety inspections, checklists (drilling safety guide), meetings/briefings.
- Calibration records for field instruments.

Oversight Activities

- Progress and activities performed by contractors including operating times.
- Deviations of contractor activities with respect to project governing documents (i.e., specifications).
- Contractor sampling results and disposition of contingent soil materials/stockpiles.
- Excavation specifications and locations of contractor confirmation samples.
- General site housekeeping and safety issues by site contractors.

SOP	1502.01				
GROUP	Field Documentation	on			
SUB-GROUP					
TITLE	Photograph Logs				
DATE	11/19/2001	FILE	1502-01.DOC	PAGE	1 of 1

The following Standard Operating Procedure (SOP) presents the requirements for collecting information related to photodocumentation of site activities.

PROCEDURE

- Uniquely number each roll of film obtained for use.
- Record the following information for each negative exposed:
 - 1. Date and Time
 - 2. Photographer Name
 - 3. Witness Name
 - 4. Orientation (Landscape, Portrait, or Panaoramic)
 - 5. Description (including activity being performed, specific equipment of interest, sample location(s), compass direction photographer is facing)
- Record "NA" for the negatives not used if the roll is not completely used prior to development.
- Record unique roll number on receipt when film is submitted for development.
- Verify descriptions on log with negative numbers when photographs are received from processing.

FORMS

Blank Photograph Logs can be printed from WESTON On-Line from the *Records Management Application*. Selecting the *Reports/Project Planning/Blank Photo Logs* menu option will generate a project specific log with 36 entries.

SOP	0110.01				
GROUP	Database Management System				
SUB-GROUP	Data Collection a	Data Collection and Acquisition			
TITLE	Sample Nomenclature				
DATE	02/26/2009	FILE	0110-20060227.DOC	PAGE	1 of 2

The following Standard Operating Procedure (SOP) presents the sample nomenclature for analytical samples that will generate unique sample names compatible with most data management systems. The sample nomenclature is based upon specific requirements for the reporting of these results. A site specific data management plan should be prepared prior to sample collection.

PROCEDURE

SAMPLE NOMENCLATURE - SOIL AND SEDIMENT

Area of Concern – ID – Depth - Collection Type + QC Type

Where:

Area of Concern: A four-digit identifier used to designate the particular Area of Concern

(AOC) that the location where the sample was collected.

ID: A three-digit identifier used to designate the particular location in the AOC

from which the sample was collected or the center of the composite sample.

Depth: A two-digit code used to designate what depth of sample was collected:

03	0 to 3 inches
06	3 to 6 inches
12	6 to 12 inches

Collection Type: A one-digit code used to designate what type of sample was collected:

1	Surface Water
2	Ground Water
3	Leachate
4	Field QC/water sample
5	Soil/Sediment

6	Oil
7	Waste
8	Other
9	Drinking Water

QC Type: A one-digit code used to designate the QC type of the sample:

1	Normal
2	Duplicate
3	Rinsate Blank
4	Trip Blank
5	Field Blank
6	Confirmation

Examples:

- 2054-055-06-51: Represents the normal soil sample collected from AOC 2054 at location 055 from 3 to 6 inches of depth.
- **2054-055-06-52**: Represents the duplicate soil sample collected from AOC 2054 at location 055 from 3 to 6 inches of depth.
- 2054-055-06-43: Represents the rinsate water sample collected after the last sample of the day if last sample was collected from AOC 2054 at location 055 from 3 to 6 inches of depth.

SOP	0110.01				
GROUP	Database Manage	ement System	ı		
SUB-GROUP	Data Collection a	nd Acquisitio	on		
TITLE	Sample Nomencl	ature			
DATE	02/26/2009	FILE	0110-20060227.DOC	PAGE	2 of 2

SAMPLE NOMENCLATURE – WATER (from fixed station or location to be sampled more than once)

WELL OR STATION – YYYYMMDD - Collection Type + QC Type

Where:

Well or Station: For Wells and boreholes always assume there will be 10 or more so

Monitoring Well 1 becomes designated MW01 or MW-01. If it is anticipated that there will be over 100 wells designate Monitoring Well 1 as MW001 or

MW-001.

YYYYMMDD: A four-digit year + two-digit month + two-digit day

Collection Type: A one-digit code used to designate what type of sample was collected and are

shown on page 1.

QC Type: A one-digit code used to designate the QC type of the sample and are shown

on page 1.

Examples:

• *MW01-20090226-21:* Represents the normal groundwater sample collected from Monitoring Well 1 on 26 February 2009.

• *MW01-20090226-44:* Represents the trip blank in the same ice chest as the groundwater sample in the previous collected from Monitor Well 1 on 02/26/2009. All trip blanks must have a sample ID and they must be unique and on the Chain-of -Custody.

• 2054-000-00-43: Represents the rinsate sample from AOC 2054

APPENDIX B SITE-SPECIFIC DATA QUALITY OBJECTIVES

SITE-SPECIFIC DATA QUALITY OBJECTIVES JOHNNY M URANIUM MINE

STEP 1. STATE THE PROBLEM

Legacy uranium mine sites in the Grants Mining District of northwest New Mexico may contain soil/sediment and mine waste rock that are elevated in trace metals and radionuclides above background concentrations which may pose a hazard to human health and the environment.

STEP 2. IDENTIFY THE DECISION

Does the soil environment at the generic uranium mine site contain hazardous and radiological materials at concentrations that: 1) equals or exceeds a value of two standard deviations above the mean site-specific background concentration for a specific radionuclide; or 2) exceeds three times the natural background concentrations for the specific radionuclide, whichever is lower. If these concentrations satisfy the criteria in 1) and 2), the conditions constitute and establish an "observed release" per the HRS Guidance Manual, Section 5.1 page 55; and the CERCLA SI Guidance in Section 4.9.4 page 89-90, (EPA/540-R-92-021).

IDENTIFY THE ALTERNATIVE ACTIONS THAT MAY BE TAKEN BASED ON THE DECISIONS.

• If the concentrations of hazardous and radiological materials in soil at the uranium mine site constitute an *observed* release, then further remedial action under CERCLA will be recommended.

STEP 3. IDENTIFY INPUTS TO THE DECISION

INFORMATIONAL INPUTS NEEDED TO RESOLVE A DECISION.

- Elevated metal and radionuclide concentrations in soil at the uranium mine site are equal to or exceed two standard deviations above the mean site-specific background concentrations.
- Elevated metal and radionuclide concentrations in soil at the uranium mine site are equal to or exceed by three times the mean background concentrations for radiological measurement and soil sampling.

SOURCES FOR EACH INFORMATIONAL INPUT AND INPUTS THAT ARE OBATINED THROUGH ENVIRONMENTAL MEASUREMENTS.

- Radiological gamma survey measurements with handheld Nal detector instrument conducted at 50 ft to 150' grid spacing across site area and at unique site features
- Background radiological measurements collected at four or more off site locations will provide an average background radioactivity concentration for comparison.
- Field measurements of gamma activity are collected and the field variance is calculated to determine the number of soil/sediments to be collected.
- Background surface soil samples analyzed by a laboratory for 23 metals and isotopes of three or four radionuclides.
- Suspected hot spot soil locations within the mine site property analyzed by a laboratory for 23 metals and isotopes of three or four radionuclides.

SITE-SPECIFIC DATA QUALITY OBJECTIVES JOHNNY M URANIUM MINE

(Continued)

STEP 3. IDENTIFY INPUTS TO THE DECISION (Continued)				
BASIS FOR THE CONTAMINANT SPECIFIC ACTION LEVELS.	 Concentrations of hazardous materials and radionuclides more than three times the background concentrations constitute and "observed release" per the HRS Guidance Manual, Section 5.1 page 55. Concentrations of metal and radionuclide concentrations in soil/sediment that are equal to or exceed two standard deviations above the mean site-specific background concentrations constitute an observed release per Section 4.9.4 (page 89) of the guidance document for performing site inspections under CERCLA. 			
POTENTIAL SAMPLING TECHNIQUES AND APPROPRIATE ANALYTICAL METHODS.	 Gamma radioactivity concentrations in cpm and/or uR/hr (dose) will be determined using field instruments to measure radioactivity on the soil surface and at 3 ft high for a 60 second count rate. Gamma measurements will be used to calculate the average background concentration, the average site concentration, the range, and the field variance. The field variance will be used to calculate the number of soil/sediment samples required for laboratory analysis to characterize the specific radionuclide concentrations. The number of soil/sediments samples will be determined by a calculation using the field variance, Upper Confidence Level 95% (90% or 80% if necessary) and a margin of error at 0.20. Laboratory analyte concentrations for specific metals and radionuclides will be used to calculate: the background mean concentrations, the site mean concentrations, the range, and the variance. 			
STEP 4. DEFINE THE BOUNDARIES OF THE STU	DY			
DOMAIN OF GEOGRAPHIC AREA WITHIN WHICH ALL DECISIONS MUST APPLY.	Property boundary surrounding uranium mine site and/or all areas suspected of impact by mine activities and/or natural erosion processes that may have dispersed on-site materials beyond property boundaries.			
CHARACTERISTICS THAT DEFINE THE POPULATION OF INTEREST.	Gamma radiation and radionuclide concentration measured in soil/sediments impacted by mine waste rock.			
DETERMINATION OF WHEN TO COLLECT DATA.	 Data will be collected after target uranium mine sites are identified and access is acquired from land owners. Field measurements of background gamma activity and site specific activity will be collected using a grid system. Determination of the field variance from the field measurements will be used in a formula to calculate the number of soil/sediments to be collected for laboratory analysis. 			

SITE-SPECIFIC DATA QUALITY OBJECTIVES JOHNNY M URANIUM MINE (Continued)

STEP 4. DEFINE THE BOUNDARIES OF THE STU	DY (Continued)
PRACTICAL CONSTRAINTS ON DATA COLLECTION.	 Access to the site and/or appropriate background area is not attainable due to landowner and/or physical constraints. Field radiological measurements may be unreliable due to excessive soil moisture, inclement weather, equipment malfunction, or operator error. Erroneous determination of field gamma activity measurements and subsequent erroneous calculation of the field variance may result in an inadequate number of soil/sediments collected for laboratory analysis.
STEP 5. DEVELOP A DECISION RULE	
SPECIFY THE PARAMETER THAT CHARACTERIZES THE POPULATION OF INTEREST. SPECIFY THE ACTION LEVEL FOR THE	 Field measurements of gamma radioactivity will be used to calculate: the mean background gamma concentration; the on-site mean gamma concentration; the on-site range of gamma concentrations; and the field variance of the on-site gamma concentration. The on-site gamma concentrations will be compared to the mean background gamma concentration of the mine site to determine if the concentration is equal to or two times the mean. Laboratory analyte concentrations for specific metals and radionuclides will be used to calculate the specific mean background soil/sediment mean concentrations; the specific on-site mean soil/sediment concentrations; the range of on-site specific concentrations; and the statistical variability of on-site concentrations, e.g., the sample variance and standard deviation. Laboratory analyte concentrations that are equal to or exceed three times the mean background concentrations will be characterized an observed release. Laboratory analyte concentrations that are equal to or exceed two standard deviations above the mean background concentration will be characterized as an observed release. Field measurements of gamma radioactivity that are equal to or exceed two standard twices the mean background concentration will be characterized as an observed release.
DECISION.	 equal to or exceed twice the mean background gamma activity concentration. Laboratory analyte concentrations that are equal to or exceed three times the mean background concentrations will be characterized an observed release. Laboratory analyte concentrations that are equal to or exceed two standard deviations above the mean background concentration will be characterized as an observed release.
DECISION RULES.	If on-site field gamma activity measurements exceed the mean background gamma activity concentration by more than two times, the likelihood of an observed release is high.

SITE-SPECIFIC DATA QUALITY OBJECTIVES JOHNNY M URANIUM MINE (Continued)

STEP 6. SPECIFY LIMITS ON DECISION ERRORS	S
DETERMINE THE POSSIBLE RANGE OF THE PARAMETER OF INTEREST.	 Limit for uncertainty in measurement is 20% (0.20) at a 95% confidence level for the data set. Mean background gamma radioactivity concentrations typically range from 12-20 uR/hr or less than 3,000 to 5,000 cpm. On-site uranium mine waste rock gamma radioactivity concentrations may range over 200 uR/hr & higher, or several tens or hundreds of thousands cpm (>> 10,000-100,000 cpm). Background concentration of radium-226 in soil is generally 1.0-1.5 pCi/g. Uranium mass concentrations in soil typically measure 3 ug/g or 2 pCi/g. Uranium mine site waste rock concentrations of radium-226 may exceed 100 pCi/g.
DEFINE BOTH TYPES OF DECISION ERRORS AND IDENTIFY THE POTENTIAL CONSEQUENCES OF EACH.	Type I Error: Deciding that the uranium mine site is represented by field measurements and/or sample results does not exceed three times the mean background concentration or two standard deviations above the mean background concentration when, in truth, it does. The consequence of this decision error is that the soil/sediment/waste rock material will remain in place, unremediated, possibly presenting a hazard to human health and the environment. This decision error is the most severe. Type II Error: Deciding that the uranium mine site area represented by field measurements and/or sample results does exceed the mean background concentration by three times or two standard deviations when, in truth, it does not. The consequences of this decision error further remedial action under CERCLA will continue and potentially divert resources from higher priority sites.
TRUE STATE OF NATURE FOR EACH DECISION RULE.	Type I: The field and laboratory measurements of hazardous materials and radionuclide concentrations in soil are greater than three times or two standard deviations above the mean background concentrations. Type II: The field and laboratory measurements of hazardous materials and radionuclide concentrations in soil are less than three times or two standard deviations above the mean background concentrations.
DEFINITION OF THE TRUE STATE OF NATURE FOR THE MORE SEVERE DECISION ERROR AS THE BASELINE CONDITION OR THE NULL HYPOTEHESIS (H_0) AND FOR THE LESS SEVERE DECISION ERROR AS THE ALTERNATIVE HYPOTEHSIS (H_0).TRUE STATE OF NATURE FOR EACH DECISION RULE.	Type I: Ambient radioactivity levels impact human health. Type II: Ambient radioactivity levels do not impact human health.

SITE-SPECIFIC DATA QUALITY OBJECTIVES JOHNNY M URANIUM MINE

(Continued)

STEP 7. OPTIMIZE THE DESIGN	
REVIEW THE DQOs.	Determine what else can be done to improve the methodology. Get some internal and external review by other staff and agencies. Test implementation of proposed design/methodology at one or two sties then review lessons learned. Make adjustments in design and improve methodology with more sites over time.
DEVELOP GENERAL SAMPLING AND ANALYSIS DE Up to 15 soil samples will be collected from the uranium Mine and analyzed to determine the presence of metals and	mine pits and waste areas within the Johnny M Uranium

APPENDIX C

TDD No. 0035-11-11-01

EPAU.S. EPA Washington, DC 20460

START3 Technical Direction Document

TDD #: TO-0035-11-11-01 Contract: EP-W-06-042

Assessment/Inspection Activities -Enforcement Funds (0035) Weston Solutions, Inc.

= required field	Moved To EAS	Note: Remaining Amount includes \$0.00 in Reserve.	
TDD Name:	Johnny M Uranium Mine ORS	! Period:	Base Period
! Purpose:	Work Assignment Initiation		
! Priority:	High	! Start Date:	12/13/2011
Overtime:	Yes	! Completion Date:	02/15/2012
! Funding Category:	Removal	Invoice Unit:	
! Project/Site Name:	Johnny M Uranium Mine ORS	WorkArea:	ASSESSMENT/INSPECTIONS ACTIVITIES
Project Address:		Activity:	Expanded Site Inspections/Remedial Investigation (ESI/RI)
County:	McKinley	Work Area Code:	
City, State:	, NM	Activity Code:	
Zip:		EMERGENCY CODE:	☐ KAT ☐ RIT
! SSID:	A6AH	FPN:	
CERCLIS:	NMN0006607139	Performance Based:	No
Operable Unit:			
Authorized TDD Ce	eiling:	Cost/	Fee LOE (Hours)
	Previous Action(s):	\$0	0.00
	This Action:	\$26,66	1.00 0.0
	New Total:	\$26.66	1.00

Specific Elements

Description of Work:

All activities performed in support of this TDD shall be in accordance with the contract and TO PWS.

Funding for this TDD is from a sweep of the dollars from the United Western TDD. The Grants Mining District provided significant uranium extraction and production in New Mexico from the 1950s until late into the 20th century. There are three mining sub-districts within the Grants Mining District: Ambrosia Lake, Laguna, and Marquez. Land ownership within these sub-districts consists of public, tribal and private property. These mining sub-districts contain 97 former legacy uranium mines and five mill sites. The EPA is currently assessing the mine sites for releases that may have impacted soil, surface water and groundwater. Under this TDD, the contractor will investigate mine water discharge locations, sample potentially impacted soil for elevated concentrations of elemental uranium and radionuclides, sample any surface water present for metals and radionuclides, and sample any accessible groundwater wells in the immediate area of the Johnny M Mine site in the Ambrosia Lake sub-district. The contractor will document mine site features (e.g. open mine portals, waste rock piles, mine operation-related structures, etc.) and sample locations with photographs, descriptions, and geospatially. A draft and final report will be written for the mine site. Coordinate with SAM, Lisa Price at price.lisa@epa.gov or 214-665-6744, upon receipt of the TDD.

Accounting and Appropriation Information

SFO: 22

Line	DCN	IFMS	Budget/FY	Appropriati on Code	Budget Org Code	Program Element	Object Class	Site Project	Cost Org Code	Amount
	ENC036 ENC035	XXX XXX	11 11			302EC7C 302EC7C			C001 C001	\$9,541.00 \$17,120.00

Funding Summary:	Funding
Previous:	\$0.00
This Action:	\$26,661.00
Total:	\$26,661.00

Funding Category Removal

Section

- Signed by Terri Lewis/DC/USEPA/US on 12/06/2011 12:49:27 PM, according to Jeff Criner/start6/rfw-s

: Lisa Price Date: 11/29/2011

Phone #:

Project Officer Section - Signed by Cora Stanley/R6/USEPA/US on 12/13/2011 09:32:41 AM, according to Jef

Project Officer: Linda Carter
Contracting Officer Section - Signed by Cora Stanley/R6/USEPA/US on 12/13/2011 09:32:41 AM, according to Contracting Officer: Cora Stanley

Contracting Officer: Cora Stanley

Date: 12/13/2011

Date: 12/13/2011

Contractor Section - Signed by Terri Lewis/DC/USEPA/US on 12/06/2011 12:49:27 PM, according to Jeff Date:

Contractor Contact:

APPENDIX D

LABORATORY DATA PACKAGES

WESTON SOLUTIONS, INC.

Johnny M ORS

STANDARD LEVEL IV REPORT OF ANALYSIS

WORK ORDER #12-01163-OR

March 7, 2012

EBERLINE ANALYTICAL/OAK RIDGE LABORATORY OAK RIDGE, TN

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
I	Chain of Custody	0004
П	Sample Acknowledgement	0007
Ш	Case Narrative	0010
IV	Analytical Results Summary	0013
${f v}$	Analytical Standard	0019
VI	Quality Control Sample Results Summary	0023
VII	Laboratory Technician's Notes & Run Logs	0026
VIII	Analytical Data (Gamma Spectroscopy)	0031
	Last Page Number	0364

STANDARD OPERATING PROCEDURE

Sample Receiving

MP-001, Kev. 10 Effective: 4/27/09 Page 13 of 13

Eberline Services – Oak Ridge Laboratory LABORATORY DATA SUPPORT CHECKLIST

MP-001-3

Date for Partial	Initials	Date	Initials	Checklist Item	s
		1.31.12	5wm	Sample Log-In	
		2/24/10	w	Data Compilation	DU.
	-	2.2212	mit	First Technical	Data Review
		2/12/1	2 WV	Second Technic	cal Data Review
		3/5/12	A	Data Entry/Elec	tronic Deliverable
		3/5/2	A	Case Narrative	
		3/1/12	HBS	Electronic Deliv	
	1	3/7/12	9.4	Samples Analyz	zed within Holding Time
		3/7/12	4.60	QA/QC Review	
				Client in Posses Electronic or Ha	
				Invoiced by Lab	
Technical/Clerical	Corrections	s, Signature	es Needed, P	roblems, Etc	Date/Initials
					<u> </u>

SECTION I CHAIN OF CUSTODY

Page 1 of 1

USEPA

DateShipped: 1/30/2012 CarrierName: FedEx AirbillNo: 793168105412 CHAIN OF CUSTODY RECORD

Johnny M ORS Contact Name: Kristie Warr

Contact Phone: 713-985-6600 12 - 0 1 1 6 3

No: TO0035111101-120130-0001

Cooler #: 1 Lab: Eberline Services Lab Phone: 865-481-0683

Lab# Collected Sample # Analyses Matrix Sample Time Container MS/MSD Samp Concentrati Preservative on JM-70-32-120128 Gamma Spectroscopy 1/28/2012 17:00 N 381,092 cpm Soil 16 oz jar None 4 17:00 JM-70-31-120128 Gamma Spectroscopy Soil 1/28/2012 16 oz jar None N 381,092 cpm 5 JM-88-31-120128 Gamma Spectroscopy Soil 1/28/2012 16:34 16 oz jar None N 265,129 cpm JM-77-31-120128 Gamma Spectroscopy 1/28/2012 7 Soil 16:55 16 oz jar None Ν 282,248 cpm JM-65-31-120128 Gamma Spectroscopy Soil 1/28/2012 17:02 16 oz jar None N 342,018 cpm 8 JM-66-31-120128 Gamma Spectroscopy 1/28/2012 17:05 269,876 cpm 9 Soil 16 oz jar None Ν 209,993 cpm JM-73-31-120128 Gamma Spectroscopy Soil 1/28/2012 16:57 16 oz jar N 10 None JM-55-31-120128 Gamma Spectroscopy Soil 1/28/2012 17:10 16 oz jar None N 156,052 cpm 11 JM-82-31-120128 Gamma Spectroscopy Soil 1/28/2012 N 228,461 cpm 16:45 16 oz jar None 12 JM-84-31-120128 Gamma Spectroscopy 1/28/2012 16:38 N 117,322 cpm 13 Soil 16 oz jar None JM-54-31-120128 Gamma Spectroscopy Soil 1/28/2012 17:12 N 251,115 cpm 14 16 oz jar None 15 JMBKGD-NW-31-120128 Gamma Spectroscopy 1/28/2012 09:10 16 oz jar None N 13,502 cpm Soil JMBKGD-NE-31-120128 Gamma Spectroscopy Soil 1/28/2012 09:41 16 oz jar None N 9,938 cpm 16

Special Instructions: Level IV Deliverable, Standard TAT

Special Instructions: Level IV Deliverable, Standard TAT

Special Instructions: Level IV Deliverable, Standard TAT

Samples Transferred From

CHAIN OF CUSTODY #

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
13/Sumples	Pote_	1/30/12	duo-melcax	1.31.12	0834						
7											!
				<u>L</u> .							

Internal Chain of Custody

Work Order #	12-01163
Lab Deadline	2/21/2012
Analysis	Gamma - Level 4
Sample Matrix	Soil/Solid

Comments	Sample Fraction	HP 210 / 270 Detector Activity	Storage Location
	04	254	M1.3
	05	262	M1.3
	06	207	M1.3
21 day ingrowth: Poport Ac229 Bi214 K40 Ba234m	07	181	M1.3
21 day ingrowth: Report Ac228, Bi214, K40, Pa234m,	08	213	M1.3
b212/214, Th234, Tl208, Ra226 from Bi214 & any positives.	09	170	M1.3
	10 131	M1.3	
	11	123	M1.3
	12	109	M1.3
	13	56	M1.3
	14	105	M1.3
	15	47	M1.3
	16	50	M1.3
	and the second s		
	THE TOTAL CONTRACT OF THE PROPERTY OF THE PROP		willian vermina in the control of th

		Locati	on (circle	one)		Ir	nitials	Date
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room /300	Very	Sdej	1-31-12
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room 0910	Keny	geli_	2-1-12
Received by	Sample Storage	Rough Prep	Prep	Separations	Count ROOD 05/6	•		7-HZ
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	ICB	2/20/6	1259
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room			,
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Relinquished by	Sample Storage	Rough Prep	Ргер	Separations	Count Room			
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		Mariana (M. Compiler Specification)	

SECTION II SAMPLE ACKNOWLEDGEMENT

	Client Name	Contract/PO	Project Type		Date Received	Required Turnaround Days	Eberline Services Work Order			
w	eston Solutions, Inc.	0070138	Environmental	01	/31/2012	28	12-01163			
	Project Name	Client WO	Sample Disp		Lab Deadline	Internal Deadline	Client Deadline			
	0070138 U Mines	Johnny M ORS H		02/21/2012		02/27/2012	02/28/2012			
Internal ID	Client ID	Sample Date Matrix	Storage	Gашта			7			
01	LCS	01/31/12 SO	M1.3	x			1			
02	BLANK	01/31/12 SO	M1.3	x			1			
03	DUP	01/31/12 SO	M1.3	x			1			
04	JM-70-32-120128	01/28/12 17:00 SO	M1.3	Х			1			
05	JM-70-31-120128	01/28/12 17:00 SO	M1.3	x			1			
06	JM-88-31-120128	01/28/12 16:34 SO	M1.3	x			1			
07	JM-77-31-120128	01/28/12 16:55 SO	M1.3	x			1			
08	JM-65-31-120128	01/28/12 17:02 SO	M1.3	x			1			
09	JM-66-31-120128	01/28/12 17:05 SO	M1.3	x			1			
10	JM-73-31-120128	01/28/12 16:57 SO	M1.3	x			1			
11	JM-55~31-120128	01/28/12 17:10 SO	M1.3	×			i			
12	JM-82-31-120128	01/28/12 16:45 SO	M1.3	x -			1			
13	JM-84-31-120128	01/28/12 16:38 SO	M1.3	x	1					
14	JM-54-31-120128	01/28/12 17:12 SO	M1.3	x			1			
15	JMBKGD-NW-31-120128	01/28/12 09:10 SO	M1.3	x		+				
16	JMBKGD-NE-31-120128	01/28/12 09:41 SO	M1.3	x			1			
				 	+		0			
				1			0			
		· ·		 						
						·				
		Totals Per Analysis (n	on OA comples)	13 0 0	0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0			
	The second secon	totals Fel Atlalysis (II	on wa samples)							
_				Invoice	ACCOUNTS PAYABLE Weston Solutions, Inc.	Report Data Kristie Warr Weston Solutions, Inc.				
Oak R		Oak Ridge Lab	oratory		5599 San Felipe Suite 700	5599 San Felipe Suite 700)			
O E	EBERLINE SERVICES	601 Scarboro			Houston, TX 77056	Houston, TX 77056				
	SERVICES	Oak Ridge, TN	37830							
Y	Sample Log In Report	Voice: (865) 4	81-0683	Voice	713-985-6686	Voice 713-985-6636				
	Sample Log in Report		83-4621	Contact	713-985-6703 Kristie Warr	Fax 713-985-6703				
		i		Voice	713-985-6636					
		·		Fax	713-985-6703	<u> </u>				

Copy No. _

STANDARD OPERATING PROCEDURE

Sample Receiving

MP-001, Rev. 11 Effective: 10/31/09 Page 13 of 14

Eberline Services - Oak Ridge Laboratory

SAMPLE RECEIPT CHECKLIST MP-001-2

SAMPLE MATRIX/MATRICES:	(CIRCLE ONE OR BOTH)							
	AQUE	ous	(NÒI	N-AQUE	ous			
	(CIRCI	LE EIT	HER Y	ES, NO,	OR N/A			
WERE SAMPLES:				1	_			
Received in good condition?	(Y)	N			_			
If aqueous, properly preserved	Y	N		(N/A)				
WERE CHAIN OF CUSTODY SEALS:		-		1				
Present on outside of package?	\square	N						
Unbroken on outside of package?		N						
Present on samples?	\bigcirc	N						
Unbroken on samples?		N						
Was chain of custody present upon sample receipt?	(C)	N						
IF THE RESPONSE TO ANY OF THE ABOVE IS NO , A DIS (DSR) HAS BEEN ISSUED. REMARKS: (13) SOUML SATS OF SUIT	CREPANT	SAMP	LE RE	CEIPT R	EPORT			
(DSR) HAS BEEN ISSUED.	CREPANT	SAMP	LE RE	CEIPT R	EPORT			

Radiochemistry Services

SECTION III CASE NARRATIVE

EBERLINE ANALYTICAL CORPORATION
601 SCARBORO ROAD
OAK RIDGE, TENNESSEE 37830
PHONE (865) 481-0683
FAX (865) 483-4621

EBS-OR-33523

March 7, 2012

Kristie Warr Weston Solutions, Inc. 5599 San Felipe Suite 700 Houston, TX 77056

CASE NARRATIVE Work Order # 12-01163-OR

SAMPLE RECEIPT

This work order contains thirteen soil samples received 01/31/2012. These samples were analyzed by Gamma Spectroscopy.

CLIENT ID	<u>LAB ID</u>	<u>CLIENT ID</u>	<u>LAB ID</u>
JM-70-32-120128	12-01163-04	JM-55-31-120128	12-01163-11
JM-70-31-120128	12-01163-05	JM-82-31-120128	12-01163-12
JM-88-31-120128	12-01163-06	JM-84-31-120128	12-01163-13
JM-77-31-120128	12-01163-07	JM-54-31-120128	12-01163-14
JM-65-31-120128	12-01163-08	JMBKGD-NW-31-120128	12-01163-15
JM-66-31-120128	12-01163-09	JMBKGD-NE-31-120128	12-01163-16
JM-73-31-120128	12-01163-10		

ANALYTICAL METHODS

Gamma Spectroscopy was performed using Method LANL ER-130 Modified.

ANALYTICAL RESULTS

Combined Standard Uncertainty is reported at 2-sigma value.

GAMMA SPECTROSCOPY

Samples were dried, homogenized and placed into appropriate gamma spectroscopy geometry containers. Samples were then sealed for 21 days to allow for ingrowth of Radon-222 and progeny. Samples were counted on High Purity Germanium (HPGe) gamma ray detectors. Energy lines from Lead-214 and Bismuth-214 were analyzed for determinations of Radium-226 activity.

Samples demonstrated acceptable results for all gamma-emitting radionuclides as reported. Due to the positive nature of several samples, significant Compton was noted which caused slightly high method detection limits. The method blank demonstrated acceptable results for all radionuclides as reported. Results for the Bismuth-214, Potassium-40 and Lead-214 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Cobalt-60 and Cesium-137 laboratory control sample demonstrated an acceptable percent recovery.

CERTIFICATION OF ACCURACY

I certify that this data report is in compliance with the terms and conditions of the Purchase Order, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the cognizant project manager or his/her designee to be accurate as verified by the following signature.

M.R. McDougall Laboratory Manager

Date: 3/7/2012

SECTION IV ANALYTICAL RESULTS SUMMARY

					Report To:				sadkyňanta st 1	Nork Order Det	ails:					
Fhei	rline	Analytical	Kristie	Warr				SDG:	12-0	1163						
		-	Westo	n Solutio	ns, Inc.			Purchase Order:	0070	138						
Fina	l Rep	ort of Analysis	5599 S	an Felipe	e Suite 7	00		Analysis Category:	ENVI	RONMEN	TAL					
	•	• • • • • • • • • • • • • • • • • • •		on, TX 77	·····			Sample Matrix:	SO							
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	csu	MDA	Report Units			
12-01163-01	LCS	KNOWN	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Cobalt-60	LANL ER-130 Modified	1.32E+02	5.20E+00			pCi/g			
12-01163-01	LCS	KNOWN	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Cesium-137	LANL ER-130 Modified	8.25E+01	3.30E+00			pCi/g			
12-01163-01	LCS	SPIKE	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Cobalt-60	LANL ER-130 Modified	1.25E+02	8.13E+00	1.04E+01	5.68E-01	pCi/g			
12-01163-01	LCS	SPIKE	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Cesium-137	LANL ER-130 Modified	7.92E+01	8.12E+00	9.08E+00	4.84E-01	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	3.46E-04	5.98E-02	5,98E-02	1.15E-01	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	-1.81E-02	3.68E-02	3.68E-02	6.28E-02	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	5.84E-02	1.86E-01	1.86E-01	4.21E-01	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	-2.41E-03	2.26E+00	2.26E+00	3.82E+00	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	3.99E-03	3,30E-02	3.30E-02	6.01E-02	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	7.72E-03	3.75E-02	3.75E-02	6.56E-02	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	-1.81E-02	3,68E-02	3.68E-02	6.28E-02	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	4.80E-01	3.76E-01	3.77E-01	4.25E-01	pCi/g			
12-01163-02	MBL	BLANK	01/31/12 00:00	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	4.81E-02	4.15E-02	4.16E-02	8.87E-02	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	3.67E-01	7.13E-01	7.14E-01	1.20E+00	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.55E+02	7.64E+00	1.10E+01	5.59E-01	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.27E+01	3.91E+00	4.08E+00	3.05E+00	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	1.20E+02	3.72E+01	3.77E+01	3.37E+01	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	3.49E+00	5.27E-01	5.56E-01	7.06E-01	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.55E+02	1.01E+01	1.29E+01	7.15E-01	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1.55E+02	7.64E+00	1.10E+01	5.59E-01	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	8.94E+01	9.84E+00	1.09E+D1	8.36E+00	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1.11E+00	6.14E-01	6.17E-01	9.53E-01	pCi/g			
12-01163-03	DUP	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	8.18E+00	3.28E+00	3.31E+00	2.75E+00	pCi/g			
40.04400.04		JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	4.72E-01	7.84E-01	7.84E-01	1.19E+00	pCi/g			
12-01163-04	DO DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.57E+02	7.71E+00	1.11E+01	5.69E-01	pCi/g			
12-01163-04 12-01163-04	DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.27E+01	4.11E+00	4.27E+00	3.08E+00	pCi/g			
12-01163-04	DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	1.49E+02	4.24E+01	4.31E+01	3.31E+01	pCi/g			
12-01163-04	DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	9.33E-01	4.56E-01	4.59E-01	6.26E-01	pCi/g			
12-01163-04	DO DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.55E+02	1.01E+01	1.28E+01	7.23E-01	pCi/g			
12-01163-04	DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1.57E+02	7.71E+00	1,11E+01	5.69E-01	pCi/g			
12-01163-04	DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	9.28E+01	1.01E+01	1,11E+01	8.49E+00	pCi/g			
12-01163-04	DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	6.88E-01	1.91E-01	1.94E-01	8.63E-01	pCi/g			
12-01163-04	DO	JM-70-32-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	6.98E+00	3.05E+00	3.07E+00	2,73E+00	pCi/g			

			WATER LOCKED		Report To:				a di Baya	Work Order Det	ails:	17/10/1997/8/14 15 -	o in no en gog v Peri langt bulkibug k	
Fhe	rline	Analytical	Kristie	Warr				. SDG:	12-0)1163				
		-	Westo	n Solutio	ns, inc.			Purchase Order:	0070	138	**************************************			
Fina	l Rep	ort of Analysis	5599 S	an Felip	e Suite 7	00		Analysis Category:	ENVI	RONMEN	TAL	······································		
	•	•	Housto	on, TX 77	056	***************************************		Sample Matrix:	SO					
Lab	Sample	Client	Sample	Receipt	Analysis	Batch	Analyte	Method	Result	Cu	csu	MDA	Report	
1D	Туре	1D	Date	Date	Date	1D	Allalyte	Menion	Result		CSU	NIDA	Units	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.14E+00	1.12E+00	1.12E+00	1.34E+00	pCi/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.38E+02	7.54E+00	1.03E+01	5.81E-01	pCi/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.09E+01	4.27E+00	4.40E+00	3.52E+00	pCi/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	1.17E+02	4,22E+01	4.26E+01	3.70E+01	pCi/g	
12-01163-05	TRG	JM-70-31-120128	. 01/28/12 17:00	1/31/2012	2/22/2012	12-01163	L.ead-212	LANL ER-130 Modified	2.22E+00	8.06E-01	8.14E-01	6.45E-01	pCl/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.38E+02	3.21E+01	3.29E+01	7.15E-01	pCi/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1.38E+02	7.54E+00	1.03E+01	5.81E-01	pCi/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	9.44E+01	1.06E+01	1.17E+01	7.57E+00	pCi/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	7.69E-01	6.05E-01	6.06E-01	9.59E-01	pCi/g	
12-01163-05	TRG	JM-70-31-120128	01/28/12 17:00	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	8.98E+00	2.43E+00	2.47E+00	2.50E+00	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	-5.56E-01	1.11E+00	1.11E+00	1.82E+00	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	2.34E+02	1.23E+01	1.72E+01	8,57E-01	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.72E+01	6.59E+00	6.74E+00	4.75E+00	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	2.07E+02	5.35E+01	5.45E+01	5.20E+01	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	5.67E+00	7.78E-01	8.30E-01	1.00E+00	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	2.42E+02	1.62E+01	2.04E+01	1.05E+00	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	2.34E+02	1.23E+01	1.72E+01	8.57E-01	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	1.93E+02	2.02E+01	2.25E+01	1.17E+01	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1.75E+00	8.96E-01	9.01E-01	1.40E+00	pCi/g	
12-01163-06	TRG	JM-88-31-120128	01/28/12 16:34	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	1.46E+01	3.24E+00	3.33E+00	3.74E+00	pCi/g	
***						~~~~~								
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.37E+00	6.91E-01	6.94E-01	1.11E+00	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	8.38E+01	4.74E+00	6,40E+00	5,29E-01	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.33E+01	4.44E+00	4.60E+00	2.80E+00	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	1.34E+02	3.41E+01	3.48E+01	3.22E+01	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	1.80E+00	6.85E-01	6.91E-01	4.94E-01	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	8.46E+01	1.97E+01	2.02E+01	5.96E-01	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Radjum-226	LANL ER-130 Modified	8.38E+01	4.74E+00	6.40E+00	5.29E-01	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	1.13E+02	1.14E+01	1.28E+01	6.78E+00	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1.15E+00	2.94E-01	3.00E-01	7.90E-01	pCi/g	
12-01163-07	TRG	JM-77-31-120128	01/28/12 16:55	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	6.95E+00	1.74E+00	1.78E+00	2.09E+00	pCi/g	

				jiji kanadala	Report To:				ruseyay.	Nork Order Det	≆ils:		
Fhei	rline	Analytical	Kristie	Warr		•		SDG:	12-0	1163			
			Westo	n Solutio	ns, Inc.			Purchase Order:	0070	138			**************************************
Fina	ıl Rep	ort of Analysis	5599 S	an Felipe	Suite 7	00		Analysis Category:	ENVI	RONMEN	ΓAL	····	
	•	-	Housto	on, TX 77	056			Sample Matrix:	SO		***************************************		***************************************
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	csu	MDA	Report Units
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	2.75E-01	1.25E+00	1.25E+00	2.07E+00	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	3.17E+02	1.65E+01	2.31E+01	9.80E-01	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.90E+01	6.68E+00	6.84E+00	5.26E+00	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	2.51E+02	5.67E+01	5.82E+01	5.81E+01	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	6.44E+00	8.86E-01	9.46E-01	1.13E+00	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	3.32E+02	2.23E+01	2.80E+01	1.17E+00	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	3.17E+02	1.65E+01	2.31E+01	9,80E-01	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	2.13E+02	2.25E+01	2.50E+01	1,35E+01	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Thailium-208	LANL ER-130 Modified	9.98E-01	9.84E-01	9.86E-01	1,52E+00	pCi/g
12-01163-08	TRG	JM-65-31-120128	01/28/12 17:02	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	1.42E+01	3.63E+00	3.70E+00	4.27E+00	pCi/g

12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	6.54E-01	6.00≝-01	6.01E-01	1.02E+00	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.12E+02	5.62E+00	8.05E+00	4.75E-01	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	1.96E+01	3.56E+00	3.70E+00	2.55E+00	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	3.84E+01	2.71E+01	2.72E+01	2.88E+01	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	1.03E+00	3.83E-01	3.87E-01	5.14E-01	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.12E+02	7.30E+00	9.30E+00	5.97E-01	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1,12E+02	5.62E+00	8.05E+00	4.75E-01	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	2.58E+01	6.10E+00	6.24E+00	6.80E+00	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1.39E+00	5.16E-01	5.21E-01	8,07E-01	pCi/g
12-01163-09	TRG	JM-66-31-120128	01/28/12 17:05	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	4.69E+00	1.95E+00	1.97E+00	2.33E+00	pCi/g
***************************************	1			·	·····				***************************************				***************************************
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.71E+00	1.37E+00	1.37E+00	1.49E+00	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.46E+02	8.01E+00	· 1.10E+01	6.63E-01	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	1,93E+01	4.61E+00	4.72E+00	3.93E+00	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	1.03E+02	4.57E+01	4.60E+01	4.16E+01	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	1.80E+00	7.11E-01	7.17E-01	7.01E-01	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.46E+02	3.41E+01	3.49E+01	7.92E-01	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1.46E+02	8.01E+00	1.10E+01	6,63E-01	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	5.70E+01	7.96E+00	8.48E+00	7,99E+00	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1,14E+00	6.70E-01	6.72E-01	1.07E+00	pCi/g
12-01163-10	TRG	JM-73-31-120128	01/28/12 16:57	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	6.40E+00	4.52E+00	4.53E+00	2.69E+00	pCi/g

					Report To:					Nork Order Det	ails:	T tivlada	
Fhe	dine	Analytical	Kristie	Warr				SDG:	12-0	1163			<u> </u>
1		<u> </u>	Westo	n Solutio	ns, Inc.		***************************************	Purchase Order:	0070	138			***************************************
Fina	l Rep	ort of Analysis	5599 S	an Felipe	Suite 7	00		Analysis Category:	ENVI	RONMEN	TAL	•	
	•	•		on, TX 77				Sample Matrix:	SO			***************************************	· · · · · · · · · · · · · · · · · · ·
Lab	Sample	Client	Sample	Receipt	Analysis	Batch	A	Black and	5		0011		Report
ID	Туре	ID	Date	Date	Date	, ID	Analyte	Method	Result	CU	CSU	MDA	Units
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.41E+00	1.16⊑+00	1.16E+00	1.47E+00	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.27E+02	7.90E+00	1.02E+01	6.44E-01	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.36E+01	4.01E+00	4.19E+00	3.54E+00	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	8.56E+01	3.73E+01	3.75E+01	3.93E+01	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	9.16E-01	4.88E-01	4.90E-01	6.40E-01	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1,36E+02	9.16E+00	1.15E+01	7.99E-01	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1.27E+02	7.90E+00	1.02E+01	6.44E-01	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	8.57E+01	1.12E+01	1.20E+01	8.60E+00	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	6.27E-01	2.40E-01	2.42E-01	9.57E-01	pCi/g
12-01163-11	TRG	JM-55-31-120128	01/28/12 17:10	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	4.26E+00	3.08E+00	3.09E+00	2,79E+00	pCi/g
				1									
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.08E+00	1.59E+00	1.59E+00	2.77E+00	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.20E+02	7.43E+00	9.66E+00	1.23E+00	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.33E+01	7.81E+00	7.90E+00	7.18E+00	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	6.98E+01	6.85E+01	6.86E+01	7.53E+01	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	1.04E+01	1.32E+00	1,42E+00	1.47E+00	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.21E+02	9.97E+00	1.17E+01	1.42E+00	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1.20E+02	7.43E+00	9.66E+00	1,23E+00	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	3.65E+01	1.04E+01	1.05E+01	1.34E+01	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1.98E+00	1.37E+00	1.37E+00	2.03E+00	pCi/g
12-01163-12	TRG	JM-82-31-120128	01/28/12 16:45	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	5,06E+00	3.16E+00	3.17E+00	4,66E+00	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.63E+00	3.62E-01	3,72E-01	4.40E-01	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.30E+01	8.59E-01	1.09E+00	2.21E-01	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.02E+01	2.70E+00	2.89E+00	1.11E+00	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	1.98E+01	1.33E+01	1.34E+01	1.42E+01	pCi/q
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	1.80E+00	2,51E-01	2.67E-01	2.24E-01	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.34E+01	9.56E-01	1.18E+00	2.75E-01	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1,30E+01	8.59E-01	1.09E+00	2.21E-01	PCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	1,23E+01	2.54E+00	2.61E+00	3.04E+00	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1.46E+00	2.71E-01	2.81E-01	3.59E-01	pCi/g
12-01163-13	TRG	JM-84-31-120128	01/28/12 16:38	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	7.63E-01	6.77E-01	6.78E-01	1.03E+00	pCi/g
12-01103-13	ing	JW-04-31-120120	01/20/12 10:30	113112012	LIZEIZU IZ	12-01103	DIAIIIUH-200	TAME ELS ION MINUSIER	7.03E-01	3.776-01	3.70L-V1	1.00E=00	PONG

Printed: 3/7/2012 2:56 PM

				Walana Afr	Report To:				Garage da B. P. M	Nork Order Det	eils:		dining in the territion	
Fhei	rline	Analytical	Kristie	Warr			_	SDG:	12-0	1163				
			Westo	1 Solutio	ns, Inc.			Purchase Order:	0070	138		<u> </u>		
Fina	l Rep	ort of Analysis	5599 S	an Felipe	Suite 7	00		Analysis Category:	ENVI	RONMEN	ΓAL			
	•	•		n, TX 77	·	·····		Sample Matrix:	SO	SO			***************************************	
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.37E+00	1.27E+00	1.27E+00	1.72E+00	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	1.36E+02	7.63E+00	1.03E+01	7.47E-01	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.53E+01	5.97E+00	6.11E+00	4,34E+00	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	3.59E+01	2.93E+01	2.93E+01	5.08E+01	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	1.23E+00	6.42E-01	6.45E-01	6.86E-01	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	1.39E+02	3.24E+01	3.31E+01	8.70E-01	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	1.36E+02	7.63E+00	1.03E+01	7.47E-01	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	2.35E+01	7.93E+00	8.02E+00	8.47E+00	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	5.92E-01	7.09E-01	7.10E-01	1.25E+00	pCi/g	
12-01163-14	TRG	JM-54-31-120128	01/28/12 17:12	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	4.53E+00	2.50E+00	2.51E+00	2.97E+00	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.67E+00	3.53E-01	3.63E-01	3.90E-01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	2.74E+00	3.31E-01	3.59E-01	2.19E-01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	2.77E+01	3.83E+00	4.09E+00	8.89E-01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	5.25E+00	7.92E+00	7.92E+00	1.48E+01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	2.11E+00	2.68E-01	2.89E-01	4.00E-01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	2.93E+00	2.95E-01	3.31E-01	2.17E-01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	2.74E+00	3.31E-01	3.59E-01	2.19E-01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	6.09E+00	3.03E+00	3.05E+00	2.29E+00	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	1.87E+00	3.69E-01	3.81E-01	6.26E-01	pCi/g	
12-01163-15	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	1.77E-01	4.28E-01	4.28E-01	7.26E-01	pCi/g	
												-		
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Actinium-228	LANL ER-130 Modified	1.41E+00	5.16E-01	5.21E-01	7.59E-01	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Bismuth-214	LANL ER-130 Modified	2.64E+00	5.22E-01	5.39E-01	3.71E-01	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Potassium-40	LANL ER-130 Modified	1.61E+01	3.58E+00	3.67E+00	2.11E+00	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Protactinium-234m	LANL ER-130 Modified	5.52E+00	1.21E+01	1.21E+01	2.36E+01	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Lead-212	LANL ER-130 Modified	1.05E+00	2.42E-01	2.48E-01	4.31E-01	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Lead-214	LANL ER-130 Modified	2.41E+00	4.80E-01	4.95E-01	3.64E-01	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Radium-226	LANL ER-130 Modified	2.64E+00	5.22E-01	5.39E-01	3.71E-01	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Thorium-234	LANL ER-130 Modified	2.70E+00	2.66E+00	2.67E+00	3.09E+00	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Thallium-208	LANL ER-130 Modified	4.48E-01	3.69E-01	3.70E-01	6.89E-01	pCi/g	
12-01163-16	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	1/31/2012	2/22/2012	12-01163	Uranium-235	LANL ER-130 Modified	4.53E-02	6.19E-01	6.19E-01	1.05E+00	pCi/g	

SECTION V ANALYTICAL STANDARD

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404•352•8677 Fax 404•352•2837 www.analyticsinc.com

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

GAS-1102

83913-416

Sand in 16 oz. PP Taral Jar Filled to Top

Customer:

Eberline Services / Eberline Analytical Corp.

P.O. No.: 67

6705, Item 8

Reference Date:

01-jan-2011

12:00 PM EST Grams of Master Source:

0.016810

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solutions. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 1, February, 1979, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST." EZA is accredited by the Health Physics Society (HPS) for the production of NIST-traceable sources, and this source was produced in accordance with the HPS accreditation requirements. Customers may report any concerns with the accreditation program to the HPS Secretariat, 1313 Dolley Madison Blvd., Ste. 402, McLean, VA 22101.

Nuclide	Gamma-Ray Energy (keV)	Half-Life, Days	Master Source* γps/gram	This Source	Ту	ertaint pe	Calibration	
Am-241	59.5		/ps/grant	γps	u _A	u _B	U	Method
		1.580E+05		2.075E+03	0.1	1.7	3.5	4π LS
Cd-109	88.0	4.626E+02	1.697E+05	2.853E+03	0.8	2.3	4.9	HPGe
Co-57	122.1	2.718E+02	8.711E+04	1.464E+03	0.5	2.0	4.1	HPGe
Ce-139	165.9	1.376E+02	1.247E+05	2.096E+03	0.5	1.9	3.9	
Hg-203	279.2							HPGe
. •		4.661E+01	2.753E+05	4.628E+03	0.4	1.9	3.9	HPGe
Sn-113	391.7	1.151E+02	1.769E+05	2.974E+03	0.5	1.9	3.9	HPGe
Cs-137	661.7	1.098E+04	1.109E+05	1.864E+03	0.7	1.9	4.0	HPGe
Y-88	898.0	1.066E+02	4.224E+05					
Co-60				7.101E+03	0.5	1.9	3.9	HPGe
	1173.2	1.925E+03	2.142E+05	3.601E+03	0.6	1.9	4.0	HPGe
Co-60	1332.5	1.925E+03	2.143E+05	3.602E+03	0.6	1.9	4.0	HPGe
Y-88	1836.1	1.066E+02	4.472E+05	7.517E+03	0.5	1.9	3.9	HPGe

^{*} Master Source refers to Analytics' 8-isotope mixture which is calibrated quarterly.

Calibration Methods: 4π LS - 4 pi Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber. Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results."

(Certificate continued on reverse side)

MGS Certificate, Rev 2 09-28-2009

Page 1 of 2

Analytics

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404·352·8677 Fax 404.352.2837 www.analyticsinc.com

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

GAS-1002

81341-416

Sand in 16 oz PP Taral Jar Filled to Top

Customer:

Eberline Services / Eberline Analytical Corp. / Oak Ridge

P.O. No.:

5964, Item 6

Reference Date:

01-Jan-2010

12:00 PM EST Grams of Master Source:

0.017446

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solutions. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 1, February, 1979, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST." EZA is accredited by the Health Physics Society (HPS) for the production of NIST-traceable sources, and this source was produced in accordance with the HPS accreditation requirements. Customers may report any concerns with the accreditation program to the HPS Secretariat, 1313 Dolley Madison Blvd., Ste. 402, McLean, VA 22101.

	Gamma-Ray	Half-Life.	Master Source*	This Source	Unc Ty	ertainty ne	7,%	Calibration
Nuclide	Energy (keV)	Days	γps/gram	γps	u _A	u _B	U	Method
Am-241	59.5	1.580E+05		2.020E+03	0.1	1.7	3.5	4π LS
Cd-109	88.0	4.626E+02	1.606E+05	2.802E+03	0.4	2.3	4.7	HPGe
Co-57	122.1	2.718E+02	8.471E+04	1.478E+03	0.5	2.0	4.1	HPGe
Ce-139	165.9	1.376E+02	1.209E+05	2.109E+03	0.4	1.9	3.9	HPGe
Hg-203	279.2	4.661E+01	2.726E+05	4.756E+03	0.4	1.9	3.9	HPGe
Sn-113	391.7	1.151E+02	1.672E+05	2.917E+03	0.5	1.9	3.9	HPGe
Cs-137	661.7	1.098E+04	1.096E+05	1.912E+03	0.6	1.9	4.0	HPGe
Y-88	898.0	1.066E+02	4.077E+05	7.113E+03	0.4	1.9	3.9	HPGe
Co-60	1173.2	1.925E+03	2.055E+05	3.585E+03	0.5	1.9	3.9	HPGe
Co-60	1332.5	1.925E+03	2.056E+05	3.587E+03	0.7	1.9	4.0	HPGe
Y-88	1836.1	1.066E+02	4.308E+05	7.516E+03	0.5	1.9	3.9	HPGe

^{*} Master Source refers to Analytics' 8-isotope mixture which is calibrated quarterly.

Calibration Methods: 4 m LS - 4 pi Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC -Ionization Chamber. Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results."

(Certificate continued on reverse side)

MGS Certificate, Rev 2 09-28-2009

Page 1 of 2

Comments:

260 mL / 260 g of pulverized soil.

This standard will expire one year after the reference date.

Source Prepared by:

M. I. Taskaeva, Radiochemist

QA Approved:

J. D. McCorvey, QA Manager Alternate

Date

1/29/10

SECTION VI QUALITY CONTROL SAMPLE RESULTS SUMMARY

Printea:	2/23/2012 1:06 PM
	Page 1 of 2

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
12-01163	Gamma	1	pCi	g	Weston Solutions, Inc.

				Labo	ratory	Control	Sample						
Analyte	Normalized Difference	LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	csu	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
CO-60	1.17	95.07%	8.27%	100.00%	3.95%	1.32E+02	5.20E+00	1.25E+02	1.04E+01	GAS-1002	1.32E+02	5.20E+00	7.36E+02
CS-137	0.68	96.05%	11.46%	100.00%	4.00%	8.25E+01	3.30E+00	7.92E+01	9.08E+00	GAS-1002	8.25E+01	3.30E+00	7.36E+02

	Matrix Spike												
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)
												····	
													

	Replicate Sample						QC Summary						
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	LCS ND	MS % R	MS ND	Rep RPD	Rep ND
BI-214	0.17	0.90	1.57E+02	1.11E+01	1.55E+02	1.10E+01	0.95	ок	ок	<cs-137< td=""><td>BI-214></td><td>NA</td><td></td></cs-137<>	BI-214>	NA	
K-40	0.01	0.18	2.27E+01	4.27E+00	2.27E+01	4.08E+00	0.96	ок	ок	<co-60< td=""><td>K-40></td><td>NA</td><td>ок</td></co-60<>	K-40>	NA	ок
PB-214	0.10	0.58	1.55E+02	1.28E+01	1.55E+02	1.29E+01					PB-214>	NA	ок

Printed: 2/23/2012 1:06 PM

Page 2 of 2

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
12-01163	Gamma	1	pCi	g	Weston Solutions, Inc.

No Matrix Spike

SECTION VII LABORATORY TECHNICIAN'S NOTES & RUN LOGS

	DATE	sample #	Client L	oaltime (TITI ME A	malycis T	ach
		1202081-01	ulor	1723	30 mins.	~	ICB
	1 1	1202075-06	Euro Werten	1821	l ha	~	vus .
	747112	Cot s- 401	·LAB	0527	15m		_
	212112		401	0548	IFmin		
	~174In		40	المار	ir-	1	
	rimn		un	6676	min		
	2/24/12	8	Ebelia.	0700	- 24	1	ł
	ールハル		Eberge	0816	Zh		
	<u> </u>		un.	Man Of 7 4	ir-	A SHARE TO SHARE	
	212111	1201055-17	Chein	0912	ZL	<i>}</i>	
	2/21/12	no 1055-16	Eberline Servi	1117	1 hr	~	ICB
	2/21/12	1202091-05	Kimbrell	1219	1 hr	Y	KB
	2 21 12	1202091-67	Kimbrell	122	1 hr	r	KB
	2/21/12	1202098-01	ALMAC	1424	30 min	X	KUB
		1202099-02	ALMAC	1459	30 min	8	KB
		1202098-03	ALMAC	1531	30min	1	KB
	2/2/11		ALMAC	1602	30mn	X	1CB
	2/21/12	1201018-12	EberlineServi	1634	1hr	8	ps !
	2/21/12	1501018-16	Eberline Seav.	1735	lhr	Y	CB.
	2/21/12	1201137-06	Anacon	1336	thr	8	KB.
	212417	Gra se use	·LAn	(۱۲۵	15min	r	_
	2/22/1	Dairy May	LAB.	0577	15-4.2	v	<u></u>
	1	GAW.n	UB	6601	1/	-	
		Gd 5-110-	48	062	11mm	r	<u> </u>
	yrun	GAS-102	LAN	онч	1 min	1	
-	المدراد	1201177-07	Anacon	0701	24	J	
	7/27/2	1201054-08	Ehra	७४१५	24	1	
-		1201177-01	Ameson	08/6	7.~~	r	
-	2/22/10	12-01162-01	mestousol.	0900	Jonn	F	
1	2/22/1	1201167-07	westoniel	1024	IL	- L	<u> </u>
	2/20/12	1201143-04	weston	1131	Ihr	8	KB
-	2/22/12	1201143-09	Weston	1232	1 hr	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	KB
1	2/20/12	1201163-13	Weston	1338	thr	Y	KB
		to the second of	erine erekuları ile garaşı sarı ili ili ili ili ili ili	n i e e e e e e e e e e e e e e e e e e	energenes substitution of	*	
			•	•			

			(-6	<i>5</i> 2			41
	DATE	Samole #	Client.		CTITIME	Analysis T	ech,
100	420/12	1202075-07	Euro Nuclear	1822	lhr	Ý	1CB
	7/7/1	CAS-nor	ign	0528	15-		
1	7/14/14		isn	0541	15-	L -	
	מאבור		un	0611	11-		
	ymn	Gou-n	yn	0677	10-	-	
	71711	1-101081.65	Eke nu	6704	74	L-	
	441	Freiorroy	Cherry	OHI	24		
	マルリト	CA STORY	Lyn	७९८।	15	<u></u>	
	7171112	•	/Limpress.	1014.	24.	r.	<u> </u>
-	5	1202091-04	Kimbrell	1125	lh-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	KB
-		1202091-04	Kimbrell	1556	11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	KB
- 12 - 12 - 13		1202091-08	Kimbrell	17-4	thr	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	KB.
		1501018- 02	Eberline Servi	1128	thr	\ <u>\</u>	ICB
_		1201018-08	Eberline Seav.	1529	lhr	Υ	ICB
- 15 - 7	2012	1201018- 11	Eberline Sear	1629	lhr	8	19
		1201018-15	Eberline Seav.	1730	lhr		ICB
	.	1201137-05	Anacon	1831	Ihr	8	ICB
	E	CAG-un	un .	0517	1,~~~.		
		C+45-1201	UB	0578	15mm		
		Dilyphap	Un	obn	Wan		
<u></u>	2024		un	06~7	1000	<i>L</i>	<u></u>
<u></u>	Starte	1-13/197-67	Amou	6707	<u> </u>		
	Thun	1201054-06	Cheir	0707	2L	,	
	21-4		Ehen).ce	0900	マム		
		1201167-02 1201163-06	Weston	1004	1 hr	V	ICB
		[SO1102-0]	Weston	1209	1 hr	-	168
·	2/20/12		westen	70	l hu	Y	(c/s
	2/22/12		westen	1413	lhe	+	ICB
		,,	with the same				
		1					
							_
					هر و الفرود المراجع في المراجع		\
× 1							

			. 00 -				/1 ,
	DATE	Sample It	Client	Load Time	CT.Time F	malysisT	ech i
	2/21/12	1201018-06	Ebertine Sew.	1440	1 hr	Ÿ	ICB "
		1501018-09	Flenhme Sew-	154	The	Y	KB
	2/21/12	1201018-13	EberbrieSem	1442	thr	r	ICB
		1201018-01	Ekulme Sew-	1743	30mhs	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FAS .
		1201137-03	Anacon	1313	1 hr	Y	KB
	4241	CAL-12	LAB	0814	15mm	2	9
	~1724	- Cots-non	UB	0578	10-		<u> </u>
	7/21/h	CAS-wi.	Um	0601	15-	<u> </u>	<u>-</u>
	Three	Pailyplus	iss	0627	1	1	احا
	424	1221177-04	Anagon	07w	マル	r	
	Turin	1201084-08	Ehrin	6815	24	1	
	~1~1n		Chay.	0518	24	~	<u>_</u>
	2/22/12		me, tarson	lorg	34		
	2/22/12		Weston	1134)	1 hr	Y	ICB
			Weston	1237	11/	r	KUB
	2/22/12	1201163-14	Westen	1340	lh-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Jus
				· · · · · · · · · · · · · · · · · · ·			
							<u> </u>
<u>.</u>							
							- 4
	· · · · · · · · · · · · · · · · · · ·	1 					
	·	The Control of the Co					
		<u> </u>			<u> </u>		***************************************
						-	
						-	//
]	

GE 4

	·		Go	1			03
	DATE	SAMPle #	Client	Laz 1 Time	CT.Time	Analysis '	Tech
	2122112		Adamses +	1070	15mm	Ne	_
		1201166.04	Accutest	1052	15mn	Bu	1CB
		1201146-05	Accutest	1110	15 min	Ba	ICB
		1201161-67	Accurest	1129	15 mm	Ba	1CB
	2/22/12		Accufect	11-44	15 min	Sh.	ICR
	2/22/12	120114-11	Accudest	two	15 mm	Da	ICB
	2/20/12	120114-13	Accutest	1219	12min	Ba	KB.
		1201146-15	Accupert	1235	15 min	Ba	KB
		1201166-17	Accufest	1251	15 mm	Ba	1CB
	2/22/12		Accutest	1709	12 mm	Bu	KB.
	2127/2		westonson	1725		<u></u>	
	2/22/12	120/163-16	weston	Mp	Ihr	1	KB.
		Strant Co	Structure.			<u></u>	
				<u> </u>		ļ -	
		- 5					
					P.C.		
				·	1 5 ±		
	X.C.						
100 m			A CONTRACTOR OF THE PROPERTY O			On the second second second second	San Marian San San San San San San San San San S

SECTION VIII ANALYTICAL DATA (GAMMA SPECTROSCOPY)

Printed: 2/1/2012 8:39 AM Page 1 of 3

Work Order	12-01163
Analysis Code	Gamma
Run	1
Date Received	1/31/2012
Lab Deadline	2/21/2012
Client	Weston Solutions, Inc.
Project	0070138 U Mines
Report Level	4
Activity Units	pCi
Aliquot Units	g
Matrix	so
Method	LANL ER-130 Modified
Instrument Type	Gamma Spectroscopy
Radiometric Tracer	
Radiometric Sol#	
Tracer Act (dpm/g)	
Carrier	
Carrier Conc (mg/ml)	

Internal Fraction	Sample Desc	Client ID	Login CPM	Sample Date	Sample Aliquot
01	LCS	LCS		01/31/12 00:00	1.0000E+00
02	MBL	BLANK		01/31/12 00:00	1.0000E+00
03	DUP	JM-70-32-120128	254	01/28/12 17:00	5.7999E+02
04	DO	JM-70-32-120128	254	01/28/12 17:00	5.7999E+02
05	TRG	JM-70-31-120128	262	01/28/12 17:00	6.2101E+02
06	TRG	JM-88-31-120128	207	01/28/12 16:34	4.0710E+02
07	TRG	JM-77-31-120128	181	01/28/12 16:55	5.5463E+02
08	TRG	JM-65-31-120128	213	01/28/12 17:02	4.4226E+02
09	TRG	JM-66-31-120128	170	01/28/12 17:05	5.8793E+02
10	TRG	JM-73-31-120128	131	01/28/12 16:57	5.3301E+02
11	TRG	JM-55-31-120128	123	01/28/12 17:10	4.1089E+02
12	TRG	JM-82-31-120128	109	01/28/12 16:45	4.1638E+02
13	TRG	JM-84-31-120128	56	01/28/12 16:38	4.6364E+02
14	TRG	JM-54-31-120128	105	01/28/12 17:12	3.7681E+02
15	TRG	JMBKGD-NW-31-120128	47	01/28/12 09:10	3.4525E+02
16	TRG	JMBKGD-NE-31-120128	50	01/28/12 09:41	3.6900E+02

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

12-01163 Gamma Run 1

Printed: 2/1/2012 8:39 AM Page 2 of 3

Internal Fraction	Sample Desc	Tracer Aliquot (g)	Tracer Total ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	Grav Carrier Added (ml)	Grav Filter Tare (g)	Grav Filter Final (g)	Grav Filter Net (g)	Grav % Rec	Mean % Rec	SAF 1*	SAF 2*
01	LCS				0.00			:					
02	MBL				0.00								
03	DUP				0.00								
04	DO				0.00								
05	TRG	,			0.00						,		
06	TRG				0.00				-				
07	TRG				0.00								
80	TRG				0.00								
09	TRG				0.00								
10	TRG				0.00								
11	TRG				0.00								
12	TRG			,	0.00								
13	TRG				0.00								
14	TRG				0.00								
15	TRG				0.00							-	
16	TRG				0.00								
											-		

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

12-01163 Gamma Run 1

Printed: 2/1/2012 8:39 AM Page 3 of 3

Internal Fraction	Sample Desc	Rough Prep Date	Rough Prep By	Prep Date	Prep By	Sep t0 Date/Time	Sep t0 By	Sep t1 Date/Time	Sep t1 By
01	LCS								
02	MBL								
03	DUP								
04	DO	02/01/12 08:14	KSALLINGS						
05	TRG	02/01/12 08:14	KSALLINGS						
06	TRG	02/01/12 08:14	KSALLINGS						
07	TRG	02/01/12 08:14	KSALLINGS						
08	TRG	02/01/12 08:14	KSALLINGS				777		
09	TRG	02/01/12 08:14	KSALLINGS						
10	TRG	02/01/12 08:14	KSALLINGS						
11	TRG	02/01/12 08:14	KSALLINGS						
12	TRG	02/01/12 08:14	KSALLINGS						
13	TRG	02/01/12 08:14	KSALLINGS	-					
14	TRG	02/01/12 08:14	KSALLINGS						
15	TRG	02/01/12 08:14	KSALLINGS						
16	TRG	02/01/12 08:14	KSALLINGS						
		· · · · · · · · · · · · · · · · · · ·							

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Preliminary Data Report & Analytical Calculations Work Order: 12-01163-Gamma-1

Printed: 2/23/2012 1:06 PM

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LSC Known	LCS %R	LCS Flag	RPD Flag	Sample Date	Sample Aliquot	Counting Date/Time	Identified
01	CO-60	LCS	LCS	pCi/g	1.25E+02	8.13E+00	5.68E-01	1.32E+02	95.07	ок		01/31/12 00:00	1.00E+00	02/22/12 09:50	YES
01	CS-137	LCS	LCS	pCi/g	7.92E+01	8.12E+00	4.84E-01	8.25E+01	96.05	ок		01/31/12 00:00	1.00E+00	02/22/12 09:50	YES
02	AC-228	MBL	BLANK	pCi/g	3.46E-04	5.98E-02	1.15E-01			T		01/31/12 00:00	1.00E+00	02/22/12 10:04	NO
02	BI-214	MBL	BLANK	pCi/g	-1.81E-02	3.68E-02	6.28E-02					01/31/12 00:00	1.00E+00	02/22/12 10:04	NO
02	K-40	MBL	BLANK	pCi/g	5.84E-02	1.86E-01	4.21E-01					01/31/12 00:00	1.00E+00	02/22/12 10:04	NO
02	PA-234M	MBL	BLANK	pCi/g	-2.41E-03	2.26E+00	3.82E+00					01/31/12 00:00	1.00E+00	02/22/12 10:04	NO
02	PB-212	MBL	BLANK	pCi/g	3.99E-03	3.30E-02	6.01E-02					01/31/12 00:00	1.00E+00	02/22/12 10:04	NO
02	PB-214	MBL	BLANK	pCi/g	7.72E-03	3.75E-02	6.56E-02					01/31/12 00:00	1.00E+00	02/22/12 10:04	NO
02	RA-226	MBL	BLANK	pCi/g	-1.81E-02	3.68E-02	6.28E-02					01/31/12 00:00	1.00E+00	02/22/12 10:04	NO
02	TH-234	MBL	BLANK	pCi/g	4.80E-01	3.76E-01	4.25E-01					01/31/12 00:00	1.00E+00	02/22/12 10:04	YES
02	TL-208	MBL	BLANK	pCi/g	4.81E-02	4.15E-02	8.87E-02					01/31/12 00:00	1.00E+00	02/22/12 10:04	YES
03	AC-228	DUP	JM-70-32-120128	pCi/g	3.67E-01	7.13E-01	1.20E+00					01/28/12 17:00	5.80E+02	02/22/12 10:27	NO
03	BI-214	DUP	JM-70-32-120128	pCi/g	1.55E+02	7.64E+00	5.59E-01				NA	01/28/12 17:00	5.80E+02	02/22/12 10:27	YES
03	K-40	DUP	JM-70-32-120128	pCi/g	2.27E+01	3.91E+00	3.05E+00				NA	01/28/12 17:00	5.80E+02	02/22/12 10:27	YES
03	PA-234M	DUP	JM-70-32-120128	pCi/g	1.20E+02	3.72E+01	3.37E+01					01/28/12 17:00	5.80E+02	02/22/12 10:27	YES
03	PB-212	DUP	JM-70-32-120128	pCi/g	3.49E+00	5.27E-01	7.06E-01					01/28/12 17:00	5.80E+02	02/22/12 10:27	NO
03	PB-214	DUP	JM-70-32-120128	pCi/g	1.55E+02	1.01E+01	7.15E-01				NA	01/28/12 17:00	5.80E+02	02/22/12 10:27	YES
03	RA-226	DUP	JM-70-32-120128	pCi/g	1.55E+02	7.64E+00	5.59E-01					01/28/12 17:00	5.80E+02	02/22/12 10:27	YES
03	TH-234	DUP	JM-70-32-120128	pCi/g	8.94E+01	9.84E+00	8.36E+00					01/28/12 17:00	5.80E+02	02/22/12 10:27	YES
03	TL-208	DUP	JM-70-32-120128	pCi/g	1.11E+00	6.14E-01	9.63E-01					01/28/12 17:00	5.80E+02	02/22/12 10:27	NO
03	U-235	DUP	JM-70-32-120128	pCi/g	8.18E+00	3.28E+00	2.75E+00					01/28/12 17:00	5.80E+02	02/22/12 10:27	YES
04	AC-228	DO	JM-70-32-120128	pCi/g	4.72E-01	7.84E-01	1.19E+00					01/28/12 17:00	5.80E+02	02/22/12 11:31	NO
04	BI-214	DO	JM-70-32-120128	pCi/g	1.57E+02	7.71E+00	5.69E-01					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	K-40	DO	JM-70-32-120128	pCi/g	2.27E+01	4.11E+00	3.08E+00					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	PA-234M	DO	JM-70-32-120128	pCi/g	1.49E+02	4.24E+01	3.31E+01					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	PB-212	DO	JM-70-32-120128	pCi/g	9.33E-01	4.56E-01	6.26E-01					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	PB-214	DO	JM-70-32-120128	pCi/g	1.55E+02	1.01E+01	7.23E-01					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	RA-226	DO	JM-70-32-120128	pCi/g	1.57E+02	7.71E+00	5.69E-01					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	TH-234	DO	JM-70-32-120128	pCi/g	9.28E+01	1.01E+01	8.49E+00					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	TL-208	DO	JM-70-32-120128	pCi/g	6.88E-01	1.91E-01	8.63E-01					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
04	U-235	DO	JM-70-32-120128	pCi/g	6.98E+00	3.05E+00	2.73E+00					01/28/12 17:00	5.80E+02	02/22/12 11:31	YES
05	AC-228	TRG	JM-70-31-120128	pCi/g	1.14E+00	1.12E+00	1.34E+00					01/28/12 17:00	6.21E+02	02/22/12 10:29	NO
05	BI-214	TRG	JM-70-31-120128	pCi/g	1.38E+02	7.54E+00	5.81E-01					01/28/12 17:00	6.21E+02	02/22/12 10:29	YES
05	K-40	TRG	JM-70-31-120128	pCi/g	2.09E+01	4.27E+00	3.52E+00					01/28/12 17:00	6.21E+02	02/22/12 10:29	YES
05	PA-234M	TRG	JM-70-31-120128	pCi/g	1.17E+02	4.22E+01	3.70E+01					01/28/12 17:00	6.21E+02	02/22/12 10:29	YES
05	PB-212	TRG	JM-70-31-120128	pCi/g	2.22E+00	8.06E-01	6.45E-01					01/28/12 17:00	6.21E+02	02/22/12 10:29	NO
05	PB-214	TRG	JM-70-31-120128	pCi/g	1.38E+02	3.21E+01	7.15E-01					01/28/12 17:00	6.21E+02	02/22/12 10:29	YES
05	RA-226	TRG	JM-70-31-120128	pCi/g	1.38E+02	7.54E+00	5.81E-01					01/28/12 17:00	6.21E+02	02/22/12 10:29	YES

Preliminary Data Report & Analytical Calculations

Work Order: 12-01163-Gamma-1

Printed: 2/23/2012 1:06 PM Page 2 of 4

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LSC Known	LCS %R	LCS Flag	RPD Flag	Sample Date	Sample Aliquot	Counting Date/Time	Identified
05	TH-234	TRG	JM-70-31-120128	pCi/g	9.44E+01	1.06E+01	7.57E+00					01/28/12 17:00	6.21E+02	02/22/12 10:29	YES
05	TL-208	TRG	JM-70-31-120128	pCi/g	7.69E-01	6.05E-01	9.59E-01					01/28/12 17:00	6.21E+02	02/22/12 10:29	NO
05	U-235	TRG	JM-70-31-120128	pCi/g	8.98E+00	2.43E+00	2.50E+00					01/28/12 17:00	6.21E+02	02/22/12 10:29	YES
06	AC-228	TRG	JM-88-31-120128	pCi/g	-5.56E-01	1.11E+00	1.82E+00					01/28/12 16:34	4.07E+02	02/22/12 11:07	NO
06	BI-214	TRG	JM-88-31-120128	pCi/g	2.34E+02	1.23E+01	8.57E-01	-				01/28/12 16:34	4.07E+02	02/22/12 11:07	YES
06	K-40	TRG	JM-88-31-120128	pCi/g	2.72E+01	6.59E+00	4.75E+00					01/28/12 16:34	4.07E+02	02/22/12 11:07	YES
06	PA-234M	TRG	JM-88-31-120128	pCi/g	2.07E+02	5.35E+01	5.20E+01					01/28/12 16:34	4.07E+02	02/22/12 11:07	YES
06	PB-212	TRG	JM-88-31-120128	pCi/g	5.67E+00	7.78E-01	1.00E+00					01/28/12 16:34	4.07E+02	02/22/12 11:07	NO
06	PB-214	TRG	JM-88-31-120128	pCi/g	2.42E+02	1.62E+01	1.05E+00					01/28/12 16:34	4.07E+02	02/22/12 11:07	YES
06	RA-226	TRG	JM-88-31-120128	pCi/g	2.34E+02	1.23E+01	8.57E-01					01/28/12 16:34	4.07E+02	02/22/12 11:07	YES
06	TH-234	TRG	JM-88-31-120128	pCi/g	1.93E+02	2.02E+01	1.17E+01					01/28/12 16:34	4.07E+02	02/22/12 11:07	YES
06	TL-208	TRG	JM-88-31-120128	pCi/g	1.75E+00	8.96E-01	1.40E+00					01/28/12 16:34	4.07E+02	02/22/12 11:07	NO
06	U-235	TRG	JM-88-31-120128	pCi/g	1.46E+01	3.24E+00	3.74E+00					01/28/12 16:34	4.07E+02	02/22/12 11:07	YES
07	AC-228	TRG	JM-77-31-120128	pCi/g	1.37E+00	6.91E-01	1.11E+00					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	BI-214	TRG	JM-77-31-120128	pCi/g	8.38E+01	4.74E+00	5.29E-01					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	K-40	TRG	JM-77-31-120128	pCi/g	2.33E+01	4.44E+00	2.80E+00					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	PA-234M	TRG	JM-77-31-120128	pCl/g	1.34E+02	3.41E+01	3.22E+01					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	PB-212	TRG	JM-77-31-120128	pCi/g	1.80E+00	6.85E-01	4.94E-01					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	PB-214	TRG	JM-77-31-120128	pCi/g	8.46E+01	1.97E+01	5.96E-01					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	RA-226	TRG	JM-77-31-120128	pCi/g	8.38E+01	4.74E+00	5.29E-01					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	TH-234	TRG	JM-77-31-120128	pCi/g	1.13E+02	1.14E+01	6.78E+00					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	TL-208	TRG	JM-77-31-120128	pCi/g	1.15E+00	2.94E-01	7.90E-01					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
07	U-235	TRG	JM-77-31-120128	pCi/g	6.95E+00	1.74E+00	2.09E+00					01/28/12 16:55	5.55E+02	02/22/12 11:34	YES
08	AC-228	TRG	JM-65-31-120128	pCi/g	2.75E-01	1.25E+00	2.07E+00					01/28/12 17:02	4.42E+02	02/22/12 12:09	NO
08	BI-214	TRG	JM-65-31-120128	pCi/g	3.17E+02	1.65E+01	9.80E-01					01/28/12 17:02	4.42E+02	02/22/12 12:09	YES
08	K-40	TRG	JM-65-31-120128	pCi/g	2.90E+01	6.68E+00	5.26E+00					01/28/12 17:02	4.42E+02	02/22/12 12:09	YES
08	PA-234M	TRG	JM-65-31-120128	pCi/g	2.51E+02	5.67E+01	5.81E+01					01/28/12 17:02	4.42E+02	02/22/12 12:09	YES
08	PB-212	TRG	JM-65-31-120128	pCi/g	6.44E+00	8.86E-01	1.13E+00					01/28/12 17:02	4.42E+02	02/22/12 12:09	NO
08	PB-214	TRG	JM-65-31-120128	pCi/g	3.32E+02	2.23E+01	1.17E+00					01/28/12 17:02	4.42E+02	02/22/12 12:09	YES
08	RA-226	TRG	JM-65-31-120128	pCi/g	3.17E+02	1.65E+01	9.80E-01					01/28/12 17:02	4.42E+02	02/22/12 12:09	YES
08	TH-234	TRG	JM-65-31-120128	pCi/g	2.13E+02	2.25E+01	1.35E+01					01/28/12 17:02	4.42E+02	02/22/12 12:09	YES
08	TL-208	TRG	JM-65-31-120128	pCi/g	9.98E-01	9.84E-01	1.52E+00					01/28/12 17:02	4.42E+02	02/22/12 12:09	NO
08	U-235	TRG	JM-65-31-120128	pCi/g	1.42E+01	3.63E+00	4.27E+00					01/28/12 17:02	4.42E+02	02/22/12 12:09	YES
09	AC-228	TRG	JM-66-31-120128	pCi/g	6.54E-01	6.00E-01	1.02E+00					01/28/12 17:05	5.88E+02	02/22/12 12:32	NO
09	BI-214	TRG	JM-66-31-120128	pCi/g	1.12E+02	5.62E+00	4.75E-01					01/28/12 17:05	5.88E+02	02/22/12 12:32	YES
09	K-40	TRG	JM-66-31-120128	pCi/g	1.96E+0	3.56E+00	2.55E+00					01/28/12 17:05	5.88E+02	02/22/12 12:32	YES
09	PA-234M	TRG	JM-66-31-120128	pCi/g	3.84E+0	1 2.71E+01	2.88E+01					01/28/12 17:05	5.88E+02	02/22/12 12:32	YES
09	PB-212	TRG	JM-66-31-120128	pCi/g	1.03E+00	3.83E-01	5.14E-01					01/28/12 17:05	5.88E+02	02/22/12 12:32	YES

Preliminary Data Report & Analytical Calculations

Printed: 2/23/2012 1:06 PM

Page 3 of 4

Work Order: 12-01163-Gamma-1

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LSC Known	LCS %R	LCS Flag	RPD Flag	Sample Date	Sample Aliquot	Counting Date/Time	Identified
09	PB-214	TRG	JM-66-31-120128	pCi/g	1.12E+02	7.30E+00	5.97E-01					01/28/12 17:05	5.88E+02	02/22/12 12:32	YES
09	RA-226	TRG	JM-66-31-120128	pCi/g	1.12E+02	5.62E+00	4.75E-01					01/28/12 17:05	5.88E+02	02/22/12 12:32	YES
09	TH-234	TRG	JM-66-31-120128	pCi/g	2.58E+01	6.10E+00	6.80E+00					01/28/12 17:05	5.88E+02	02/22/12 12:32	YES
09	TL-208	TRG	JM-66-31-120128	pCi/g	1.39E+00	5.16E-01	8.07E-01					01/28/12 17:05	5.88E+02	02/22/12 12:32	NO
09	U-235	TRG	JM-66-31-120128	pCi/g	4.69E+00	1.95E+00	2.33E+00					01/28/12 17:05	5.88E+02	02/22/12 12:32	NO
10	AC-228	TRG	JM-73-31-120128	pCi/g	1.71E+00	1.37E+00	1.49E+00					01/28/12 16:57	5.33E+02	02/22/12 12:37	NO
10	BI-214	TRG	JM-73-31-120128	pCi/g	1.46E+02	8.01E+00	6.63E-01					01/28/12 16:57	5.33E+02	02/22/12 12:37	YES
10	K-40	TRG	JM-73-31-120128	pCi/g	1.93E+01	4.61E+00	3.93E+00					01/28/12 16:57	5.33E+02	02/22/12 12:37	YES
10	PA-234M	TRG	JM-73-31-120128	pCl/g	1.03E+02	4.57E+01	4.16E+01					01/28/12 16:57	5.33E+02	02/22/12 12:37	YES
10	PB-212	TRG	JM-73-31-120128	pCi/g	1.80E+00	7.11E-01	7.01E-01					01/28/12 16:57	5.33E+02	02/22/12 12:37	NO
10	PB-214	TRG	JM-73-31-120128	pCi/g	1.46E+02	3.41E+01	7.92E-01					01/28/12 16:57	5.33E+02	02/22/12 12:37	YES
10	RA-226	TRG	JM-73-31-120128	pCi/g	1.46E+02	8.01E+00	6.63E-01					01/28/12 16:57	5.33E+02	02/22/12 12:37	YES
10	TH-234	TRG	JM-73-31-120128	pCi/g	5.70E+01	7.96E+00	7.99E+00					01/28/12 16:57	5.33E+02	02/22/12 12:37	YES
10	TL-208	TRG	JM-73-31-120128	pCi/g	1.14E+00	6.70E-01	1.07E+00					01/28/12 16:57	5.33E+02	02/22/12 12:37	NO
10	U-235	TRG	JM-73-31-120128	pCi/g	6.40E+00	4.52E+00	2.69E+00					01/28/12 16:57	5.33E+02	02/22/12 12:37	YES
11	AC-228	TRG	JM-55-31-120128	pCi/g	1.41E+00	1.16E+00	1.47E+00					01/28/12 17:10	4.11E+02	02/22/12 13:12	NO
11	BI-214	TRG	JM-55-31-120128	pCi/g	1.27E+02	7.90E+00	6.44E-01					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	K-40	TRG	JM-55-31-120128	pCi/g	2.36E+01	4.01E+00	3.54E+00					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	PA-234M	TRG	JM-55-31-120128	pCi/g	8.56E+01	3.73E+01	3.93E+01					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	PB-212	TRG	JM-55-31-120128	pCi/g	9.16E-01	4.88E-01	6.40E-01					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	PB-214	TRG	JM-55-31-120128	pCi/g	1.36E+02	9.16E+00	7.99E-01					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	RA-226	TRG	JM-55-31-120128	pCi/g	1.27E+02	7.90E+00	6.44E-01					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	TH-234	TRG	JM-55-31-120128	pCi/g	8.57E+01	1.12E+01	8.60E+00					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	TL-208	TRG	JM-55-31-120128	pCi/g	6.27E-01	2.40E-01	9.57E-01					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
11	U-235	TRG	JM-55-31-120128	pCi/g	4.26E+00	3.08E+00	2.79E+00					01/28/12 17:10	4.11E+02	02/22/12 13:12	YES
12	AC-228	TRG	JM-82-31-120128	pCi/g	1.08E+00	1.59E+00	2.77E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	NO
12	BI-214	TRG	JM-82-31-120128	pCi/g	1.20E+02	7.43E+00	1.23E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	YES
12	K-40	TRG	JM-82-31-120128	pCi/g	2.33E+01	7.81E+00	7.18E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	YES
12	PA-234M	TRG	JM-82-31-120128	pCi/g	6.98E+01	6.85E+01	7.53E+01					01/28/12 16:45	4.16E+02	02/22/12 13:25	YES
12	PB-212	TRG	JM-82-31-120128	pCi/g	1.04E+01	1.32E+00	1.47E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	NO
12	PB-214	TRG	JM-82-31-120128	pCi/g	1.21E+02	9.97E+00	1.42E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	YES
12	RA-226	TRG	JM-82-31-120128	pCi/g	1.20E+02	7.43E+00	1.23E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	YES
12	TH-234	TRG	JM-82-31-120128	pCi/g	3.65E+01	1.04E+01	1.34E+01					01/28/12 16:45	4.16E+02	02/22/12 13:25	YES
12	TL-208	TRG	JM-82-31-120128	pCi/g	1.98E+00	1.37E+00	2.03E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	NO
12	U-235	TRG	JM-82-31-120128	pCi/g	5.06E+00	3.16E+00	4.66E+00					01/28/12 16:45	4.16E+02	02/22/12 13:25	NO
13	AC-228	TRG	JM-84-31-120128	pCi/g	1.63E+00	3.62E-01	4.40E-01					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	BI-214	TRG	JM-84-31-120128	pCi/g	1.30E+01	8.59E-01	2.21E-01					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	K-40	TRG	JM-84-31-120128	pCi/g	2.02E+01	2.70E+00	1.11E+00					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES

Preliminary Data Report & Analytical Calculations

Work Order: 12-01163-Gamma-1

Printed: 2/23/2012 1:06 PM Page 4 of 4

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LSC Known	LCS %R	LCS Flag	RPD Flag	Sample Date	Sample Aliquot	Counting Date/Time	Identified
13	PA-234M	TRG	JM-84-31-120128	pCi/g	1.98E+01	1.33E+01	1.42E+01	<u></u>				01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	PB-212	TRG	JM-84-31-120128	pCi/g	1.80E+00	2.51E-01	2.24E-01					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	PB-214	TRG	JM-84-31-120128	pCi/g	1.34E+01	9.56E-01	2.75E-01					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	RA-226	TRG	JM-84-31-120128	pCi/g	1.30E+01	8.59E-01	2.21E-01					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	TH-234	TRG	JM-84-31-120128	pCi/g	1.23E+01	2.54E+00	3.04E+00					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	TL-208	TRG	JM-84-31-120128	pCi/g	1.46E+00	2.71E-01	3.59E-01					01/28/12 16:38	4.64E+02	02/22/12 13:38	YES
13	U-235	TRG	JM-84-31-120128	pCi/g	7.63E-01	6.77E-01	1.03E+00					01/28/12 16:38	4.64E+02	02/22/12 13:38	NO
14	AC-228	TRG	JM-54-31-120128	pCi/g	1.37E+00	1.27E+00	1.72E+00					01/28/12 17:12	3.77E+02	02/22/12 13:40	NO
14	BI-214	TRG	JM-54-31-120128	pCi/g	1.36E+02	7.63E+00	7.47E-01					01/28/12 17:12	3.77E+02	02/22/12 13:40	YES
14	K-40	TRG	JM-54-31-120128	pCi/g	2.53E+01	5.97E+00	4.34E+00					01/28/12 17:12	3.77E+02	02/22/12 13:40	YES
14	PA-234M	TRG	JM-54-31-120128	pCi/g	3.59E+01	2.93E+01	5.08E+01					01/28/12 17:12	3.77E+02	02/22/12 13:40	NO
14	PB-212	TRG	JM-54-31-120128	pCi/g	1.23E+00	6.42E-01	6.86E-01					01/28/12 17:12	3.77E+02	02/22/12 13:40	YES
14	PB-214	TRG	JM-54-31-120128	pCi/g	1.39E+02	3.24E+01	8.70E-01					01/28/12 17:12	3.77E+02	02/22/12 13:40	YES
14	RA-226	TRG	JM-54-31-120128	pCi/g	1.36E+02	7.63E+00	7.47E-01					01/28/12 17:12	3.77E+02	02/22/12 13:40	YES
14	TH-234	TRG	JM-54-31-120128	pCi/g	2.35E+01	7.93E+00	8.47E+00					01/28/12 17:12	3.77E+02	02/22/12 13:40	YES
14	TL-208	TRG	JM-54-31-120128	pCi/g	5.92E-01	7.09E-01	1.25E+00					01/28/12 17:12	3.77E+02	02/22/12 13:40	NO
14	U-235	TRG	JM-54-31-120128	pCl/g	4.53E+00	2.50E+00	2.97E+00					01/28/12 17:12	3.77E+02	02/22/12 13:40	NO
15	AC-228	TRG	JMBKGD-NW-31-120128	pCi/g	1.67E+00	3.53E-01	3.90E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	YES
15	BI-214	TRG	JMBKGD-NW-31-120128	pCi/g	2.74E+00	3.31E-01	2.19E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	YES
15	K-40	TRG	JMBKGD-NW-31-120128	pCi/g	2.77E+01	3.83E+00	8.89E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	YES
15	PA-234M	TRG	JMBKGD-NW-31-120128	pCi/g	5.25E+00	7.92E+00	1.48E+01					01/28/12 09:10	3.45E+02	02/22/12 14:13	NO
15	PB-212	TRG	JMBKGD-NW-31-120128	pCi/g	2.11E+00	2.68E-01	4.00E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	NO
15	PB-214	TRG	JMBKGD-NW-31-120128	pCi/g	2.93E+00	2.95E-01	2.17E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	YES
15	RA-226	TRG	JMBKGD-NW-31-120128	pCi/g	2.74E+00	3.31E-01	2.19E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	YES
15	TH-234	TRG	JMBKGD-NW-31-120128	pCi/g	6.09E+00	3.03E+00	2.29E+00					01/28/12 09:10	3.45E+02	02/22/12 14:13	YES
15	TL-208	TRG	JMBKGD-NW-31-120128	pCi/g	1.87E+00	3.69E-01	6.26E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	NO
15	U-235	TRG	JMBKGD-NW-31-120128	pCi/g	1.77E-01	4.28E-01	7.26E-01					01/28/12 09:10	3.45E+02	02/22/12 14:13	NO
16	AC-228	TRG	JMBKGD-NE-31-120128	pCi/g	1.41E+00	5.16E-01	7.59E-01					01/28/12 09:41	3.69E+02	02/22/12 14:26	YES
16	BI-214	TRG	JMBKGD-NE-31-120128	pCi/g	2.64E+00	5.22E-01	3.71E-01					01/28/12 09:41	3.69E+02	02/22/12 14:26	YES
16	K-40	TRG	JMBKGD-NE-31-120128	pCi/g	1.61E+01	3.58E+00	2.11E+00					01/28/12 09:41	3.69E+02	02/22/12 14:26	YES
16	PA-234M	TRG	JMBKGD-NE-31-120128	pCi/g	5.52E+00	1.21E+01	2.36E+01					01/28/12 09:41	3.69E+02	02/22/12 14:26	NO
16	PB-212	TRG	JMBKGD-NE-31-120128	pCi/g	1.05E+00	2.42E-01	4.31E-01					01/28/12 09:41	3.69E+02	02/22/12 14:26	NO
16	PB-214	TRG	JMBKGD-NE-31-120128	pCi/g	2.41E+00	4.80E-01	3.64E-01					01/28/12 09:41	3.69E+02	02/22/12 14:26	YES
16	RA-226	TRG	JMBKGD-NE-31-120128	pCi/g	2.64E+00	5.22E-01	3.71E-01					01/28/12 09:41	3.69E+02	02/22/12 14:26	YES
16	TH-234	TRG	JMBKGD-NE-31-120128	pCi/g	2.70E+00	2.66E+00	3.09E+00					01/28/12 09:41	3.69E+02	02/22/12 14:26	YES
16	TL-208	TRG	JMBKGD-NE-31-120128	pCi/g	4.48E-01	3.69E-01	6.89E-01					01/28/12 09:41	3.69E+02	02/22/12 14:26	NO
16	U-235	TRG	JMBKGD-NE-31-120128	pCi/g	4.53E-02	6.19E-01	1.05E+00					01/28/12 09:41	3.69E+02	02/22/12 14:26	NO

Count Room Report Client: Weston Solutions, Inc.

12-01163-Gamma-1 (pCi/g) in SO Tracer ID:

Printed: 2/1/2012 8:39 AM Page 1 of 1

The golid

Internal Fraction	Sample /Desc	Client ID	Sample Date	Sample Aliquot	Tracer Aliquot (g)	Tracer ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	SAF 1*	SAF 2*
_94	LCS	LCS	01/31/12 00:00	1.0000				0.00		
_02	MBL	BLANK	01/31/12 00:00	1.0000				0.00		
108	DUP	JM-70-32-120128	01/28/12 17:00	579.9900			WALL STATE OF THE	0.00		
94	DO	JM-70-32-120128	01/28/12 17:00	579.9900		_		0.00		
25	TRG	JM-70-31-120128	01/28/12 17:00	621.0100				0.00		
26	TRG	JM-88-31-120128	01/28/12 16:34	407.1000				0.00		
,07	TRG	JM-77-31-120128	01/28/12 16:55	554.6300	:			0.00		
08	TRG	JM-65-31-120128	01/28/12 17:02	442.2600				0.00		
,08/	TRG	JM-66-31-120128	01/28/12 17:05	587.9300				0.00		
10/	∕ TRG	JM-73-31-120128	01/28/12 16:57	533.0100				0.00		
11/	TRG	JM-55-31-120128	01/28/12 17:10	410.8900		ALL		0.00		
1/2	TRG	JM-82-31-120128	01/28/12 16:45	416.3800				0.00		
18	TRG	JM-84-31-120128	01/28/12 16:38	463.6400				0.00		
1/	TRG	JM-54-31-120128	01/28/12 17:12	376.8100				0.00		
1/5	TRG	JMBKGD-NW-31-120128	01/28/12 09:10	345.2500				0.00		
1/6	TRG	JMBKGD-NE-31-120128	01/28/12 09:41	369.0000				0.00		

Aliquot Worksheet

Printed: 2/1/2012 8:39 AM

Page 1 of 1

Work Order	Run	Analysis Code	Rpt Units	Lab Deadline	Technician
12-01163	1	Gamma	grams	2/21/2012	KSALLINGS

Lab	Weston Solutions, Inc.	Sample	Muffle Data		Dilution Data		Aliquo	t Data	MS Alie	quot Data	H-3 Solid	ds Only
raction	Client ID	Туре	Ratio Post/Pre	No of Dils	Dil Factor	Ratio	Aliquot	Net Equiv	Aliquot	Net Equiv	Water Added (ml)	H3 Dist Aliq
01	LCS	LCS					1.0000E+00				,	
02	BLANK	MBL					1.0000E+00	1.0000E+00				
03	JM-70-32-120128	DUP					5.7999E+02	5.7999E+02				
04	JM-70-32-120128	DO					5.7999E+02	5.7999E+02				
05	JM-70-31-120128	TRG					6.2101E+02	6.2101E+02				
06	JM-88-31-120128	TRG			115, 121, 1		4.0710E+02	4.0710E+02				
07	JM-77-31-120128	TRG					5.5463E+02	5.5463E+02				
08	JM-65-31-120128	TRG					4.4226E+02	4.4226E+02				
09	JM-66-31-120128	TRG					5.8793E+02	5.8793E+02				
10	JM-73-31-120128	TRG					5.3301E+02	5.3301E+02				
11	JM-55-31-120128	TRG					4.1089E+02	4.1089E+02				
12	JM-82-31-120128	TRG					4.1638E+02	4.1638E+02				
13	JM-84-31-120128	TRG					4.6364E+02	4.6364E+02				
14	JM-54-31-120128	TRG					3.7681E+02	3.7681E+02				
15	JMBKGD-NW-31-120128	TRG					3.4525E+02	3.4525E+02				
16	JMBKGD-NE-31-120128	TRG					3.6900E+02	3.6900E+02				
					333 e 6 % R							

Comments			
	ļ		

Technician: Kerry Scery Date: 211 1/2

Eberline Services - Oak Ridge Prep Logbook Version 2.0 8/1999

Rough Sample Preparation Log Book

Printed: 2/1/2012 8:14 AM

Page 1 of 1

Work Order	Lab Deadline	Date Received in Prep	Date Sealed	Date Returned	Technician	
12-01163	2/21/2012	1/31/2012	2/1/2012	2/2/2012	KSALLINGS	

Eberline	Weston Solutions, Inc.	Tare (g)	Gross (g)		Net (g)		Percent		Gamma		Special
Fraction	Client ID	Pan Wt	Wet Wt.	Dry Wt.	Wet Wt.	Dry Wt.	Liquid	Solid	Dry Wt.	LEPS Wt.	info
04	JM-70-32-120128	13.9700	757.5700	631.3000	743.6000	617.3300	16.98%	83.02%			
05	JM-70-31-120128	13.9100	772.3000	649.9700	758.3900	636.0600	16.13%	83.87%			
06	JM-88-31-120128	13.9800	517.0000	439.4700	503.0200	425.4900	15.41%	84.59%			
07	JM-77-31-120128	13.9900	738.4400	591.2900	724.4500	577.3000	20.31%	79.69%			
08	JM-65-31-120128	13.9800	540.9800	475.5900	527.0000	461.6100	12.41%	87.59%			
09	JM-66-31-120128	13.9800	796.6400	664.7800	782.6600	650.8000	16.85%	83.15%			
10	JM-73-31-120128	13.9700	684.4000	608.0800	670.4300	594.1100	11.38%	88.62%			
11	JM-55-31-120128	14.0200	463.0600	429.1300	449.0400	415.1100	7.56%	92.44%			
12	JM-82-31-120128	14.1100	485.7900	441.4600	471.6800	427.3500	9.40%	90.60%			
13	JM-84-31-120128	14.0600	664.5800	491.3400	650.5200	477.2800	26.63%	73.37%			
14	JM-54-31-120128	14.0100	447.3400	396.1600	433.3300	382.1500	11.81%	88.19%			
15	JMBKGD-NW-31-120128	14.0800	394.9900	363.6700	380.9100	349.5900	8.22%	91.78%			
16	JMBKGD-NE-31-120128	14.1800	437.8700	390.6400	423.6900	376.4600	11.15%	88.85%			

Comments	
Special Codes	H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments)

Technician: Kenny Sces

Date: Analysis: Rough Prep Logbook

Analysis: Gamma Page No. 7991

Page: 1

Acquisition date : 22-FEB-2012 09:50:01 Sample ID : 1201163-01

VAX/VMS Peak Search Report Generated 22-FEB-2012 10:20:39.89

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116301_GE1_GAS1102_176232.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{\text{V2}}$.2 Client ID : GAS-1002

Deposition Date :

Sample Date : 1-JAN-2010 00:00:00. Acquisition date : 22-FEB-2012 09:50:01

Sample Quantity : 7.36000E+02 GRAM

Sample ID : 1201163-01
Sample type : SOLID
Detector name : GE1 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 00:30:26.07 1.4% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 00:30:00.00

Start channel : 5
Sensitivity : 2.40000
Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	32.22	1476	6695	1.30	31.85	30	6 18.3		
2	50.66	5290	10285	1.66	50.29	45		1.10E+03	
2	59.66	83093	10165	1.68	59.29	45	21 0.8		AM-241
9	86.23	1641	10511	3.14	85.87	83	9 20.6	6.32E+00	NP-237
9	88.43	42178	7097	1.35	88.06	83	9 1.1		SN-126
									CD-109
0	107.90	329	5635	3.52	107.54	105	6 73.1		
0	122.45	9535	7859	1.31	122.09	118	8 3.8		CO-57
0	137.03	1241	6508	1.93	136.68	133	8 23.2		CO-57
0	166.22	1583	6054	1.33	165.87	162	8 17.8		CE-139
0	211.65	155	3843	1.46	211.31	209	5120.6		
0	239.71*	273	4292	1.54	239.37	237	6 76.9		PB-212
									RA-224
0	311.88	233	2904	3.81	311.56	309	6 74.3		
0	392.25	651	3598	1.64	391.94	388	8 32.9		SN-113
0	437.95	159	3242	1.59	437.66	435	7119.5		
0	446.32	159	2864	5.18	446.02	444	6107.3		
0	511.86*	128	1965	1.89		509	6111.7		
0	535.44*	140	2062	1.71	535.17	532	7108.8		
4	662.11	29214	1331	1.73		656		7.26E+00	CS-137
4	665.48	900	2008	2.72	665.24	656	14 42.0		
0	770.84	194	1438	2.13		768	7 66.3		
0	898.84	676	3226	2.10	898.64	894	11 33.4		Y-88
3	1173.76*	27206	601		1173.62			4.87E+00	CO-60
3	1177.44	918	715		1177.30	1167	23 36.7		
0	1302.23	66	168		1302.11		7 69.1		
2		24931	183		1332.93	1327		6.72E+00	CO-60
2	1336.82	714	170		1336.72	1327	17 38.3		
0	1384.81	32	107		1384.71	1381	8117.8		
0	1454.96	22	55		1454.88	1453	5113.5		
0	1658.64	25	47		1658.60	1655	7 98.7		
0	1720.52	20	28		1720.49	1718	6 95.3		
0	1836.51	379	75		1836.51	1829	15 14.3		Y-88
1	1851.00	15	4		1851.00	1850		3.16E+00	
1	1856.00	22	28		1856.00	1850	11 91.7		
0	1913.72	25	51	4.66	1913.73	1909	10114.8		
					α				

Post-NID Peak Search Report (continued) Page: 2 Sample ID: 1201163-01 Acquisition date: 22-FEB-2012 09:50:01

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	1955.05	15	28	2.98	1955.07	1953	6124.0		
4	2036.07	24	43	3.51	2036.11	2031	12117.1	1.43E+00	
4	2039.91	14	16	2.57	2039.95	2031	12124.3		
0	2110.79	16	31	2.03	2110.84	2107	7125.8		
0	2130.56	26	33	3.46	2130.62	2126	11 94.1		
0	2141.18	16	21	1.22	2141.25	2137	9120.5		
0	2152.59	29	27	2.81	2152.66	2147	9 74.5		
5	2201.93	14	19	2.45	2202.00	2198	15125.2	2.27E+00	
5	2208.04	17	32	3.94	2208.11	2198	15138.8		
0	2358.95	10	. 8	1.69	2359.05	2357	5102.9		
0	2506.15	399	20	2.36	2506.29	2500	13 11.0		
0	2615.15*	30	2	2.90	2615.31	2611	10 42.4		
0	2734.19	8	0	3.31	2734.38	2731	7 70.7		

Summary of Nuclide Activity

Acquisition date : 22-FEB-2012 09:50:01 Sample ID : 1201163-01

47

Total number of lines in spectrum

Number of unidentified lines 27

Number of lines tentatively identified by NID 20 42.55%

Nuclide Type : FISSION

	- 1 L						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flag:	s
CO-57	270.90D	7.40	8.366E+00	6.194E+01	0.634E+01	10.23	
Y-88	106.60D	162.	1.836E+00	2.975E+02	0.451E+02	15.17	
CD-109	464.00D	3.22	7.891E+02	2.540E+03	0.314E+03	12.35	
SN-113	115.10D	111.	1.450E+00	1.613E+02	0.553E+02	34.26	
SN-126	1.00E+05Y	1.00	7.931E+01	7.931E+01	0.855E+01	10.77	
CS-137	30.17Y	1.05	7.543E+01	7.923E+01	0.812E+01	10.25	
CE-139	137.66D	51.4	1.643E+00	8.447E+01	1.680E+01	19.89	
NP-237	2.14E+06Y	1.00	9.051E+00	9.051E+00	2.098E+00	23.19	

Total Activity: 9.662E+02 3.312E+03

Total Activity: 9.448E+01 1.252E+02

Nuclide Type : ACTIVATION

Nuclide CO-60	Hlife 5.27Y	-	pCi/GRAM 9.448E+01	pCi/GRAM 1.252E+02	2-Sigma Error 0.081E+02	%Error 6.49	Flags
			Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr		

Nuclide Type : NATURAL

	-		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
PB-212	1.41E+10Y	1.00	6.245E-01	6.245E-01	4.838E-01	77.47
RA-224	1.41E+10Y	1.00	7.095E+00	7.095E+00	5.496E+00	77.47
AM-241	432.20Y	1.00	1.658E+02	1.664E+02	0.136E+02	8.18
	Total Acti	lvity :	1.735E+02	1.741E+02		

Grand Total Activity: 1.234E+03 3.612E+03

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted
"A" = Nuclide specific abn. limit

Page: 3

Page: 4
Acquisition date: 22-FEB-2012 09:50:01

Nuclide Line Activity Report Sample ID: 1201163-01

Nuclide	Type: FISS	ION		
Nuclide CO-57	Energy 122.06 136.48	%Abn 85.51* 10.60	%Eff 2.753E+00 2.653E+00	Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Status 8.263E+00 6.118E+01 11.16 OK 9.005E+00 6.667E+01 25.51 OK
	Final Mean	for 2	Valid Peaks	= 6.194E+01+/- 6.335E+00 (10.23%)
Y-88	898.02 1836.01	93.40 99.38*	7.253E-01 4.323E-01	2.035E+00 3.297E+02 34.59 OK 1.800E+00 2.915E+02 16.85 OK
	Final Mean	for 2	Valid Peaks	= 2.975E+02+/- 4.512E+01 (15.17%)
CD-109	88.03	3.72*	2.931E+00	7.891E+02 2.540E+03 12.35 OK
	Final Mean	for 1	Valid Peaks	= 2.540E+03+/- 3.135E+02 (12.35%)
SN-113				Line Not Found Absent 1.450E+00 1.613E+02 34.26 OK
	Final Mean	for 1	Valid Peaks	= 1.613E+02+/- 5.527E+01 (34.26%)
SN-126	87.57	37.00*	2.932E+00	7.931E+01 7.931E+01 10.77 OK
	Final Mean	for 1	Valid Peaks	= 7.931E+01+/- 8.545E+00 (10.77%)
CS-137	661.65	85.12*	9.283E-01	7.543E+01 7.923E+01 10.25 OK
	Final Mean	for 1	Valid Peaks	= 7.923E+01+/- 8.119E+00 (10.25%)
CE-139	165.85	80.35*	2.445E+00	1.643E+00 8.447E+01 19.89 OK
	Final Mean	for 1	Valid Peaks	= 8.447E+01+/- 1.680E+01 (19.89%)
NP-237	86.50	12.60*	2.935E+00	9.051E+00 9.051E+00 23.19 OK
	Final Mean	for 1	Valid Peaks	= 9.051E+00+/- 2.098E+00 (23.19%)
Nuclide	Type: ACTI	VATION		
Nuclide CO-60	Energy 1173.22	%Abn 100.00*	%Eff	Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Status 9.417E+01 1.248E+02 9.19 OK 9.479E+01 1.256E+02 9.17 OK
	Final Mean	for 2	Valid Peaks	= 1.252E+02+/- 8.127E+00 (6.49%)

Nuclide Line Activity Report (continued) Page: 5
Sample ID: 1201163-01 Acquisition date: 22-FEB-2012 09:50:01

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Status %Eff %Abn Nuclide Energy 77.47 OK PB-212 238.63 44.60* 2.000E+00 6.245E-01 6.245E-01 1.716E+00 ---- Line Not Found ----Absent 300.09 3.41 Final Mean for 1 Valid Peaks = 6.245E-01+/-4.838E-01 (77.47%) RA-224 240.98 3.95* 1.987E+00 7.095E+00 7.095E+00 77.47 OK Final Mean for 1 Valid Peaks = 7.095E+00+/-5.496E+00 (77.47%) 59.54 35.90* 2.848E+00 1.658E+02 1.664E+02 8.18 AM-241

Final Mean for 1 Valid Peaks = 1.664E+02+/-1.360E+01 (8.18%)

Flag: "*" = Keyline

Page: 6
Acquisition date: 22-FEB-2012 09:50:01

---- Identified Nuclides ----

Nuclide	Activity (pCi/GRAM)	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
CO-57	6.194E+01	6.335E+00	1.990E+00	1.929E-01	31.124
CO-60	1.252E+02	8.127E+00	5.677E-01	4.642E-02	220.554
Y-88	2.975E+02	4.512E+01	2.802E+01	2.229E+00	10.617
CD-109	2.540E+03	3.135E+02	2.456E+01	2.855E+00	103.403
SN-113	1.613E+02	5.527E+01	5.541E+01	4.894E+00	2.912
SN-126	7.931E+01	8.545E+00	7.668E-01	7.622E-02	103.427
CS-137	7.923E+01	8.119E+00	4.838E-01	4.525E-02	163.769
CE-139	8.447E+01	1.680E+01	1.475E+01	1.184E+00	5.725
PB-212	6.245E-01	4.838E-01	6.306E-01	5.164E-02	0.990
RA-224	7.095E+00	5.496E+00	7.043E+00	5.767E-01	1.007
NP-237	9.051E+00	2.098E+00	2.249E+00	2.207E-01	4.025
AM-241	1.664E+02	1.360E+01	8.589E-01	6.083E-02	193.736

---- Non-Identified Nuclides ----

Non-Identified Nuclides									
Nuclide	Key-Line Activity K.L. (pCi/GRAM) Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA				
NA-22	-1.834E-02	2.675E-01	4.483E-01	3.669E-02	-0.041				
AL-26	-2.271E-02	9.651E-02	1.611E-01	1.287E-02	-0.141				
K-40	2.803E-01	1.225E+00	1.910E+00	1.619E-01	0.147				
TI-44	1.500E-01	2.227E-01	3.376E-01	2.645E-02	0.444				
MN-54	3.620E-01	1.657E+00	2.789E+00	2.368E-01	0.130				
ZN-65	3.277E+00	6.425E+00	1.071E+01	8.787E-01	0.306				
SE-75	-2.233E+01	2.742E+01	4.266E+01	3.510E+00	-0.524				
KR-85	4.102E+01	6.116E+01	9.524E+01	8.577E+00	0.431				
NB-93M	-1.471E+02	3.350E+01	4.502E-01	1.002E-01	-326.856				
NB-94	-2.605E-03	3.123E-01	5.224E-01	4.270E-02	-0.005				
RU-106	-4.931E+00	9.757E+00	1.641E+01	2.272E+00	-0.301				
AG-108M	-2.125E-01	2.636E-01	4.374E-01	4.005E-02	-0.486				
AG-110M	1.301E+01	3.033E+00	4.544E+00	4.243E-01	2.864				
TE123M	-3.024E+00	1.681E+01	2.479E+01	2.061E+00	-0.122				
SB-125	5.501E-01	1.217E+00	2.104E+00	1.851E-01	0.261				
I-129	-8.262E+01	9.335E+00	6.056E-01	6.358E-02	-136.434				
BA-133	-2.372E-01	3.469E-01	5.931E-01	7.698E-02	-0.400				
CS-134	-4.689E-01	4.600E-01	7.652E-01	7.131E-02	-0.613				
CS-135	7.760E-02	1.102E+00	1.742E+00	1.418E-01	0.045				
LA-138	2.512E-02	1.752E-01	3.004E-01	2.469E-02	0.084				
CE-144	-5.760E+00	9.178E+00	1.349E+01	1.246E+00	-0.427				
PM-144	3.458E-01	1.030E+00	1.753E+00	2.590E-01	0.197				
PM-145	-1.493E+00	1.355E+00	1.410E+00	9.198E-01	-1.058				
PM-146	2.508E-01	8.242E-01	1.279E+00	1.111E-01	0.196				
EU-152	-2.146E-01	8.903E-01	1.484E+00	1.572E-01	-0.145				
GD-153	-1.380E+00	6.196E+00	9.246E+00	9.047E-01	-0.149				
EU-154	-3.896E-02	5.037E-01	8.435E-01	6.903E-02	-0.046				
EU-155	4.979E+00 +	1.154E+00	2.761E+00	2.710E-01	1.803				
HO-166M	1.933E-02	4.335E-01	7.341E-01	6.754E-02	0.026				
HF-172	1.189E+01	3.273E+00	4.762E+00	4.530E-01	2.497				
LU-173	-1.311E-01	2.459E+00	3.877E+00	3.150E-01	-0.034				

Combined Activity-MDA Report (continued) Page: 7
Sample ID: 1201163-01 Acquisition date: 22-FEB-2012 09:50:01

---- Non-Identified Nuclides ----

Nuclide		.L. Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
	_				2 226
LU-176	-1.013E-01	2.112E-01	3.018E-01	2.476E-02	-0.336
TA-182	-3.814E+01	1.075E+02	1.765E+02	1.445E+01	-0.216
BI-207	-6.986E-02	2.228E-01	3.780E-01	3.483E-02	-0.185
TL-208	4.213E-01	7.031E-01	1.209E+00	1.118E-01	0.349
BI-210M	-2.270E-02	3.916E-01	6.180E-01	5.041E-02	-0.037
PB-210	6.492E+01	7.949E+00	9.414E+00	7.266E-01	6.896
PB-211	5.666E+00	6.790E+00	1.180E+01	9.811E-01	0.480
BI-212	1.509E-01	2.015E+00	3.410E+00	3.117E-01	0.044
BI-214	2.145E-01	4.743E-01	8.132E-01	7.563E-02	0.264
PB-214	-8.224E-02	4.825E-01	8.344E-01	6.901E-02	-0.099
RN-219	4.811E-01	2.990E+00	5.168E+00	4.284E-01	0.093
RA-223	4.721E+00	4.810E+00	7.637E+00	6.298E-01	0.618
RA-226	2.283E+00	6.350E+00	7.691E+00	1.408E+01	0.297
TH-227	-9.041E-01	1.692E+00	2.442E+00	1.999E-01	-0.370
AC-228	8.398E-01	1.268E+00	2.132E+00	1.695E-01	0.394
TH-230	3.064E+01	5.540E+01	8.396E+01	6.561E+00	0.365
PA-231	2.108E+00	7.902E+00	1.247E+01	1.022E+00	0.169
TH-231	-4.789E+02	6.196E+01	8.995E+00	1.099E+00	-53.243
PA-234	-4.129E-01	7.211E-01	1.061E+00	9.898E-02	-0.389
PA-234M	1.321E+00	3.727E+01	6.196E+01	5.022E+00	0.021
TH-234	4.377E+01	6.392E+00	9.061E+00	6.714E-01	4.830
U-235	-1.625E-01	1.418E+00	2.100E+00	3.703E-01	-0.077
AM-243	-2.383E-01	2.863E-01	4.621E-01	3.933E-02	-0.516
CM-243	6.106E-01	1.344E+00	2.132E+00	1.728E-01	0.286

Page: 8 Summary of Nuclide Activity Acquisition date : 22-FEB-2012 09:50:01 Sample ID : 1201163-01

47 Total number of lines in spectrum Number of unidentified lines 27

Number of lines tentatively identified by NID 20 42.55%

Nuclide Type : FISSION

	11		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
CO-57	270.90D	7.40	8.366E+00	6.194E+01	0.634E+01	10.23
Y-88	106.60D	162.	1.836E+00	2.975E+02	0.451E+02	15.17
CD-109	464.00D	3.22	7.891E+02	2.540E+03	0.314E+03	12.35
SN-113	115.10D	111.	1.450E+00	1.613E+02	0.553E+02	34.26
SN-126	1.00E+05Y	1.00	7.931E+01	7.931E+01	0.855E+01	10.77
CS-137	30.17Y	1.05	7.543E+01	7.923E+01	0.812E+01	10.25
CE-139	137.66D	51.4	1.643E+00	8.447E+01	1.680E+01	19.89
NP-237	2.14E+06Y	1.00	9.051E+00	9.051E+00	2.098E+00	23.19
	Matal 7at		0 6600.00	2 2125.02		

Total Activity: 9.662E+02 3.312E+03

Nuclide Type : ACTIVATION

			Wtd Mean Uncorrected	Decay Corr	Decay Corr		
Nuclide CO-60	Hlife 5.27Y	-	pCi/GRAM 9.448E+01	pCi/GRAM 1.252E+02	2-Sigma Error 0.081E+02	%Error 6.49	Flags

Total Activity : 9.448E+01 1.252E+02

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
PB-212	1.41E+10Y	1.00	6.245E-01	6.245E-01	4.838E-01	77.47
RA-224	1.41E+10Y	1.00	7.095E+00	7.095E+00	5.496E+00	77.47
AM-241	432.20Y	1.00	1.658E+02	1.664E+02	0.136E+02	8.18
	Total Acti	ivity:	1.735E+02	1.741E+02		

Grand Total Activity: 1.234E+03 3.612E+03

"M" = Manually accepted
"A" = Nuclide specific abn. limit Flags: "K" = Keyline not found
"E" = Manually edited

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116301_GE1_GAS1102_176232.CNF; 1

Title :

Sample Title: GAS-1002

Start Time: 22-FEB-2012 09:50 Sample Time: 1-JAN-2010 00:00: Energy Offset: 3.84457E-01

Channel

٦.	0	0	0	0	0	0	0	0
1: 9:	0	0	0	0	0	0	. 0	. 0
17:	2	12	1593	4171	20888	87608	21140	10726
25:	27626	8145	2157	1178	1247	1061	1259	2381
33:	1530	1050	890	1292	1207	1087	1124	1187
41:	1337	1493	1788	1982	2143	2334	2754	3637
49:	4683	5085	4652	4766	4681	4844	4899	5437
57:	6120	8301	47396	40138	3628	2366	2541	2490
65:	1949	2086	2210	2201	2112	2175	2039	2179
73:	1994	2148	2084	2057	2180	2126	2031	2014
81:	2087	2186	2233	2417	2396	2641	7587	30991
89:	9120	1477	1338	1500	1289	1016	973	936
97:	900	972	1010	978	971	989	976	965
105:	962	1018	1035	1025	982	942	902	1017
113:	980	928	925	985	1029	954	983	1100
121:	1968	7470	2999	973	947	1001	928	802
129:	857	837	820	828	780	806	839	1391
137:	1400	854	841	838	804	768	839	783
145:	779	836	823	733	730	773	736	768
153:	746	775	742	759	786	729	742	740
161:	740	751	742	752	1094	1835	938 713	799 720
169: 177:	726 741	806 736	738	751	760	703 740	713 714	720 773
185:	832	736 772	737 786	717 813	736 822	803	71 4 798	807
193:	754	775	763	759	762	739	789	768
201:	740	775 795	799	796	762 766	733 722	751	744
209:	735	792	864	804	803	774	852	823
217:	800	837	817	869	830	852	793	792
225:	817	807	791	767	804	709	760	749
233:	774	723	696	739	704	798	865	719
241:	762	728	694	722	666	737	647	669
249:	635	654	627	623	629	649	696	623
257:	613	671	606	651	645	577	583	624
265:	582	601	599	590	603	589	572	598
273:	571	568	596	546	614	601	580	563
281:	580	565	580	549	559	541	531	566
289:	533	559	523	544	539	471	533	590
297:	550	517	569	569	527	549	503	493
305:	537	467	517	505	484	557	559	510
313:	537	490	463	528	503	494	500	446
321:	528	472	484	532	511	515	474	479
329: 337:	478 466	496	493	453	490	481	488	474
345:	470	483 479	483 486	497 492	487 474	460 483	501 473	458 540
353:	468	434	480	492	474	455	473 455	495
361:	482	421	465	458	473	490	496	472
369:	487	446	481	469	458	453	462	468
377:	479	449	482	478	432	407	453	492
385:	445	441	440	437	449	462	614	795
393:	546	471	475	443	425	436	421	434
401:	480	404	503	475	476	417	500	433
409:	453	440	464	484	446	480	461	439
417:	421	473	500	453	463	480	451	445
425:	487	487	467	474	440	481	484	469

433:	426	434	466	466	495	537	483	481
441:	473	473	448	496	514	515	511	504
449:	483	479	522	519	495	486	465	519
457:	498	480	500	506	491	514	556	517
465:	511	462	518	476	481	525	450	513
473:	489	433	479	469	434	451	438	394
	401					360	370	407
481:		366	373	428	403			350
489:	353	367	362	398	355	367	351	
497:	356	346	371	350	376	353	305	349
505:	317	316	352	356	365	355	378	393
513:	326	320	290	343	365	328	305	301
521:	329	324	338	314	330	320	331	322
529:	306	322	308	300	313	327	355	311
537:	292	305	270	291	314	289	325	276
545:	246	313	301	244	304	281	291	325
553:	295	279	307	279	271	277	307	252
561:	267	283	271	302	319	268	259	278
569:	274	280	258	271	279	235	254	281
577:	221	252	266	261	282	272	280	265
585:	292	283	293	294	264	267	271	279
593:	274	291	260	248	260	253	266	299
601:	241	247	277	271	246	246	250	263
609:	287	303	261	268	248	264	264	258
617:	269	261	239	236	256	260	261	250
625:	284	251	240	249	238	293	254	233
633:	269	258	251	281	263	259	247	262
641:	272	238	280	250	247	279	256	258
649:	268	269	270	280	270	263	303	259
657:	269	264	375	972	8019	16192	4924	674
665:	505	518	366	238	245	247	223	217
673:	251	244	218	231	252	255	225	236
681:	223	228	234	248	246	247	212	235
689:	225	237	201	246	232	253	225	238
697:	205	228	234	231	215	216	229	241
705:	242	221	236	218	238	231	225	242
713:	209	218	223	249	212	250	222	216
721:	202	244	202	221	203	228	250	221
729:	218	247	221	241	232	208	219	225
737:	222	249	240	248	213	238	240	234
745:	205	245	230	201	230	254	197	224
753:	219	226	211	231	232	227	237	216
761:	227	249	239	213	254	216	190	193
769:	241	271	238	232	244	213	219	225
777:	239	260	224	238	229	229	249	198
785:	229	250	202	225	236	228	215	255
793:	231	240	273	221	246	247	246	241
801:	249	264	249	255	236	211	252	257
809:	259	238	249		254		247	241
817:	256	250 250	246	247			247 271	261
825:	275	271	238 275	236	281	282	240	304
833:	261	246		251	271	263	268	241
841:	269		279	274	220	260		
849:	268	277	252	239	303	245	263	275
849: 857:	268 268	278	277	257 276	247	274	264	254
865:	268 259	274	241	276	283	261	255	299
873:	259 285	276	266	267	240	296	266	289
873: 881:	285 261	274	298	270	278		276	296
881: 889:	261	275	287	272	273	291	306	322
889: 897:	260 361	311	289	313	308	260	269	342
897: 905:	313	568 309	519	343	327	303	321	289
JUD:	213	309	325	332	301	321	347	330

913:	316	332	293	306	317	343	322	338
921:	319	324	314	306	321	334	358	334
929:	325	352	324	302	355	320	326	347
937:	364	339	350	358	329	313	324	352
945:	338	352	337	356	343	334	390	332
953:	402	335	340	374	352	346	365	335
961:	328	372	307	290	300	314	312	285
969:	304	295	296	293	290	264	270	244
977:	279	275	290	277	246	291	257	265
985:	245	281	282	251	274	252	256	246
993:	221	270	249	246	270	257	272	235
1001:	277	253	239	245	270	227	261	240
1009:	217	230	231	249	226	227	250	286
1017:	240	245	254	233	282	235	286	237
1025:	238	257	254	235	242	266	257	258
1033:	265	256	225	241	243	222	240	240
1041:	259	233	234	238	256	226	232	240
1049:	217	232	221	231	244	228	227	200
1057:	239	232	227	229	239	251	237	211
1065:	233	231	238	198	231	220	219	230
1073:	221	217	256	245	209	248	251	217
1081:	212	207	244	208	224	226	231	223
1089:	244	233	236	251	230	225	220	244
1097:	270	255	250	221	211	238	249	254
1105:	234	224	251	224	252	220	234	246
1113:	228	237	230	226	211	219	202	193
1121:	203	159	170	165	159	172	148	177
1129:	164	160	158	135	182	163	130	167
1137:	139	144	121	148	143	147	148	134
1145:	157	148	149	131	127	139	142	142
1153:	110	136	139	143	133	139	129	137
1161:	115	137	133	138	125	112	123	125
1169:	140	146	334	2126	9873	11826	3466	562
1177:	396	366	210	99	114	90	105	91
1185:	101	76	107	93	74	96	88	85
1193:	107	91	89	82	74	88	81	67
1201:	86	87	81	91	56	77	66	63
1209:	79	70	65	66	65	51	79	74
1217:	61	53	73	65	67	49	56	54
1225:	47	54	66	51	71	48	53	56
1233:	54 25	46	46	38	51	49	43	35
1241:	35 43	47	38	36	40	39	37	38
1249:	43	31	38	32	38	26	38	34
1257: 1265:	39 41	33	25	33	24	40	40 31	34
1203:	37	26	34	29	30	32		34 24
1273:	3 <i>7</i> 35	29 27	24 41	32	32 37	35 34	41 35	34
1289:	33	48	41	38 38	3 / 26	34	41	27
1207:	41	27	22	32	39	45	38	40
1305:	18	29	37	32	36	28	31	26
1313:	39	25	24	37	30	28	27	25
1321:	34	25	31	47	40	42	33	49
1329:	68	167	1118	6344	11364	5342	853	282
1337:	293	155	41	23	28	26	19	28
1345:	23	21	21	21	23	22	18	18
1353:	19	15	15	20	18	11	19	13
1361:	9	19	10	17	16	18	13	19
1369:	15	19	18	17	19	13	12	12
1377:	18	20	18	12	10	16	17	18
1385:	27	14	22	15	16	13	13	22

1393:	15	13	19	20	12	8	14	21
1401:	22	10	17	20	13	15	20	12
1409:	23	16	10	16	20	19	11	12
1417:	10	18	18	14	20	14	17	18
1425:	19	15	14	11	18	11	16	13
1433:	22	11	16	15	7	18	21	17
1441:	11	15	18	13	14	15	9	16
1449:	13	20	12	13	13	20	20	15
1457:	9	11	12	20	24	10	20	12
1465:	19	14	12	11	11	19	17	8
1473:	13	16	13	9	9	13	16	15
1481:	15	12	13	15	10	14	13	17
1489:	8	12	11	14	11	16	19	17
1497:	13	15	12	14	14	13	10	6
1505:	23	17	7	10	10	16	15	12
1513:	15	5	12	12	17	15	15	8
1521:	12	15	11	13	16	18	10	20
1529:	12	2	14	9	12	11	15	12
1537:	7	11	12	11	14	21	10	14
1545:	8	8	15	15	10	19	21	15
1553:	13	13	16	9	16	15	10	17
1561:	5	13	17	11	13	13	15	7
1569:	8	14	9	14	10	15	5	11
1577:	11	16	14	12	9	7	17	11
1585:	10	7	12	12	13	17	16	13
1593:	15	16	9	4	13	7	7	8
1601:	19	12	7	9	15	, 9	8	12
1609:	5	10	9	8	9	14	11	7
1617:	11	9	9	6	10	10	13	11
1625:	14	9 7	10	9	7	11	11	14
1633:	9	11	14	6	11	7	8	6
1641:	9	10	19	9	10	12	11	11
1649:	9	8	10	8	14	9	9	11
1657:	9	13	14	12	4	6	10	16
1665:	12	8	9	10	15	9	6	9
1673:	12	10	13	14	12	16	10	9 9
1681:	4	11	8	8		— -	12	4
1689:	10	10	10	10	<u>4</u> 6	8 5	11	9
1697:	5	8		6	10	10	7	9 5
1705:	6	6	4 5	13		9	10	13
1713:	8	11	4	11	11 2	5	8	13
1721:	11	8	3	8	Q	8	15	11
1729:	8	11	7	6	3	10	4	10
1737:	6	10	11	9	8 3 9 8	8	7	6
1745:	10	7	2	9	9 8	11	10	11
1753:	3	9	11	7	3	5	10	6
1761:	12	7	8	11	17	11	9	11
1769:	10	8	7	6	10	6	6	
1777:	11	5	10	7	5	5	4	8 5 3
1785:	8	11	9	10	4	10	7	3
1793:	6	9	4	2	7	9	8	4
1801:	10	1	9	8	6	4	6	11
1809:	5	10	7	2	11	. 7	8	5
1817:	5	10	$\overset{\prime}{4}$	11	8	6	12	8
1825:	9	7	7	6	2	9	7	11
1833:	5	16	5 <i>6</i>	114	123	59	19	13
1841:	8	8	4	8	8	10	5	9
1849:	3	5	10	5	8	12	8	13
1857:	4	6	4	3	5	8	5	5
1865:	12	4	11	11	5	8	9	12
				-	=	-	_	.

1873:	3	6	5	5	3	7	8	6
1881:	8	12	4	8	4	6	8	6
							7	7
1889:	4	13	6	13	5	3	8	7
1897:	6	8	4	6	7	5		
1905:	7	8	10	7	5	8	10	12
1913:	10	11	9	3	6	2	7	5
1921:	8	10	6	10	8	8	8	11
1929:	8	8	9	10	10	7	6	3
1937:	8	7	7	8	1	8	8	4
1945:	5	5	5	6	7	5	8	3
1953:	3	10	7	11	6	6	6	11
1961:	9	7	6	8	13	10	3	3
1969:	5	3	11	7	10	14	5	7
1977:	8	8	4	3	11	9	5	5
1985:	12	Ω	7	11	8	9	5	8
1993:	7		3	8	1	5	11	3
2001:	7	8 5 5	4	6	2	6	8	8
	7				7	6	11	6
2009:		6	10	9				5
2017:	4	10	6	5	4	6	-5	
2025:	10	4	4	4	6	7 ~	5	6
2033:	5	4	14	7	8	5	6	10
2041:	4	3	1	5	10	8	6	10
2049:	6	7	7	6	4	5	5	4
2057:	5	5 3	5	4	4	10	6	5
2065:	8	3	6	5	5	5	10	13
2073:	8	5	3	8	2	5	4	14
2081:	6	10	4	5	4	8	6	9
2089:	10	3	8	4	6	9	5	2
2097:	7	12	3	9	6	4	5	6
2105:	6	4	6	5	5	11	12	6
2113:	2	6	6	6	Ō	10	9	3
2121:	5	4	3	4	4	2	5	6
2129:	11	5	9	6	5	2	5	3
2137:	3	4	5	3	12	5	3	2
2145:	0	$\frac{4}{4}$	2	4	3	5 8	6	10
2153:	7	14	2	4	4	6	2	6
2161:		11					7	
2169:	5 6	11	2	5	4	3		3 8
2109:	9	6	9	1	8	4	5	0
	3	6	5	4	9	5	6	5
2185:	6	5	5	6	8	3	4	4
2193:	6	6	4	5	1	. 4	2	4
2201:	2	8	4	12	4	6	10	4
2209:	6	8	4	3	4	9	2	5
2217:	7	6 3 5 3 7	4	7	5	5	5	4
2225:	6	3	4	7	4	6	5	5
2233:	10	5	7	9	3	4	4	4
2241:	8	3	9	3	10	4 8 2	4	1
2249:	6		4	7	9	2	4	9
2257:	2	4	5	8	11	9 6	3	4
2265:	7	4 6 5 6 5 1	4	6	9		9	6
2273:	5	5	9	6	6	8	8	4
2281:	5 9 6	6	4	4	4	11	7	
2289:	6	5	5	6	6	4	7	8 5 8 2
2297:	7	5	5 8	8	4			8
2305:	3	ī	3	7	2.	- 6	_ 3	2
2313:	1		4	3	2 5	5	5	1
2321:	6	2	2	1	4	2 6 5 6	2	4
2329:	6	2	2	1	1	1	2	3
2337:	4	1	4	3	4	1 1	2	4
2345:	3	4 2 2 1 3	5	5	1	$\frac{1}{4}$	2 3 5 2 2 2 5	2
~~ · ·	J	5	9	Ş	Τ.	4	5	4

		_			_	_	-	_
2353:	5	3	4	0	2	2	7	5
2361:	2	2	4	1	4	1	1	3
2369:	2	2	2	3	5	2	6	0
2377:	4	0	2	2	2	2	2	1
2385:	5	1	3	3	2	2	1	3
2393:	1	2	2	0	2	1	1	6
2401:	0	1	5	0	0	2	1	4
2409:	1	1	3	2	3	0	1	0
2417:	3	2	2	1	1	2	1	1
2425:	2	2	2	1	1	0	0	2
2433:	2	1	1	1	1	0	1 0	0
2441: 2449:	0	1	0	1	0	0	1	0
2449: 2457:	0	0	0	3	0	1	0	2
2457: 2465:	1 0	1 1	0	0	0 0	2 2	0	1
2473:	2	0	2 2	0 2	0	1	1	1
2473:	1	3	0	3	0	1	1	2
2481:	0	3 1	0	2	1	0	1	0
2497:	1	i	2	1	2	2	5	25
2505:	63	149	111	44	6	3	4	3
2513:	0	0	1	1	Ö	2	0	1
2521:	ĺ	Ö	Ō	Ō	Ö	ō	Ō	1
2529:	ī	Ö	Ö	ő	Ö	Ö	1	1
2537:	1	Ō	0	1	Ō	0	0	0
2545:	0	1	Ō	0	1	1	0	0
2553:	2	1	0	0	0	0	0	0
2561:	0	0	2	0	0	0	1	0
2569:	0	1	0	0	0	0	1	0
2577:	1	1	0	0	1	0	0	0
2585:	1	1	0	0	0	1	0	0
2593:	0	0	0	0	0	0	1	0
2601:	. 0	0	0	0	0	0	0	3
2609:	0	1	0	0	3	9	11	7
2617:	3	1	1	0	0	0	1	0
2625:	0	0	0	0	0	0	0	0
2633:	0	0	0	0	1	0	0	0
2641:	0	0	0	0	1	0	0	1
2649: 2657:	0 1	0 0	1	0	2	1 0	0 0	1 0
2665:	0	0	0 2	0 0	1	0	0	0
2673:	0	0	0	1	Ö	0	0	0
2681:	Ö	Ö	1	1	Ö	0	Ö	0
2689:	Ö	1	1	0	1	Ö	Ö	Ő
2697:	Ö	ī	Ō	ő	Ō	ő	Ö	Ö
2705:	Ō	ī	Ö	Õ	Ö	ő	Ö	Ö
2713:	0	0	Ō	Ö	1	Ō	Ō	0
2721:	0	0	0	Ō	0	0	0	0
2729:	0	0	0	1	1	2	2	2
2737:	0	0	0	1	0	1	0	0
2745:	0	0	0	1	0	0	0	0
2753:	0	0	0	0	0	0	1	0
2761:	0	0	0	1	0	0	1	0
2769:	0	0	0	0	0	0	1	1
2777:	1	0	0	0	0	0	0	0
2785:	0	0	1	0	0	1	0	0
2793: 2801:	0	0	0	0	0	0	1	0
2801: 2809:	0 0	0 0	0	0	1	0	0	0
2817:	0	0	0 0	0 1	0 0	0 0	0 1	0 0
2825:	0	0	1	1	0	1	0	0
	Ŭ	J	-	-	J	±	0	J

2833:	1	0	0	0	0	1	0	0
2841:	0	0	0	0	0	0	0	0
2849:	0	0	0	0	0	0	0	0
2857:	0	0	0	1	0	0	1	0
2865:	1	Ō	Ö	0	1	0	0	0
2873:	Ō	Ö	Ö .	Ö	ō	Ö	Ō	0
2881:	Ö	Ö	0	Ö	ő	Ö	Ö	0
2889:	Ö	0	0	0	ő	Ö	Ö	Ö
2897:	0	0	1	0	Ö	Ö	Ö	Ŏ
2905:	0	0	0	0	1	ő	ő	Ŏ
2913:	1	1		0	0	Ö	Ö	0
2921:	0		0		0	0	Ö	0
2921:		0	1	1	0	0	Ö	0
2929:	0 1	0	0	1 0	0	0	Ö	0
2945:		0	0			0	Ö	0
	0	0	0	0	0	0	1	0
2953:	0	0	0	0	0	0	0	0
2961:	1	0	0	0	0		0	
2969:	0	1	0	0	0	1	0	0
2977:	0	0	0	0	0	1		0
2985:	0	0	0	0	0	0	0	0
2993:	0	0	0	0	0	0	0	
3001:	0	0	0.	0	1	0	1	0
3009:	0	0	0	0	0	0	0	0
3017:	1	0	0	0	0	0	0	0
3025:	0	0	0	0	0	0	0	0
3033:	0	0	0	0	1	0	0	0
3041:	0	0	0	0	0	0	0	0
3049:	0	0	0	0	0	0	0	0
3057:	1	1	0	0	0	0	0	0
3065:	0	0	0	0	0	0	1	1
3073:	0	0	0	0	0	0	0	0
3081:	0	0	0	0	0	0	0	0
3089:	1	0	0	0	0	0	0	0
3097:	0	0	0	0	0	0	1	0
3105:	0	1	0	0	0	0	0	0
3113:	0	0	0	0	0	0	0	0
3121:	0	0	0	1	0	0	0	0
3129:	0	0	0	1	0	0	0	0
3137:	0	0	0	0	0	0	0	1
3145:	0	1	0	0	0	0	0	0
3153:	0	0	0	0	0	0	0	0
3161:	0	0	0	0	0	0	0	0
3169:	0	0	1	0	0	0	0	0
3177:	0	0	0	0	0	0	0	0
3185:	0	0	0	0	0	0	0	0
3193:	0	0	0	0	0	0	0	1
3201:	0	0	0	0	0	1	0	0
3209:	0	0	0	0	0	0	0	1
3217:	1	0	0	0	0	0	0	0
3225:	0	0	1	0	0	1	0	0
3233:	0	1	0	0	0	0	0	0
3241:	0	0	0	0	0	0	0	0
3249:	0	0	0	0	0	0	0	0
3257:	1	0	0	0	0	0	0	0
3265:	0	0	0	0	0	0	0	2
3273:	0	0	1	0	0	0	0	0
3281:	1	0	0	0	0	0	0	0
3289:	0	0	0	0	0	0	0	0
3297:	0	0	0	1	0	0	0	0
3305:	0	0	0	0	0	0	0	0

3313:	0	0	0	0	0	0.	0	0
3321:	ő	Ö	ő	Ö	Ö	Ö	Ō	0
3329:	0	0	0	1	Ö	Ö	Ö	Ō
3337:	0	0	0	0	0	ő	Ö	Ŏ
3345:		I control of the cont			0	Ö	Ö	Ö
	0	0	0	0		0	Ö	0
3353:	0	0	0	0	0		0	0
3361:	0	0	0	0	0	0		
3369:	0	0	0	0	1	0	0	0
3377:	1	0	0	0	0	0	0	0
3385:	0	0	0	0	0	0	0	0
3393:	0	0	1	0	0	0	0	0
3401:	. 0	0	0	0	0	0	1	0
3409:	0	0	0	0	0	0	0	0
3417:	1	0	0	0	1	0	0	0
3425:	0	0	0	0	1	0	0	0
3433:	0	0	0	0	0	0	0	0
3441:	0	0 .	0	0	0	0	0	0
3449:	0	0	0	0	0	0	0	0
3457:	0	0	0	0	0	0	0	0
3465:	1	0	0	0	0	0	0	0
3473:	0	0	0	0	0	0	0	0
3481:	0	0	0	0	0	0	0	0
3489:	0	0	0	0	0	0	1	1
3497:	0	0	0	0	0	0	0	0
3505:	0	Ō	Ö	Ö	Ō	0	0	0
3513:	Ō	Ö	Ö	Ö	Ö	Ō	0	0
3521:	1	Ö	Ö	Ö	Ö	o ·	0	1
3529:	ō	Ö	Ö	Ö	Ö	Ö	Ö	0
3537:	Ö	Ö	Ö	Ö	ĺ	Ö	Ö	1
3545:	Ö	Ö	Ö	0	0	Ö	Ö	0
3553:	0	0 ,	1	0	Ö	1	ő	0
3561:	0	0	0	0	Ö	Ō	Ö	0
3569:	0	0	0	0	0	0	0	0
3577:	0	•	•	=	0	0	0	0
3585:	0	0	0	0	-	0	0	0
	0	0	0	0	0	0	0	0
3593:	•	T .	U	Ū	O	•	•	0
3601:	0	0	0	0	0	0	0	0
3609:	0	0	0	0	0	0	0	
3617:	0	0	0	0	0	0	0	0
3625:	0	0	0	0	1	0	0	1
3633:	0	1	0	0	0	0	0	0
3641:	0	0	0	0	0	0	0	0
3649:	0	0	0	0	0	1	0	0
3657:	0	1	0	0	0	0	0	. 0
3665:	1	1	0	2	0	0	0	0
3673:	0	0	0	1	0	0	0	0
3681:	0	0	0	0	0	0	1	0
3689:	1	0	0	0	0	0	0	0
3697:	0	0	0	0	0	0	0	0
3705:	0	0	0	0	0	0	0	0
3713:	0	0	0	0	0	0	0	2
3721:	0	0	0	0	0	1	0	0
3729:	0	0	0	0	0	0	0	0
3737:	0	0	0	0	0	0	0	0
3745:	0	0	0	0	0	0	0	1
3753:	1	0	0	0	0	0	0	0
3761:	0	0	1	0	0	0	1	0
3769:	0	1	1	0	0	0	0	0
3777:	0	0	0	0	0	0	0	0
3785:	0	0	0	0	0	1	0	0

3793:	0	0	0	0	0	0	0	0
3801:	1	Ō	0	0	0	0	0	0
3809:	0	Ō	0	0	0	0	0	0
3817:	Ö	Ö	0	0	0	0	1	0
3825:	0	Ö	0	Ō	0	1	0	0
3833:	Ö	Ö	Ö	i	0	0	0	0
3841:	Ö	Ö	ő	ō	Ō	0	0	0
3849:	Ö	Ö	Ö	Ö	. 0	0	0	0
3857:	Ŏ	1	. 0	Ö	Ö	0	0	0
3865:	Ŏ	Ō	Ö	Ö	Ō	0	0	0
3873:	ŏ	ő	Ö	Ö	Ō	0	0	0
3881:	Ŏ	ő	í	Ö	Ö	Ō	0	0
3889:	Ö	Ö	Ō	Ö	Ö	Ō	0	0
3897:	Ö	Ö	Ö	ő	Ö	0	0	0
3905:	0	Ö	Ö	ő	Ö	Ō	0	0
3913:	0	Ö	Ö	Ö	ĺ	Ö	0	0
3921:	0	Ö	Ö	Ö	0	Ö	0	0
3929:	0	0	Ö	Ö	Ŏ	Ö	Ō	0
3937:	0	0	0	Ö	Ŏ	Ö	Ō	0
3945:	0	0	0	0	ő	ĺ	Ö	Ō
3953:	0	0	Ö	Ö	Ö	0	Ö	0
3961:	0	0	Ö	Ö	ŏ	Ö	Ö	0
3969:	0	0	Ö	Ŏ	ő	Ö	Ö	0
3977:	Ö	Ö	Ö	Ö	Ö	Ö	Ō	0
3985:	Ö	Ö	0	Ö	Ö	Ö	0	0
3993:	0	Ö	Ö	Ö	Ö	Ö	Ō	0
4001:	Ö	Ö	Ö	Ö	Ö	ī	Ö	0
4009:	Ö	Ö	Ö	Ö	Ö	Ō	0	. 0
4017:	Ö	Ö	Ö	Ö	Ö	Ö	0	0
4025:	Ö	Ö	ő	ő	Ö	Ö	Ō	0
4023:	Ö	ő	Ö	Ö	. 0	Ö	0	0
4033:	1	Ö	Ö	Ö	0	ĺ	Ö	0
4041:	0	Ö	0	Ö	Ö	0	Ö	0
4057:	Ö	Ö	Ö	Ö	Ö	Ö	0	1
4065:	Ö	Ö	Ö	Ö	Ö	Ö	0	0
4003:	0	0	0	0	Ö	ĭ	Ö	0
4073:	0	0	0	0	Ö	Ō	Ö	Ö
4081:	0	0	0	0	Ö	Ö	Ö	Ö
4009.	U	U	U	U	O	· ·	ū	-

Acquisition date : 22-FEB-2012 10:04:24 Sample ID : 1201163-02

VAX/VMS Peak Search Report Generated 22-FEB-2012 11:04:46.26

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP 120116302_GE2_GAS1102_176233.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF V2.2 Client ID : BLANK

Deposition Date :

Sample Date : 22-FEB-2012 00:00:00 Acquisition date : 22-FEB-2012 10:04:24

Sample Quantity : 7.83400E+02 GRAM Sample ID : 1201163-02

Sample type : SOLID
Detector name : GE2 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed live time: 0 01:00:00.00 Elapsed real time: 0 01:00:00.54 0.0%

Elapsed rear crise. End channel : 4096
Gaussian : 15.00 Start channel : 5

Sensitivity : 2.40000 Critical level : Yes : 15.00000

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	31.32	383	739	5.40	31.26	26	16 39.4		
3	43.47	24	36	1.66	43.41	42		2.84E+00	
4	58.85	36	75	1.89	58.81	56	12 89.5	2.15E+00	AM-241
4	63.08*	48	84	1.90	63.03	56	12 77.8		TH-234
0	120.59	61	114	5.08	120.57	117	10 69.6		CO-57
0	371.10	20	24	2.02	371.17	369	6 95.3		
0	396.26	18	16	3.01	396.34	394	6 85.9		
0	522.91	14	7	2.26	523.04	521	5 84.8		
0	560.76	18	14	3.46	560.90	557	7 84.1		
0	584.36	12	19	2.88	584.51	581	6126.5		TL-208
0	642.30	18	5	4.49	642.47	639	7 63.3	,	
3	749.43	13	4	2.58	749.64	747	10 80.2	2.32E+00	
3	753.79	6	6	1.94	754.00	747	10146.3		
0	781.71	11	9	2.98	781.94	779	7112.4		
0	821.23	23	11	8.06	821.47	815	14 71.9		
0	868.95	7	8	3.13	869.21	866	6141.7		
0	880.21	12	12	4.13	880.47	876	10125.2		
0	920.38	10	7	1.10	920.66	916	7103.9		
1	937.92	12	2	2.25	938.21	937	12 56.7	1.18E+00	
1	942.92	7	6	2.26	943.21	937	12135.3		
0	1003.06	13	9	1.09	1003.37	999	10103.7		
0	1012.38	16	5	3.30	1012.69	1009	10 72.3		
0	1195.87	8	0	2.75	1196.25	1194	6 70.7		
0	1245.78	11	0		1246.18	1243	8 60.3		
0	1558.76	6	2	1.90	1559.28	1554	8117.9		
0	1602.61	7	0		1603.14	1600	7 75.6		
0	2613.89*	7	0		2614.80	2610	9114.8		TL-208
0	2993.95	5	0		2995.00	2991	7 89.4		

AG 2123/12

Summary of Nuclide Activity . Page: 2
Sample ID: 1201163-02 Acquisition date: 22-FEB-2012 10:04:24

Total number of lines in spectrum 28
Number of unidentified lines 22

Number of lines tentatively identified by NID 6 21.43%

Nuclide Type : FISSION

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma pCi/GRAM pCi/GRAM 2-Sigma Error %Error Flags Nuclide Hlife Decay 2.765E-02 1.942E-02 70.23 CO-57 270.90D 1.00 2.762E-02 _____ _____

Total Activity: 2.762E-02 2.765E-02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide 2-Sigma Error %Error Flags Hlife Decay pCi/GRAM pCi/GRAM 4.805E-02 4.805E-02 4.148E-02 86.33 TL-208 1.41E+10Y 1.00 TH-234 4.47E+09Y 1.00 4.802E-01 3.764E-01 78.39 4.802E-01 AM-241 432.20Y 1.00 3.862E-02 3.862E-02 3.470E-02 89.87 _____ _____ Total Activity: 5.669E-01 5.669E-01

Grand Total Activity: 5.945E-01 5.945E-01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Sample ID : 1201163-02

Page: 3
Acquisition date: 22-FEB-2012 10:04:24

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/GRAM pCi/GRAM %Error Status CO-57 122.06 85.51* 2.491E+00 2.762E-02 2.765E-02 70.23 OK 136.48 10.60 2.406E+00 ---- Line Not Found ---- Absent

Final Mean for 1 Valid Peaks = 2.765E-02+/-1.942E-02 (70.23%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma %Abn %Eff pCi/GRAM pCi/GRAM Nuclide %Error Status Energy 30.22* 9.242E-01 4.212E-02 4.212E-02 126.87 4.48 6.742E-01 ---- Line Not Found ----TL-208 583.14 OK 860.37 Absent 2614.66 35.85 3.402E-01 5.705E-02 5.705E-02 115.37 OK

Final Mean for 2 Valid Peaks = 4.805E-02+/-4.148E-02 (86.33%)

TH-234 63.29 3.80* 2.516E+00 4.802E-01 4.802E-01 78.39 OK

Final Mean for 1 Valid Peaks = 4.802E-01+/-3.764E-01 (78.39%)

AM-241 59.54 35.90* 2.470E+00 3.862E-02 3.862E-02 89.87 OK

Final Mean for 1 Valid Peaks = 3.862E-02+/-3.470E-02 (89.87%)

Flag: "*" = Keyline

Sample ID : 1201163-02

NB-95M

ZR-95

MO-99

RU-103

RU-106

AG-108M

AG-110M

CD-109

SN-113

TE123M

SB-124

I-125

SB-125

-6.080E-02

-1.070E-02

7.193E-02

5.058E-03

5.483E-02

-6.620E-03

-3.664E-01

-1.306E-03

-1.008E-02

1.093E-03

9.434E-03

-1.626E+00

-5.091E-02

Page: 4
Acquisition date: 22-FEB-2012 10:04:24

Identified Nuclides									
Nuclide	Activity (pCi/GRAM)	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA				
CO-57 TL-208 TH-234 AM-241	2.765E-02 4.805E-02 4.802E-01 3.862E-02	1.942E-02 4.148E-02 3.764E-01 3.470E-02	1.785E-02 8.872E-02 4.253E-01 4.573E-02	1.514E-03 8.072E-03 3.542E-02 3.421E-03	1.549 0.542 1.129 0.844				
Non-Id	lentified Nuclide	S							
Nuclide	Key-Line Activity K.L (pCi/GRAM) Ide		MDA (pCi/GRAM)	MDA error	Act/MDA				
BE-7 NA-22 NA-24 AL-26 K-40 AR-41 TI-44 SC-46 V-48 CR-51 MN-54 CO-56 CO-58 FE-59	-6.118E-02 3.580E-03 4.390E-03 -1.511E-02 5.842E-02 5.945E-02 -5.468E-03 -2.907E-03 1.162E-02 -5.517E-02 -2.422E-03 2.818E-03 -5.348E-03 -2.610E-02	1.251E-01 1.281E-02 2.165E-02 1.334E-02 1.862E-01 9.401E-01 1.073E-02 1.340E-02 1.440E-02 1.237E-01 1.184E-02 1.644E-02 1.574E-02 2.604E-02	2.22E-01 2.749E-02 4.563E-02 1.756E-02 4.205E-01 1.817E+00 1.664E-02 2.214E-02 3.178E-02 1.991E-01 2.229E-02 3.162E-02 2.478E-02	2.054E-02 2.709E-03 4.633E-03 1.587E-03 4.312E-02 1.810E-01 1.560E-03 1.985E-03 2.909E-03 1.793E-02 2.001E-03 2.840E-03 2.226E-03 3.739E-03	-0.275 0.130 0.096 -0.861 0.139 0.033 -0.329 -0.131 0.366 -0.277 -0.109 0.089 -0.216 -0.693				
CO-60 ZN-65 GA-67 SE-75 RB-82 RB-83 KR-85 SR-85 Y-88 NB-93M NB-94	2.457E-03 -2.786E-02 -1.416E-02 1.150E-02 1.682E-02 -3.220E-03 1.450E+00 6.368E-03 -4.077E-03 -1.704E+01 6.152E-03	1.941E-02 3.288E-02 4.386E-02 1.868E-02 1.060E-01 3.146E-02 4.082E+00 1.793E-02 1.125E-02 5.423E+00 2.088E-02	3.768E-02 5.092E-02 7.222E-02 3.402E-02 1.914E-01 5.250E-02 7.705E+00 3.384E-02 2.248E-02 2.226E+00 3.089E-02	3.494E-03 4.730E-03 8.160E-02 2.819E-03 1.708E-02 8.396E-03 7.135E-01 3.134E-03 2.007E-03 6.701E-01 2.773E-03	0.065 -0.547 -0.196 0.338 0.088 -0.061 0.188 0.188 -0.181 -7.655 0.199				
NB-95	-6.343E-04	1.443E-02	2.722E-02	2.425E-03	-0.023				

6.147E-02

2.611E-02

1.155E-01

1.485E-02

1.520E-01

1.740E-02

3.096E-01

1.711E-02

1.675E-02

1.245E-02

1.487E-02

4.430E-01

4.290E-02

9.440E-02

4.060E-02

2.417E-01

2.893E-02

2.965E-01

3.085E-02

4.845E-01

3.158E-02

2.606E-02

2.154E-02

2.990E-02

5.101E-01

6.967E-02

-0.644

-0.263

0.298

0.175

0.185

-0.215

-0.756

-0.041

-0.387

0.051

0.316

-3.188

-0.731

7.761E-03

3.955E-03

2.141E-02

4.212E-03

4.015E-02

2.719E-03

7.476E-02

2.732E-03

2.399E-03

1.733E-03

2.694E-03

5.232E-02

6.464E-03

---- Non-Identified Nuclides ----

	Key-Line Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/GRAM) Ided		(pCi/GRAM)		
SB-126	8.150E-03	3.217E-02	6.162E-02	5.428E-03	0.132
SN-126	-4.045E-02	3.087E-02	4.780E-02	6.756E-03	-0.846
SB-127	2.838E-03	4.309E-02	8.219E-02	7.155E-03	0.035
I-129	-4.589E-02	7.165E-02	1.094E-01	1.341E-02	-0.419
I-131	-5.247E-03	1.727E-02	2.813E-02	2.483E-03	-0.187
TE-132	6.336E-03	1.440E-02	2.554E-02	2.097E-03	0.248
BA-133	-3.025E-02	2.366E-02	3.286E-02	4.373E-03	-0.921
I-133	1.014E-02	2.109E-02	3.921E-02	3.625E-03	0.259
CS-134	-7.286E-03	1.582E-02	2.784E-02	2.511E-03	-0.262
CS-135	-2.608E-02	6.979E-02	1.143E-01	9.400E-03	-0.228
I-135	2.033E-03	1.375E-01	2.756E-01	2.695E-02	0.007
CS-136	-1.190E-02	2.210E-02	3.790E-02	3.584E-03	-0.314
CS-137	-1.218E-02	1.983E-02	3.345E-02	2.890E-03	-0.364
LA-138	9.209E-03	2.448E-02	5.139E-02	5.181E-03	0.179
CE-139	1.793E-03	1.319E-02	2.289E-02	1.822E-03	0.078
BA-140	1.692E-02	4.855E-02	9.620E-02	3.204E-02	0.176
LA-140	1.877E-03	1.578E-02	3.119E-02	3.044E-03	0.060
CE-141	1.837E-02	2.296E-02	3.928E-02	7.248E-03	0.468
CE-143	-2.180E-03	3.591E-02	6.074E-02	5.057E-03	-0.036
CE-144	-2.521E-03	8.994E-02	1.552E-01	1.294E-02	-0.016
PM-144	1.108E-02	1.475E-02	3.046E-02	2.663E-03	0.364
PM-145	-5.590E-01	3.827E-01	1.297E-01	8.465E-02	-4.311
PM-146	8.171E-04	2.821E-02	5.387E-02	4.957E-03	0.015
ND-147	4.204E-02	9.179E-02	1.799E-01	1.662E-02	0.234
PM-149	1.552E-02	4.244E-01	7.286E-01	6.018E-02	0.021
EU-152	-1.794E-02	1.085E-01	2.011E-01	2.439E-02	-0.089
GD-153	8.105E-04	4.110E-02	7.174E-02	8.363E-03	0.011
EU-154	1.007E-02	3.605E-02	7.736E-02	7.625E-03	0.130
EU-155	8.159E-03	3.409E-02	6.007E-02	8.326E-03	0.136
EU-156	-1.334E-02	1.327E-01	2.258E-01	5.187E-02	-0.059
HO-166M	-1.891E-03	2.872E-02	5.334E-02	4.687E-03	-0.035 -0.598
HF-172 LU-172	-7.947E-02	9.157E-02	1.329E-01	1.119E-02	
LU-173	2.172E-02 3.260E-03	2.168E-02	5.146E-02 8.986E-02	4.772E-03 7.381E-03	0.422
HF-175	-4.322E-03	5.206E-02 1.328E-02	2.180E-02	1.898E-03	-0.198
LU-176	2.508E-03	1.328E-02 1.333E-02	2.180E-02 2.312E-02	1.090E-03	0.109
TA-182	1.586E-02	5.194E-02	1.060E-01	9.839E-03	0.150
IR-192	6.859E-03	2.946E-02	5.615E-02	5.183E-03	0.122
HG-203	2.429E-03	1.652E-02	2.822E-02	2.386E-03	0.086
BI-207	-7.604E-03	1.196E-02	2.022E 02 2.073E-02	1.897E-03	-0.367
BI-210M	3.527E-03	2.681E-02	4.621E-02	3.803E-03	0.076
PB-210	5.434E-02	3.061E-01	5.717E-01	4.792E-02	0.095
PB-211	-3.922E-02	3.996E-01	7.169E-01	6.465E-02	-0.055
BI-212	-4.315E-02	1.369E-01	2.424E-01	2.140E-02	-0.178
PB-212	3.989E-03	3.303E-02	6.011E-02	4.945E-03	0.066
BI-214	-1.807E-02	3.678E-02	6.283E-02	5.639E-03	-0.288
PB-214	7.724E-03	3.750E-02	6.559E-02	5.744E-03	0.118
RN-219	1.581E-01	1.833E-01	3.512E-01	3.162E-02	0.450

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.I (pCi/GRAM) Ide		MDA (pCi/GRAM)	MDA error	Act/MDA
RA-223	5.047E-02	3.088E-01	5.373E-01	4.605E-02	0.094
RA-224	2.605E-01	3.677E-01	6.472E-01	5.326E-02	0.403
RA-225	2.335E-02	3.727E-02	6.026E-02	5.593E-03	0.387
RA-226	1.805E-01	5.570E-01	8.411E-01	1.540E+00	0.215
TH-227	-1.165E-01	1.249E-01	1.930E-01	1.587E-02	-0.604
AC-228	3.464E-04	5.982E-02	1.154E-01	1.038E-02	0.003
TH-230	-1.438E+00	2.735E+00	4.236E+00	3.951E-01	-0.340
PA-231	-1.333E-01	5.221E-01	8.633E-01	7.256E-02	-0.154
TH-231	1.797E-02	3.378E-01	5.444E-01	8.018E-02	0.033
PA-233	1.148E-03	3.094E-02	5.306E-02	1.188E-02	0.022
PA-234	1.244E-02	4.765E-02	8.410E-02	7.033E-03	0.148
PA-234M	-2.408E-03	2.257E+00	3.821E+00	3.508E-01	-0.001
U-235	1.163E-01	1.030E-01	1.882E-01	3.258E-02	0.618
NP-237	2.004E-02	8.360E-02	1.473E-01	2.042E-02	0.136
NP-239	-2.286E-02	4.512E-02	7.526E-02	8.406E-03	-0.304
AM-243	-1.393E-02	1.767E-02	2.798E-02	3.067E-03	-0.498
CM-243	7.118E-03	9.062E-02	1.538E-01	1.261E-02	0.046

Summary of Nuclide Activity Page: 7
Sample ID: 1201163-02 Acquisition date: 22-FEB-2012 10:04:24

Total number of lines in spectrum 28
Number of unidentified lines 22

Number of lines tentatively identified by NID 6 21.43%

Nuclide Type : FISSION

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/GRAM pCi/GRAM 2-Sigma Error %Error Flags
CO-57 270.90D 1.00 2.762E-02 2.765E-02 1.942E-02 70.23

Total Activity: 2.762E-02 2.765E-02

Nuclide Type : NATURAL

 Wtd Mean
 Wtd Mean
 Uncorrected
 Decay Corr
 Decay Corr
 2-Sigma

 Nuclide
 Hlife
 Decay
 pCi/GRAM
 pCi/GRAM
 2-Sigma Error
 %Error Flags

 TL-208
 1.41E+10Y
 1.00
 4.805E-02
 4.805E-02
 4.148E-02
 86.33

 TH-234
 4.47E+09Y
 1.00
 4.802E-01
 4.802E-01
 3.764E-01
 78.39

 AM-241
 432.20Y
 1.00
 3.862E-02
 3.862E-02
 3.470E-02
 89.87

 Total Activity:
 5.669E-01
 5.669E-01

Grand Total Activity: 5.945E-01 5.945E-01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116302_GE2_GAS1102_176233.CNF; 1

Title :

Sample Title: BLANK

Start Time: 22-FEB-2012 10:04 Sample Time: 22-FEB-2012 00:00 Energy Offset: 6.87229E-02 Real Time: 0 01:00:00.54 Sample ID : 1201163-02 Energy Slope: 9.99625E-01

Live Time : 0 01:00:00.00 Sample Type: SOLID Energy Quad : 0.00000E+00

Channel

1:	0	0	0	0	0	0	0	98
9:	530	1042	1444	889	437	1392	686	90
17:	111	118	120	140	119	130	126	138
25:	142	120	136	135	112	134	90	86
33:	69	53	48	51	19	26	14	18
41:	11	12	28	16	28	37	49	22
49: 57:	16 24	19	16	12	26	20 24	12 56	11 40
65:	24 16	21 18	35 11	24 20	19 23	24	18	27
73:	20	26	36	21	23 34	24	25	27
81:	23	21	24	24	32	25	21	28
89:	21	33	20	60	66	23	24	21
97:	23	16	20	25	15	21	17	17
105:	19	16	11	17	18	19	12	15
113:	25	22	13	10	11	14	25	22
121:	25	18	24	13	18	5	19	18
129:	17	23	11	24	15	13	17	17
137:	14	15	17	19	17	10	28	35
145:	21	12	12	15	12	12	15	21
153:	14	24	10	19	16	8	17	24
161:	21	19	18	19	17	14	21	10
169:	10	17	14	18	10	17	13	13
177:	13	18	11	20	18	13	15	13
185:	26	87	24	11	9	18	11	12
193: 201:	12 15	9	17	15	17	12	12	15
201:	15 17	18 9	13	15	13	15	9	11 12
217:	7	11	11 9	9 11	12 9	18 13	10 14	11
225:	13	10	20	13	13	12	10	13
233:	12	15	10	18	12	25	36	24
241:	15	13	17	13	9	11	17	11
249:	6	12	14	10	10	5	9	13
257:	5	12	13	10	9	15	10	14
265:	10	9	10	9	.5	9	12	11
273:	5	8	10	10	11	13	13	9
281:	11	11	5	9	3	12	14	6
289:	11	8	10	7	10	7	13	7
297:	9	10	6	. 9	7	7	13	4
305:	11	11	10	6	12	9	7	6
313:	6	13	8	6	8	5 3 6	4	11
321: 329:	4	11	5	11	10	3	5	10
329: 337:	11 6	10	6	4	8	6	11 5	7
345:	7	5 4	8 7	6 5	8 6	3 1	10	6 30
353:	9	6	7	10	6	설 도	10	20
361:	7	4	3 8	6	6	3 4 5 10	9 9	9 9
369:	6	14	12	6	5	1	4	4
377:	4	9	10	11	1	1 6	8	8
385:	4	7	3	7	5	4	2	8 5 3 4
393:	4	2 9	9	9	7	4 5 4	2	3
401:	9	9	5	8	. 7		2 2 6	4
409:	5	7	3 9 5 9 8	4	8	10		7
417:	5	6		4	4	10	11	8 6
425:	4	5	4	3	8	3	4	6

433: 9 5 6 6 7 7 3 441: 10 3 5 5 4 9 3 449: 6 8 5 4 3 7 7 457: 3 4 3 2 11 5 7 465: 2 9 9 3 7 8 5 473: 8 11 3 4 3 6 6 481: 4 5 5 3 2 7 5 489: 3 3 4 4 3 6 9 497: 8 3 4 4 3 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 4 3 3	6 4
441: 10 3 5 5 4 9 3 449: 6 8 5 4 3 7 7 457: 3 4 3 2 11 5 7 465: 2 9 9 3 7 8 5 473: 8 11 3 4 3 6 6 481: 4 5 5 3 2 7 5 489: 3 3 4 4 3 6 9 497: 8 3 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	4
449: 6 8 5 4 3 7 7 457: 3 4 3 2 11 5 7 465: 2 9 9 3 7 8 5 473: 8 11 3 4 3 6 6 481: 4 5 5 3 2 7 5 489: 3 3 4 4 3 6 9 497: 8 3 4 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	
457: 3 4 3 2 11 5 7 465: 2 9 9 3 7 8 5 473: 8 11 3 4 3 6 6 481: 4 5 5 3 2 7 5 489: 3 3 4 4 3 6 9 497: 8 3 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	2
465: 2 9 9 3 7 8 5 473: 8 11 3 4 3 6 6 481: 4 5 5 3 2 7 5 489: 3 3 4 4 3 6 9 497: 8 3 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	6
473: 8 11 3 4 3 6 6 481: 4 5 5 3 2 7 5 489: 3 3 4 4 3 6 9 497: 8 3 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	4
481: 4 5 5 3 2 7 5 489: 3 3 4 4 3 6 9 497: 8 3 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	6
489: 3 3 4 4 3 6 9 497: 8 3 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	6
497: 8 3 4 3 4 6 5 505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	5
505: 5 4 4 7 12 18 42 513: 11 4 5 5 6 6 3 521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	3
521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	21
521: 4 5 7 5 0 1 0 529: 4 3 4 5 3 4 5	3
529: 4 3 4 5 3 4 5	6
	0
537: 0 3 4 4 3 3 1	2 3 5
	2
543: 7 3 2 7 5 5 553: 3 4 5 1 2 2 6	4
545: 8 7 3 2 7 5 5 553: 3 4 5 1 2 2 6 561: 9 8 1 4 4 2 1	3
561: 9 8 1 4 4 2 1 569: 3 5 1 1 5 5 3	5 5
569: 3 5 1 1 5 5 3 577: 3 6 3 6 2 5 9	5 7
577: 3 6 3 6 2 5 9 585: 7 1 4 5 3 2 6	
585: 7 1 4 5 3 2 6 593: 4 2 4 7 3 3 2	5
	11
	4
	9
	6
625: 2 4 2 4 4 2	3
633: 4 5 4 2 3 2 0	4
641: 5 4 4 6 0 1 0	4
649: 1 6 5 6 4 6 4	8
657: 3 4 4 2 7 8 2	1
665: 3 5 3 4 2 6 3	2
673: 5 5 5 5 5 3	3
681: 1 3 3 6 1 3	4
689: 4 6 2 2 1 2 6	6
697: 1 5 4 3 3 2 5	4
705: 2 5 1 1 3 1 2	3
713: 7 5 3 8 2 5 5	5
721: 6 3 3 2 2 2 6 729: 3 4 2 4 3 3 2 737: 0 4 4 1 6 2 1	3
729: 3 4 2 4 3 3 2	1
737: 0 4 4 1 6 2 1 745: 1 1 0 1 7 3 4	3
745: 1 1 0 1 7 3 4	4
753: 1 4 1 0 2 2 2	3
745: 1 1 0 1 7 3 4 753: 1 4 1 0 2 2 2 761: 2 3 3 1 1 5 2 769: 2 3 2 3 1 2 2	4
761: 2 3 3 1 1 5 2 769: 2 3 2 3 1 2 2 777: 4 1 0 3 4 6 4	3
721: 6 3 3 2 2 2 6 729: 3 4 2 4 3 3 2 737: 0 4 4 1 6 2 1 745: 1 1 0 1 7 3 4 753: 1 4 1 0 2 2 2 761: 2 3 3 1 1 5 2 769: 2 3 2 3 1 2 2 777: 4 1 0 3 4 6 4 785: 1 3 3 0 0 3 4 793: 2 2 1 4 1 3 1 801: 3 4 6 3 5 2 3	3 1 3 4 3 4 3 2 4 2
785: 1 3 3 0 0 3 4 793: 2 2 1 4 1 3 1 801: 3 4 6 3 5 2 3 809: 3 2 1 2 2 1 0	4
793: 2 2 1 4 1 3 1	2
801: 3 4 6 3 5 2 3 809: 3 2 1 2 2 1 0	1
801: 3 4 6 3 5 2 3 809: 3 2 1 2 2 1 0 817: 1 2 4 4 5 2 4 825: 1 5 1 1 1 1 2 2 833: 1 1 1 1 1 5 3	1 2 2
817: 1 2 4 4 5 2 4 825: 1 5 1 1 1 2 2	2
825: 1 5 1 1 1 2 2 833: 1 1 1 1 1 5 3	1
	1 1 5 4
841: 1 6 1 3 3 2 4 849: 2 1 3 3 2 2 1 857: 1 1 3 4 2 6 1 865: 2 0 4 3 5 3 0	5
849: 2 1 3 3 2 2 1 857: 1 1 3 4 2 6 1	4
857: 1 1 3 4 2 6 1 865: 2 0 4 3 5 3 0	1 3
865: 2 0 4 3 5 3 0 873: 4 1 1 2 2 1 4	3
865: 2 0 4 3 5 3 0 873: 4 1 1 2 2 1 4 881: 3 4 2 1 1 1 1 1 889: 1 0 3 1 2 2 0	4
881: 3 4 2 1 1 1 1 889: 1 0 3 1 2 2 0	1 3
873: 4 1 1 2 2 1 4 881: 3 4 2 1 1 1 1 1 889: 1 0 3 1 2 2 0 897: 0 1 1 1 0 0 1	3
	7
905: 2 1 0 3 1 4 2	3

913:	3	3	1	3	1	0	4	2
921:	7	0	0	1	ī	2	2	ī
929:	5	2	2	2	2	4	4	1
937:	0	6	3	1	0	1	4	1
945:	4	1	1	0	2	2	0	0
953:	2	0	3	1	1	3 3	2	4
961:	3	3	0	4	1		3	1 2
969: 977:	2 3	1 0	1 0	7 0	1 2	1 2	4 2	4
985:	0	3	2	4	1	1	3	4
993:	ĺ	4	4	0	4	ī	3 2	2
1001:	ī	7	2	3	2	1	2	0
1009:	1	2	4	4	4	1	2	2
1017:	1	0	1	3	4	1	2 2	1
1025:	0	2	2	2	1	1	2	0
1033: 1041:	0 0	3	3	0	2	3	3 0	1 4
1041:	2	2 2	0 1	2 0	2 2	1 1	4	0
1057:	0	2	1	0	1	1	3	3
1065:	3	3	Ō	4	2	$\frac{-}{4}$	0	2
1073:	1	3	1	1	4	3	3	1
1081:	1	1	2	4	2	0	2	0
1089:	1	1	3	0	4	3	1	0
1097: 1105:	1 1	0	0	1	0	2 2	1 1	0 1
1113:	2	3 0	1 1	1 0	1 2	1	2	6
1121:	2	2	1	2	2	3	2	0
1129:	ī	ī	2	3	1	2	3	2
1137:	0	0	2	2	0	2	0	0
1145:	2	1	2	1	3	2	1	2
1153:	0	1	1	2	1	1_	2	1
1161: 1169:	2 3	2 2	0	3 3	0 3	5 2	0 2	3 3
1177:	3	1	1 0	2	0	3	2	1
1185:	2	2	2	1	í	4	Õ	2
1193:	0	0	2	3	2	1	0	0
1201:	0	1 0	1	1	1	1	2 2	0
1209:	1	0	0	0	4	1 2 4 2 0 2 0	2	2
1217: 1225:	2	3	0	1	3	4	0	1
1233:	3	2	1 0	1 0	0 1	0	2 0	0 1
1241:	2 2 3 2	3 1 2 0	Ö	2	2	2	3	1
1249:	1	Ō	Ö	_ 1	1	0	3 2	1
1257:	0	1	1	3	0	0	0	1
1265:	1	0	1	1	0	0	1	2
1273: 1281:	0	2 1 3	0	1	0	0 2 1	1	0
1281:	2 1	3 T	1 2	0 2	2 2	1	0	0 1
1297:	1	o	3	1	0	0 2	2 3 2	4
1305:	1	1	3 3	ī.	Ö	ō	2	1
1313:	1	0	2	1	1		3	1
1321:	0	0	1	1	2	1	0	2
1329: 1337:	2	1	3	4	0	1 1 3 3	0	0
1337:	3 1	0 1	0 2	0 0	1 1	3 1	1 0	3 0
1353:	2	1	1	1	1	3	3	0
1361:	2 2	ī	Ō	Ō	ī	ō	í	1
1369:	1	1	1	1	0	1	2	1
1377:	2 2	1	0	2	1	1	0	0
1385:	2	1	0	3	2	1	1	1

1393:	1	0	1	0	0	0	1	0
1401:	1	0	3	0	0	1	1	2
1409:	1	0	1	2	2	2	0	1
1417:	0	0	2	1	0	0	1	0
1425:	1	2	2	2	2	1	1	1
1433:	1	1	0	3	1	2	1	0
1441:	1	0	1	0	1	1	1	0
1449:	2	2	0	1	1	0	1	0
1457:	1	0	4	0	5	4	3	- 0
1465:	1	0	0	0	2	1	0	1
1473:	0	2	0	0	1	2	0	1
1481:	2	0	0	1	0	2	1	0
1489:	0	2	0	0	2	1	1	1
1497:	1	0	2	0	2	1	0	0
1505:	1	0	2	0	3	1	0	1
1513:	1	0	0	1	1	0	0	2
1521:	0	0	0	0	1	0	3	0
1529:	1	0	0	0	1	0	0	0
1537:	1	1	0	1	3	1	1	2
1545:	1	1	1	0	2	3	0	1
1553:	0	1	0	0	1	1	3	2
1561:	0	0	0	0	0	0	1	1
1569:	2	1	0	0	1	0	0	2
1577:	0	0	0	0	0	1	1	1
1585:	2	1	0	2	1	1	1	0
1593:	2	0	2	2	1	0	0	0
1601:	0	2	3	1	1	0	0	0
1609:	0	1	1	1	1	0	1	0
1617:	1	2	0	3	1	0	1	1
1625:	1	0	1	1	3	1	1	0
1633:	2	1	1	0	0	0	0	2
1641:	0	0	1	0	2	0	0	1
1649:	0	0	0	0	2	0	2	2
1657:	0	2	0	0	1	2	. 0	0
1665:	1	4	0	0	2	0	0	1
1673:	0	2	1	0	1	1	2	0
1681:	1 1 2	0	0	1	2	0	0	0
1689:	1	1	0	0	3	0	2	0
1697:		0	1	2	0	0	0	2
1705:	0	1	1	0	1	0	0	1
1713:	0	1	2	1	0	1	0	0
1721:	0	1	0	1	0	0	1	1
1729:	3	1	0	1	0	2	1	0
1737:	0	0	2	0	0	2	1	1
1745: 1753:	0	1	0	2	0	1	1	0
1753: 1761:	1 0	2 2	0	1	0	3	0	0
1761: 1769:		2	1	0	1	0	1	1
1769: 1777:	0 1	0 1	0	3	1	1	0	0
1785:	1	1	0 1	2 1	0	0 0	2 0	0 0
1793:	1	1	0	0	0 0	0	1	0
1801:	2	1	2	0	0	0	0	0
1809:	0	0	1	0	0	0	1	0
1817:	4	0	1	0	0	0	1	0
1825:	0	0	0	0	1	0	0	2
1833:	0	1	0	0	0	1	0	0
1841:	1	0	0	0	0	1	0.	0
1849:	Ō	3	3	0	2	1	0	0
1857:	ĺ	ő	1	1	0	0	Ö	2
1865:	Ō	ő	Ō	3	0	Ö	Ö	1
		-	-	-	•	·	-	-

1873:	0	0	0	0	1	1	0	0
1881:	0	0			Ö	0	1	0
1889:			0	0			0	0
	1	1	0	1	0	0		_
1897:	1	0	1	1	0	0	0	0
1905:	0	0	0	0	1	0	0	0
1913:	0	0	0	0	0	0	2	0
1921:	1	0	0	0	1	0	1	0
1929:	0	1	0	0	1	0	0	0
1937:	0	0	0	1	0	2	1	0
1945:	· 2	1	0	0	0	1	0	0
1953:	0	0	0	0	1	1	0	0
1961:	0	1	Ö	ĺ	0	0	0	0
1969:	0	1	Ö	0	Ö	Ö	2	0
1977:	Ö	0	Ö	Ö	ĺ	Ö	0	Ö
1985:	2	Ö	Ö	í	Ō	Ö	ŏ	3
1993:	Õ	0	2	0	0	ĺ	0	0
2001:	1	0	0	1	1	1	0	2
2009:	0	1			0	1	0	
2009:			0	1				1
	0	0	3	1	0	1	1	1
2025:	0	0	0	0	0	1	0	1
2033:	1	0	0	0	0	0	0	1
2041:	1	1	1	1	1	1	0	1
2049:	1	3	2	1	1	0	1	0
2057:	1	3	0	1	0	0	0	0
2065:	1	1	1	0	0	0	0	0
2073:	0	1	0	0	0	0	0	0
2081:	0	0	1	0	0	0	0	0
2089:	1	1	0	0	0	1	. 0	1
2097:	1	0	1	2	2	0	0	0
2105:	0	1	0	_ 1	1	0	0	0
2113:	0	0	Ö	Ö	0	Ö	1	0
2121:	0	1	i.	Ö	Ö	ĺ	Ō	Ö
2129:	Ö	0	Ō	Ö	Ö	Ō	Ö	Ö
2137:	ő	Ô	Ö	Ö	1	Ö	Ö	1
2145:	2	1	0	0	0	1	1	0
2153:	o o	1	0	1		<u> </u>	0	0
2161:	Ö	0			0	0		0
2169:	Ö	0	0	2	1	0	0	0
2107:	0		0	0	1	0	1	0
2177.	0	0	1	0	1	0	0	2
2193:	1	0	0	0	0	0	1	0
		2	0	0	0	1 0	0	0
2201: 2209:	1	0	0	2	0	Ü	0	2
	0	1 2 2 1	1	0	0	0	0	0
2217:	2	2	1	0	1	1	0	0
2225:	1	2	0	0	0	0	0	1
2233:	0		0	1	1	0	0	0
2241:	0	0	1	0	0	1 0	0	0
2249:	1	1	0	0	0	0	0	1
2257:	0	0	2	0	1	0	0	1
2265:	0	1	1	1	0	1	0	0
2273:	2	0	0	0	1	1 1 1	0	0
2281:	1	0	1	0	0	1	1	0
2289:	0	1	1	0	0	0	0	0
2297:	0	1	0	Ō	1	0	Ō	1
2305:	0	0	0	Ō	1	Ō	Ö	0
2313:	2	0	Ō	1	_ 1	1	Ö	1
2321:	0	Ō	Ö	ō	2	ō	2	1
2329:	Ō	Ö	ŏ	Ö	1	ő	Ō	i
2337:	o ·	Ö	Ö	ő	Ō	ő	ĺ	0
2345:	ĺ	Ö	Ö	ő	ő	Ö	Ō	0
	_	•	•	•	•	•	J	U

2353:	2	1	0	0	0	1	0	0
2361:	0	ī	Ö	ő	Ö	Ō	Ö	0
2369:	1	0	0	0	1	0	0	0
2377:	0	0	0	1	0	2	0	0
2385:	1	1	0	0	0	0	0	0
2393:	0	1	0	1	0	0	1	0
2401:	0	2	0	0	0	1	0	0 =
2409: 2417:	0 1	0 0	1 0	0 1	1 0	0 0	0 0	0
2425:	0	1	0	3	0	1	1	0
2433:	ŏ	Õ	ő	ő	ő	0	2	Ö
2441:	2	Ö	Ö	Ö	0	Ō	0	1
2449:	0	0	0	0	1	0	0	0
2457:	0	1	0	0	0	0	0	0
2465:	1	1	1	0	0	0	0	0
2473: 2481:	0 0	0	1	0	0	0	1 0	0
2481:	0	0 0	0 0	0 0	2 0	1 1	1	1
2497:	1	0	Ö	1	1	0	ĺ	1
2505:	1	2	Ö	Ō	Õ	Ö	ō	0
2513:	0	0	1	0	0	0	0	0
2521:	0	0	1	1	0	0	0	0
2529:	1	0	0	0	0	0	0	0
2537: 2545:	0	0	0	1	0	0	0	0
2545: 2553:	0 1	0 0	0 1	0 0	1 1	0 1	0 1	0
2561:	1	1	0	0	Ō	0	Ō	0
2569:	0	0	Ō	Ö	Ö	0	0	1
2577:	0	0	0	1	0	0	0	0
2585:	0	0	0	0	0	0	0	0
2593:	0	0	0	0	0	0	1	0
2601: 2609:	0 0	0	0 0	0 1	0 1	0 4	3 5	0 2
2617:	2	0	0	0	0	0	1	0
2625:	0	ĺ	Ö	Ö	Ö	Ö	ō	Ö
2633:	0	0	0	1	0	0	0	0
2641:	0	0	1	0	0	0	0	1
2649:	0	0	0	0	0	0	0	0
2657: 2665:	0 0	0 0	0 0	0	0 1	1 0	1 0	0
2673:	0	1	0	1 0	0	0	0	1
2681:	Ö	Ō	Ö	ő	ĭ	Ö	ĺ	Ō
2689:	0	0	0	0	0	0	0	0
2697:	1	0	0	0	0	1	1	0
2705:	0	1	0	0	1	1	0	0
2713: 2721:	0 1	0 0	0	1	0	0	0	0
2729:	1	0	0 0	0 0	0 0	0 0	0 0	0
2737:	Ō	í	ő	Ö	Ö	1	í	Ö
2745:	0	0	Ö	ĺ	Ō	Ō	0	0
2753:	1	0	0	0	0	0	0	1
2761:	1	0	0	0	0	0	1	0
2769: 2777:	0 0	0	1	1	0	0	0	0
2777:	0	0 0	0 0	0 1	0 0	0 0	1 0	2 0
2793:	Ö	Ö	0	0	0	0	0	0
2801:	0	Ö	Ö	Ö	Ö	Ö	Ö	Ö
2809:	0	1	0	0	0	0	0	0
2817:	0	0	0	0	1	0	1	1
2825:	0	0	0	0	0	0	0	0

2833:	0	0	0	0	0	0	0	0
2841:	1	0	0	0	0	Ö	Ö	0
2849:	0	0	0	0	0	0	0	0
2857:	1	0			0	2	0	Ö
			0	0			0	0
2865:	0	1	0	0	0	0		
2873:	0	0	0	0	0	0	0	0
2881:	1	0	0	0	0	1	0	0
2889:	0	0	0	1	0	0	0	1
2897:	1	0	0	0	0	0	0	0
2905:	0	0	0	0	1	0	1	0
2913:	0	0	0	0	0	0	0	0
2921:	0	0	0	0	0	0	0	0
2929:	0	0	0	0	0	0	1	0
2937:	0	0	0	0	0	0	1	1
2945:	0	0	0	0	0	1	0	0
2953:	0	0	0	0	0	0	0	1
2961:	0	1	0	0	0	0	0	0
2969:	0	1	0	0	0	0	0	0
2977:	1	0	0	0	0	0	0	0
2985:	0	0	0	0	0	0	0	0
2993:	0	1	3	1	0	0	0	0
3001:	0	0	0	0	0	0	0	0
3009:	0	0	0	1	1	2	0	0
3017:	0	0	0	0	0	1	0	0
3025:	0	0	0	0	0	0	0	0
3033:	0	0	0	1	Ō	Ō	1	1
3041:	0	0	1	0	0	Ō	0	0
3049:	0	Ö	0	1	1	Ō	1	Ŏ
3057:	ĺ	i	0	Ō	0	0	0	Ŏ
3065:	0	Ō	Ö	Ö	Ö	Ö	Ö	Õ
3073:	Ö	Ö	Ö	Ŏ	Ŏ	0	Ö	0
3081:	0	Ö	Ö	0	Ö	Ö	Ö	Õ
3089:	Ö	Ö	ĺ	0	0	Ö	Ö	0
3097:	Ö	0	0	0	0	0	0	0
3105:	Ö	Ö	Ö	0	0	1	0	0
3113:	0	0	Ö	0	0	0	0	0
3121:	ĺ	o ·	Ö	0	0	Ö	Ö	0
3129:	0	0	Ö	0	0	0	Ö	0
3137:	ĺ	0	1	0	0	0	0	0
3145:	Ō	0	0	0	0	0	0	0
3153:	Ö	0	2	0	1	1	0	0
3161:	ĺ	2	0	0	0	0	0	0
3169:	0	0	1	0	0	0	0	0
3177:	Ö	1	0	0	0	0	0	0
3185:	0	0	0	0	0	0	1	0
3193:	0	0	0					
3201:	0	0		0	1	0	0	1
3209:	0		0	0	0	0	0	0
3217:	1	1 0	0	0	1	0	0	0
3225:			0	0	0	0	0	0
3233:	0	0	0	0	0	0	1	0
	0	2	0	0	0	0	0	0
3241:	0	0	0	0	0	0 1	0	0
3249:	1	0	0	0	0	Ţ	0	1
3257:	0	0	0	1	0	0	0	1
3265:	0	0	0	0	0	0	0	0
3273:	0	0	0	0	0	0	0	1
3281:	0	0	0	0	0	0	0	0
3289:	1	0	0	1	0	0	0	0
3297:	0	0	0	0	0	0	1	1
3305:	0	0	0	1	1	0	1	1

3313: 3321: 3329: 3337: 3345: 3353: 3361: 3369: 3377: 3385: 3393: 3401: 3409: 3417: 3425: 3433: 3441:	1 0 0 0 0 1 0 0 0 0 0 0	1 0 1 0 0 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 2 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0
3457: 3465:	0 0	0 0	1 0	0 0	0 0	0 0	0 0	1 0
3473:	0	0	0	1	0	0	0	0
3481: 3489:	0 0	1 0	0 0	0	0	0 0	0 0	0 0
3497:	0	0	0	1 0	0 0	0	1	1
3505:	0	0	0	Ō	0	0	0	0
3513:	0	0	0	1	0	0	1	0
3521: 3529:	0 0	0	0	0	0	0	0	0
3537:	0	0 0	1 0	0 0	1 0	0 0	0 0	0 0
3545:	Ö	Ö	ő	Ö	Ö	ő	ŏ	0
3553:	0	0	1	0	0	1	0	0
3561:	0	0	0	1	0	0	0	0
3569: 3577:	0 1	0 0	0 1	0 0	0 1	0 0	0 0	0 1
3585:	Ō	0	0	1	0	1	0	0
3593:	0	Ö	Ö	ō	ĺ	ō	0	Ö
3601:	0	0	1	0	0	1	0	1
3609:	0	0	0	0	0	0	0	0
3617: 3625:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 2
3633:	ő	Ö	1	0	0	0	1	0
3641:	0	0	0	Ö	0	1	0	1
3649:	0	0	0	0	0	0	0	0
3657: 3665:	0 0	0 0	0 0	0 0	1 0	0 0	0 1	0 0
3673:	Ö	0	0	0	0	0	0	0
3681:	0	Ö	Ö	1	2	Ö	Ö	Ö
3689:	0	0	0	0	0	0	0	0
3697: 3705:	0 0	0	0	0	0	0	0	0
3713:	0	0 0	0 0	1 0	0	1 0	0 0	0 0
3721:	ŏ	Ö	Ö	0	0	0	Ö	0
3729:	0	0	0	0	Ō	1	0	Ō
3737: 3745:	0	0	0	1	0	0	0	0
3745: 3753:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
3761:	ő	0	1	0	0	1	0	1
3769:	0	0	1	. 0	Ö	1	Ö	ō
3777:	0	1	1	0	0	0	0	0
3785:	0	0	0	0	0	0	0	1

S AND PROPERTY.

3793:	0	0	0	0	1	0	0	0
3801:	Ö	Ö	ő	Ö	Ō	ĺ	Ö	ĺ
3809:	Ö	ő	ĺ	Ö	Ö	Ō	Ö	0
3817:	Ö	ő	Ō	Ö	Ö	Ö	Ö	Ö
3825:	Ö	Ö	0	1	0	ĺ	Ö	o O
3833:	1	0	0	0	0	0	0	0
3841:	0	1	-	=	0	0	•	0
3849:	0		0	0			0	
3857:		0	0	0	0	0	0	0
3857: 3865:	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0
3873:	0	0	1	1	0	0	0	0
3881:	0	0	0	0	0	0	0	0
3889:	0	0	0	0	0	0	0	0
3897:	0	0	0	0	0	0	0	0
3905:	0	0	0	0	0	0	0	1
3913:	0	1	0	0	0	0	0	0
3921:	0	1	0	0	0	0	0	0
3929:	0	0	0	0	0	1	0	1
3937:	0	0	0	0	0	0	0	0
3945:	0	0	0	0	. 0	0	0	0
3953:	0	0	0	0	0	0	0	0
3961:	1	0	0	1	0	0	0	0
3969:	0	0	1	0	0	0	0	0
3977:	0	0	0	0	0	1	0	0
3985:	0	0	0	0	0	0	0	2
3993:	0	0	0	1	0	0	0	0
4001:	0	0	1	0	0	0	1	0
4009:	0	0	0	0	0	0	1	0
4017:	0	0	0	0	0	0	0	0
4025:	0	1	1	ĺ	Ō	Ö	0	1
4033:	0	0	0	0	Ö	Ö	Ō	0
4041:	0	Ö	Ö	Ö	Ö	Ö	Ö	Ŏ
4049:	1	Ö	0	Ö	Ö	Ö	Ö	Ö
4057:	0	ĺ	Ö	Ö	Ö	Ö	Ö	Ö
4065:	0	0	Ö	Ö	Ö	Ö	Ö	Ö
4073:	1	Ö	Ö	Ö	Ö	Ö	Ö	0
4081:	0	Ö	Ö	0	0	Ö	1	0
4089:	Ö	Ö	0	0	0	0	0	0
	ŭ	J	U	J		U	U	U

Acquisition date : 22-FEB-2012 10:27:59 Sample ID : 1201163-03

VAX/VMS Peak Search Report Generated 22-FEB-2012 11:28:57.12

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_120116303_GE1_GAS1102_176236.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF V2.2

Client ID :: JM-70-32-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 10:27:59

Sample Quantity : 5.79990E+02 GRAM

Sample ID : 1201163-03
Sample type : SOLID
Detector name : GE1 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 01:00:44.07 1.2% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 01:00:00.00

Start channel : 5
Sensitivity : 2.40000
Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
0	46.67*	9057	16762	1.80	46.30	44	5	4.8		PB-210
0	53.21	2024	24429	1.14	52.84	50	6	24.8		
0	63.50*	7570	28675	1.35	63.13	61	5	7.1		TH-234
0	67.88	1389	23867	1.74	67.51	66	4	31.9		
0	76.69*	57471	70461	2.91	76.32	71	12	2.0		
0	93.16*	11796	32592	1.66	92.80	90	7	5.5		GA-67
0		907	16732	1.84	112.80	111	5	43.4		
0	144.51*	1844	23732	1.40	144.15	141	7	28.1		U-235
										CE-141
0	154.66	1210	20377	1.89	154.30	152	6	37.8		
0	164.31*	724	17840	2.28	163.96	162	6	58.9		U-235
0	186.48*	20217	24775	1.50	186.13	182	9	3.1		RA-226
0	205.70	654	11107	1.84	205.36	204	5	49.1		U-235
1	236.42	1819	9281	1.51	236.09	233		16.5	4.72E+00	NB-95M
1	242.40	17744	7221	1.44	242.07	233	14	2.0		RA-224
1	256.39	881	7715	1.77	256.05	253			7.23E+00	
1	259.21	1229	7550	1.78	258.88	253		22.4		
6	270.58	3225	12627	2.87	270.25	264			6.34E+00	
6	275.03	964	6813	1.57	274.70	264		27.2		
0	286.70	359	7944	5.26	286.38	284		79.5		
3	295.61*	39929	6245	1.54	295.29	290			1.65E+01	
3	299.78	1387	8713	2.19	299.45	290		28.7		GA-67
1	324.24	595	5022	1.83	323.92	321			2.86E+00	RA-223
1	330.15	592	5229	1.68	329.83	321		37.2		
0	338.98	394	6216	1.94	338.67	336		64.2		
2	352.32*	68438	4448	1.59	352.01	346			4.17E+01	PB-214
2	355.96	1843	4879	2.04	355.65	346		18.4		
0	388.23	810	6376	2.98	387.93	385		34.8		
1	402.17	686	4729	1.87	401.87	399			3.03E+00	
1	405.37	514	4745	1.90	405.07	399		44.2		PB-211
0	428.39	348	4320	1.83	428.10	426		61.0		
0	444.73	180	3392	2.01	444.44	443		.03.7		
0	455.03	324	3927	1.84	454.74	452		65.1		
0	462.10	266	2655	1.53	461.81	460		59.4		
0	469.56	158	3096	1.07	469.27			12.4		
2	480.91	539	2883	2.14	480.63	477	14	32.6	1.14E+00	

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
2	487.56	545	2327	1.57	487.28	477	14 28.0		
0	511.00*	945	4545	2.96	510.72	505	11 28.5		
1	531.45	117	1129	1.64	531.18	530	10 78.7	4.76E+00	
1	534.45	349	2318	1.98	534.18	530	10 45.5		
0	543.96	136	2431	1.52	543.69	542	6116.3		
0	580.87	267	2815	1.37	580.61	577	7 66.8		
6	604.82	224	688	2.08	604.56	603		2.46E+01	
6	609.75*	50593	1567	1.72	609.50	603	18 0.9		BI-214
6	613.64	1578	1988	2.46	613.39	603	18 22.9		
0	665.84	1493	2625	1.96	665.60	661	10 13.8		
0	688.81	89	1219	1.34	688.57	687	5119.0		
0	703.73 720.85	460	2177	2.01	703.50	700	8 36.4		
0	742.62	382 242	1925 1803	1.66 3.19	720.62 742.39	717 739	8 41.1 7 59.4		
0	768.79*	5167	2580	2.06	768.57	764	11 4.7		
Ö	786.35	951	2062	1.65	786.13	782	8 17.8		
Ō	806.43	1105	1857	2.08	806.21	802	8 14.8		
Ō	826.23	126	1625	1.96	826.02	824	7107.5		
2	832.48	260	1099		832.27	830		2.99E+00	PB-211
2	839.53	621	1337		839.32	830	15 20.4		
0	873.10	163			872.90	870	8 92.6		
0	934.74	2633	2379		934.55	930	11 8.2		
0	964.29	385	1534	2.74	964.11	961	8 36.5		
0	1002.11*	570	1853	2.27	1001.93	997	10 29.6		PA-234M
0	1022.42	101	1178		1022.25	1020	7115.2		
0	1052.73	216	1091		1052.56	1049	7 52.7		
0	1070.38	255	1240		1070.22	1066	8 49.6		
0	1083.43	93	869		1083.27	1081	6102.9		
0	1097.03	109	845		1096.88	1095	6 86.4		
0	1104.85	208	1190		1104.70	1101	8 59.1	1: 688 00	DT 014
3 3	1120.80 1124.46	10631	1008		1120.64	1115		1.67E+00	B1-214
5	1152.06	292 52	1358 443		1124.31 1151.91		14 81.6	1.74E+00	
5	1155.74	1232	877		1151.91				
0	1183.15	161	1100		1183.00		8 73.4		
1	1205.35	71	233		1205.21	1204		3.52E+00	
1	1208.34	287	819		1208.21	1204	12 35.9	3.322.00	
0	1219.38	94	1000		1219.25	1216	8118.3		
4	1238.63	3955	709		1238.50	1233		7.12E-01	
4	1242.47	151	719	2.55	1242.34	1233	13 64.2		
0	1253.79	200	1122	3.30	1253.66	1250	9 61.9		
0	1281.49	941	1183		1281.37	1277	10 15.2		
0	1317.52	114	964		1317.41	1313	9 99.8		
1	1378.24	2924	786		1378.14	1373		7.08E+00	
1	1386.15	477	737		1386.05	1373	18 21.3		
0	1402.08	884	809		1401.99	1398	8 13.0		
0 0	1408.66 1461.44*	1355	942		1408.57	1405	8 9.6		TZ 40
3	1504.95	942 121	1039 537		1461.36 1504.88	1457	10 14.4		K-40
3	1509.80	1425	728		1504.88		17 59.4	2.28E+00	
3	1514.81	123	801		1514.74		17 87.2		
-			301	2. · U I	-J,/-	1302	11 01.2		

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
3	1538.85	329	971	2.84 1538.79	1533	15 36.3	1.80E+00	
3	1543.73	262	718	2.22 1543.67	1533	15 37.2		
0	1583.67	381	777	2.23 1583.62	1579	10 29.2		
1	1594.83	153	574	2.23 1594.77	1591		4.92E+00	
1	1600.19	244	540	2.48 1600.14	1591	15 33.9		
0	1661.86	679	619	2.37 1661.83	1655	13 16.9		
0	1682.99	101	466	1.93 1682.95	1677	12 87.9		
0	1693.32	178	421	2.62 1693.28	1689	10 45.7		
0	1730.09	1970	441	2.72 1730.07	1726	12 6.2		
0	1738.99	52	263	4.53 1738.97	1737	9115.4		
0	1765.11*	9170	448	2.40 1765.09	1758	14 2.3		BI-214
4	1839.01	165	281	2.94 1839.01	1832		1.49E+00	
4	1848.02	1241	201	2.34 1848.02	1832	24 6.8		
3	1868.30	50	73	3.12 1868.30	1867	12 47.0	7.64E+00	
3	1873.65	133	215	3.12 1873.66	1867	12 43.9		
3	1890.89	60	140	2.40 1890.90	1888		1.43E+00	
3	1896.77	104	243	3.13 1896.78	1888	15 58.3		
5	1937.43	79	248	3.81 1937.45	1933	26 74.5	2.26E+00	
5	1947.76	38	239	3.15 1947.78	1933	26150.9		
5	1956.26	69	128	3.57 1956.28	1933	26 52.1		
1	2017.20	40	105	2.63 2017.24	2014	13 84.6	3.33E+00	
1	2021.20	36	115	2.63 2021.24	2014	13116.8		
0	2052.37	42	127	1.35 2052.41	2049	8 97.7		
0	2064.74	24	69	2.05 2064.79	2061	7120.8		
2	2109.45	31	68	2.93 2109.51	2106	19 95.0	1.97E+00	
2	2119.03	658	64	2.79 2119.09	2106	19 8.9		
0	2191.19	53	79	6.25 2191.27	2187	10 67.9		
0	2204.65	2472	134	2.49 2204.73	2198	14 4.5		BI-214
0	2236.14	25	36	3.02 2236.22	2229	11100.3		
0	2293.97	125	67	2.61 2294.06	2289	13 32.7		
0	2336.37	49	42	8.56 2336.47	2322	29 82.0		
0	2366.01	14	16	8.12 2366.12	2360	11122.9		
0	2448.05	653	28	2.46 2448.17	2444	11 8.4		
0	2547.93	13	0	4.87 2548.08	2545	7 55.5		
0	2615.36*	69	2	2.18 2615.52		11 26.8		
0	2695.47	21	3	2.72 2695.65	2690	13 55.0		
0	3000.36	5	0	1.70 3000.60	2998	5 89.4		

Acquisition date : 22-FEB-2012 10:27:59 Sample ID : 1201163-03

Total number of lines in spectrum 123 Number of unidentified lines 76

Number of lines tentatively identified by NID 47 38.21%

Nuclide Type : NATURAL

	-71-0		_	_		
			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.273E+01	2.273E+01	0.391E+01	17.20
PB-210	22.26Y	1.00	1.056E+02	1.058E+02	0.105E+02	9.92
PB-211	3.28E+04Y	1.00	1.572E+01	1.572E+01	0.479E+01	30.50
BI-214	1602.00Y	1.00	1.552E+02	1.552E+02	0.076E+02	4.92
PB-214	1602.00Y	1.00	1.554E+02	1.554E+02	0.101E+02	6.50
RN-219	3.28E+04Y	1.00	9.880E+00	9.880E+00	3.354E+00	33.95
RA-223	3.28E+04Y	1.00	1.221E+01	1.221E+01	0.464E+01	38.01
RA-224	1.41E+10Y	1.00	2.926E+02	2.926E+02	0.273E+02	9.33
RA-226	1602.00Y	1.00	3.457E+02	3.457E+02	6.332E+02	183.18
PA-234M	4.47E+09Y	1.00	1.204E+02	1.204E+02	0.372E+02	30.90
TH-234	4.47E+09Y	1.00	8.940E+01	8.940E+01	0.984E+01	11.01
U-235	7.04E+08Y	1.00	8.175E+00	8.175E+00	3.284E+00	40.18
	Total Activ	vity :	1.333E+03	1.333E+03		

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error	Flags
GA-67	3.26D	224.	7.895E+00	1.767E+03	4.700E+03	265.94	_
NB-95M	3.61D	133.	4.674E+00	6.202E+02	1.169E+02	18.84	

Total Activity: 1.257E+01 2.388E+03

Nuclide Type : FISSION

			Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide CE-141	Hlife 32.50D	_	pCi/GRAM 1.905E+00	pCi/GRAM 3.279E+00	2-Sigma Error 1.198E+00	_	Flags
	Total Acti	vity:	1.905E+00	3.279E+00			

Grand Total Activity: 1.347E+03 3.724E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 5
Acquisition date: 22-FEB-2012 10:27:59

Nuclide	Type: NATU	RAL		
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff 5.027E-01	Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Status 2.273E+01 2.273E+01 17.20 OK
	Final Mean	for 1	Valid Peaks	= 2.273E+01+/-3.909E+00 (17.20%)
PB-210	46.50	4.25*	2.613E+00	1.056E+02 1.058E+02 9.92 OK
	Final Mean	for 1	Valid Peaks	= 1.058E+02+/- 1.049E+01 (9.92%)
PB-211				1.669E+01 1.669E+01 45.14 OK 1.506E+01 1.506E+01 41.28 OK
	Final Mean	for 2	Valid Peaks	= 1.572E+01+/- 4.794E+00 (30.50%)
BI-214	609.31 1120.29 1764.49 2204.22	46.30* 15.10 15.80 4.98	9.927E-01 6.104E-01 4.432E-01 3.885E-01	1.425E+02 1.425E+02 10.17 OK 1.493E+02 1.493E+02 9.36 OK 1.695E+02 1.695E+02 9.28 OK 1.654E+02 1.654E+02 10.69 OK
	Final Mean	for 4	Valid Peaks	= 1.552E+02+/-7.642E+00 (4.92%)
PB-214	295.21 351.92	19.19 37.19*	1.736E+00 1.529E+00	1.551E+02 1.551E+02 9.17 OK 1.557E+02 1.558E+02 9.22 OK
	Final Mean	for 2	Valid Peaks	= 1.554E+02+/- 1.011E+01 (6.50%)
RN-219	401.80	6.50*	1.383E+00	9.880E+00 9.880E+00 33.95 OK
	Final Mean	for 1	Valid Peaks	= 9.880E+00+/- 3.354E+00 (33.95%)
RA-223	323.87	3.88*	1.626E+00	1.221E+01 1.221E+01 38.01 OK
	Final Mean	for 1	Valid Peaks	= 1.221E+01+/- 4.640E+00 (38.01%)
RA-224	240.98	3.95*	1.987E+00	2.926E+02 2.926E+02 9.33 OK
	Final Mean	for 1	Valid Peaks	= 2.926E+02+/- 2.731E+01 (9.33%)
RA-226	186.21	3.28*	2.308E+00	3.457E+02 3.457E+02 183.18 OK
	Final Mean	for 1	Valid Peaks	= 3.457E+02+/- 6.332E+02 (183.18%)
PA-234M	1001.03	0.92*	6.658E-01	1.204E+02 1.204E+02 30.90 OK
	Final Mean	for 1	Valid Peaks	= 1.204E+02+/- 3.720E+01 (30.90%)
TH-234	63.29	3.80*	2.884E+00	8.940E+01 8.940E+01 11.01 OK
	Final Mean	for 1	Valid Peaks	= 8.940E+01+/- 9.843E+00 (11.01%)

Nuclide Line Activity Report (continued) Page: 6
Sample ID: 1201163-03 Acquisition date: 22-FEB-2012 10:27:59

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma Nuclide %Eff pCi/GRAM pCi/GRAM %Error Status Energy %Abn 33.43 <<WM Interf U-235 143.76 10.50* 2.601E+00 8.741E+00 8.741E+00 163.35 4.70 2.462E+00 8.094E+00 8.094E+00 62.02 OK 2.188E+00 8.235E+00 8.235E+00 52.74 OK 205.31 4.70

Final Mean for 2 Valid Peaks = 8.175E+00+/-3.284E+00 (40.18%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Nuclide Energy %Abn %Eff Status GA-67 93.31 35.70* 3.286E+03 350.48 2.914E+00 1.468E+01 OK 2.166E+00 ---- Line Not Found ----208.95 2.24 Absent 300.22 16.00 1.716E+00 6.539E+00 1.464E+03 351.71 OK

Final Mean for 2 Valid Peaks = 1.767E+03+/-4.700E+03 (265.94%)

NB-95M 235.69 25.00* 2.015E+00 4.674E+00 6.202E+02 18.84 OK

Final Mean for 1 Valid Peaks = 6.202E+02+/-1.169E+02 (18.84%)

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma
Nuclide Energy %Abn %Eff pCi/GRAM pCi/GRAM %Error Status
CE-141 145.44 48.40* 2.589E+00 1.905E+00 3.279E+00 36.56 OK

Final Mean for 1 Valid Peaks = 3.279E+00+/-1.198E+00 (36.56%)

Flag: "*" = Keyline

Page: 7
Acquisition date: 22-FEB-2012 10:27:59

Nuclide	Activity (pCi/GRAM)	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
K-40	2.273E+01	3.909E+00	3.048E+00	2.585E-01	7.456
GA-67	1.767E+03	4.700E+03	1.953E+02	6.842E+02	9.052
NB-95M	6.202E+02	1.169E+02	1.460E+02	1.195E+01	4.249
CE-141	3.279E+00	1.198E+00	1.032E+00	2.374E-01	3.177
PB-210	1.058E+02	1.049E+01	6.242E+00	4.818E-01	16.948
PB-211	1.572E+01	4.794E+00	9.867E+00	8.204E-01	1.593
BI-214	1.552E+02	7.642E+00	5.587E-01	5.196E-02	277.759
PB-214	1.554E+02	1.011E+01	7.148E-01	5.912E-02	217.469
RN-219	9.880E+00	3.354E+00	4.374E+00	3.626E-01	2.259
RA-223	1.221E+01	4.640E+00	7.017E+00	5.787E-01	1.740
RA-224	2.926E+02	2.731E+01	7.071E+00	5.789E-01	41.378
RA-226	3.457E+02	6.332E+02	9.000E+00	1.648E+01	38.410
PA-234M	1.204E+02	3.720E+01	3.371E+01	2.732E+00	3.572
TH-234	8.940E+01	9.843E+00	8.361E+00	6.194E-01	10.693
U-235	8.175E+00	3.284E+00	2.749E+00	4.848E-01	2.973

Non-	Non-Identified Nuclides										
	Key-Line					/					
717	Activity	K.L.	Act error	MDA	MDA error	Act/MDA					
Nuclide	(pCi/GRAM)	Ided		(pCi/GRAM)							
BE-7	7.697E-01		2.511E+00	3.566E+00	3.144E-01	0.216					
NA-22	1.605E-01		2.143E-01	3.225E-01	2.639E-02	0.498					
AL-26	4.597E-02		1.184E-01	1.993E-01	1.592E-02	0.231					
TI-44	6.540E-01	+	2.162E-01	3.575E-01	2.801E-02	1.829					
SC-46	4.820E-03		2.383E-01	3.985E-01	3.189E-02	0.012					
V-48	-1.098E-01		5.725E-01	9.500E-01	7.677E-02	-0.116					
CR-51	-4.029E+00		3.625E+00	5.096E+00	4.442E-01	-0.791					
MN-54	3.987E-01		2.186E-01	3.375E-01	2.864E-02	1.181					
CO-56	-1.031E-01		2.558E-01	3.798E-01	3.186E-02	-0.271					
CO-57	-5.507E-03		2.050E-01	3.297E-01	3.182E-02	-0.017					
CO-58	5.010E-02		2.532E-01	3.827E-01	3.325E-02	0.131					
FE-59	5.772E-01		6.777E-01	8.220E-01	7.329E-02	0.702					
CO-60	5.142E-02		2.031E-01	3.221E-01	2.634E-02	0.160					
ZN-65	3.367E-01		4.651E-01	7.009E-01	5.744E-02	0.480					
SE-75	-1.822E-01		4.201E-01	5.272E-01	4.329E-02	-0.346					
RB-82	-1.172E+00		3.120E+00	4.252E+00	3.780E-01	-0.276					
RB-83	-7.952E-02		4.392E-01	6.723E-01	1.067E-01	-0.118					
KR-85	1.363E+02		4.164E+01	6.417E+01	5.779E+00	2.123					
SR-85	7.785E-01		2.379E-01	3.667E-01	3.302E-02	2.123					
Y-88	3.083E-01		1.607E-01	2.983E-01	2.370E-02	1.033					
NB-93M	-6.609E+01		1.507E+01	2.087E-01	4.644E-02	-316.701					
NB-94	1.422E-01		2.080E-01	3.163E-01	2.585E-02	0.450					
NB-95	5.943E+00		7.026E-01	7.404E-01	6.630E-02	8.027					
ZR-95	-4.616E-01		3.891E-01	6.366E-01	6.265E-02	-0.725					
RU-103	-1.885E-01		2.628E-01	4.428E-01	6.354E-02	-0.426					
RU-106	-1.665E-01		1.738E+00	2.646E+00	3.657E-01	-0.063					
AG-108M	3.151E-01		2.016E-01	3.126E-01	2.862E-02	1.008					
CD-109	5.273E+01		9.237E+00	1.026E+01	1.192E+00	5.139					

	Key-Line Activity	VΤ	Nat orror	MDA	MDA error	Act/MDA
Nuclide	(pCi/GRAM)	K.L. Ided	Act error	(pCi/GRAM)	MDA EIIOI	ACC/ MDA
AG-110M	1.218E-01		1.889E-01	2.912E-01	2.720E-02	0.418
SN-113	2.504E-01		3.288E-01	5.138E-01	4.360E-02	0.487
TE123M	2.793E-01		3.154E-01	4.091E-01	3.387E-02	0.683
SB-124	1.204E-01		2.453E-01	3.775E-01	3.507E-02	0.319
I-125	-6.057E+00		3.456E+00	5.549E+00	5.034E-01	-1.092
SB-125	1.185E+00	+	7.320E-01	1.038E+00	8.987E-02	1.142
SB-126	4.403E+00	+	1.863E+00	2.283E+00	2.092E-01	1.929
SN-126	1.905E-01	•	6.569E-01	9.834E-01	9.774E-02	0.194
SB-127	2.080E+01		4.691E+01	7.191E+01	6.677E+00	0.289
I-129	-1.130E+00		3.465E-01	5.200E-01	5.460E-02	-2.172
I-131	-1.959E+00		1.825E+00	2.787E+00	2.303E-01	-0.703
TE-132	-2.948E+01		4.560E+01	7.154E+01	5.856E+00	-0.412
BA-133	2.635E+00	+	6.024E-01	7.077E-01	9.183E-02	3.723
CS-134	3.040E-01	+	9.476E-02	3.096E-01	2.884E-02	0.982
CS-135	7.586E+00		1.398E+00	1.882E+00	1.531E-01	4.032
CS-136	-9.004E-02		9.921E-01	1.469E+00	1.237E-01	-0.061
CS-137	1.518E-01		2.001E-01	3.088E-01	2.888E-02	0.492
LA-138	9.558E-02		3.023E-01	4.993E-01	4.103E-02	0.191
CE-139	5.171E-01		2.816E-01	4.144E-01	3.313E-02	1.248
BA-140	2.963E+00		3.593E+00	4.323E+00	1.438E+00	0.685
LA-140	1.984E+00		9.008E-01	1.469E+00	1.205E-01	1.351
CE-144	-1.679E+00		1.691E+00	2.683E+00	2.480E-01	-0.626
PM-144	1.305E-02		2.331E-01	2.814E-01	2.605E-02	0.046
PM-145	-8.420E-01		9.303E-01	1.229E+00	8.004E-01	-0.685
PM-146	8.424E-01	+	5.545E-01	7.019E-01	6.087E-02	1.200
ND-147	5.191E+00	+	4.117E+00	9.878E+00	8.969E-01	0.525
EU-152	2.284E+01	+	3.383E+00	3.666E+00	3.882E-01	6.230
GD-153	-1.032E+00		7.754E-01	1.230E+00	1.203E-01	-0.839
EU-154	4.245E-01		5.949E-01	8.943E-01	7.319E-02	0.475
EU-155	1.069E+01		1.411E+00	1.206E+00	1.184E-01	8.863
EU-156	1.540E+00		5.947E+00	8.991E+00	2.055E+00	0.171
HO-166M	-4.707E-02		3.595E-01	4.964E-01	4.567E-02	-0.095
HF-172	-1.005E+00		1.515E+00	2.419E+00	2.302E-01	-0.415
LU-172	5.240E-01		4.562E+00	6.786E+00	5.551E-01	0.077
LU-173	9.702E+00		1.322E+00	1.577E+00	1.282E-01	6.151
HF-175	-1.398E-02		3.393E-01	4.235E-01	3.502E-02	-0.033
LU-176	-2.607E-02		2.013E-01	2.891E-01	2.372E-02	-0.090
TA-182	7.542E+01	+	7.063E+00	3.608E+00	2.953E-01	20.905
IR-192	4.404E-01	+	4.966E-01	7.037E-01	6.165E-02	0.626
HG-203	-7.433E-02		3.591E-01	5.170E-01	4.322E-02	-0.144
BI-207	9.724E-02		1.625E-01	2.783E-01	2.564E-02	0.349
TL-208	1.105E+00		6.139E-01	9.530E-01	8.814E-02	1.160
BI-210M	6.267E-01		4.863E-01	6.228E-01	5.080E-02	1.006
BI-212	9.735E-01		1.473E+00	2.261E+00	2.067E-01	0.431
PB-212 RA-225	3.493E+00		5.266E-01	7.058E-01	5.779E-02	4.950
TH-227	-1.395E+00 1.017E+01		1.830E+00	2.766E+00	2.315E-01	-0.504
AC-228	3.669E-01	+	1.916E+00 7.133E-01	2.700E+00 1.201E+00	2.211E-01 9.542E-02	3.766
220	J.009E-01		/.I33E-01	1.2016+00	9.542E-U2	0.306

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-03 Acquisition date: 22-FEB-2012 10:27:59

Nuclide	Key-Line Activity (pCi/GRAM)	K.L. Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
TH-230	1.668E+02	+	5.514E+01	9.107E+01	7.116E+00	1.832
PA-231	1.928E+01		8.621E+00	1.249E+01	1.024E+00	1.543
TH-231	1.678E+00		1.464E+00	2.423E+00	2.961E-01	0.693
PA-233	-8.426E-02		8.591E-01	1.342E+00	2.994E-01	-0.063
PA-234	2.868E-01		8.264E-01	1.329E+00	1.239E-01	0.216
NP-237	2.595E+01		3.427E+00	2.929E+00	2.875E-01	8.860
AM-241	1.399E+00		6.477E-01	8.629E-01	6.111E-02	1.621
AM-243	1.396E+01		1.374E+00	6.972E-01	5.933E-02	20.030
CM-243	1.616E+00		1.378E+00	2.007E+00	1.627E-01	0.805

Summary of Nuclide Activity Page: 10

Sample ID : 1201163-03 Acquisition date: 22-FEB-2012 10:27:59

Total number of lines in spectrum 123 Number of unidentified lines 76

Number of lines tentatively identified by NID 47 38.21%

Nuclide Type : NATURAL

	11		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.273E+01	2.273E+01	0.391E+01	17.20
PB-210	22.26Y	1.00	1.056E+02	1.058E+02	0.105E+02	9.92
PB-211	3.28E+04Y	1.00	1.572E+01	1.572E+01	0.479E+01	30.50
BI-214	1602.00Y	1.00	1.552E+02	1.552E+02	0.076E+02	4.92
PB-214	1602.00Y	1.00	1.554E+02	1.554E+02	0.101E+02	6.50
RN-219	3.28E+04Y	1.00	9.880E+00	9.880E+00	3.354E+00	33.95
RA-223	3.28E+04Y	1.00	1.221E+01	1.221E+01	0.464E+01	38.01
RA-224	1.41E+10Y	1.00	2.926E+02	2.926E+02	0.273E+02	9.33
RA-226	1602.00Y	1.00	3.457E+02	3.457E+02	6.332E+02	183.18
PA-234M	4.47E+09Y	1.00	1.204E+02	1.204E+02	0.372E+02	30.90
TH-234	4.47E+09Y	1.00	8.940E+01	8.940E+01	0.984E+01	11.01
U-235	7.04E+08Y	1.00	8.175E+00	8.175E+00	3.284E+00	40.18
	Total Acti	lvity :	1.333E+03	1.333E+03		

Nuclide Type : ACTIVATION

NB-95M	3.61D	133.	4.674E+00	6.202E+02	1.169E+02	18.84	
GA-67	3.26D	224.	7.895E+00	1.767E+03	4.700E+03	265.94	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	-	Flags
				Decay Corr	Decay Corr	2-Sigma	
			Wtd Mean	Wtd Mean			

Total Activity : 1.257E+01 2.388E+03

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean			
Nuclide CE-141	Hlife 32.50D		Uncorrected pCi/GRAM 1.905E+00	Decay Corr pCi/GRAM 3.279E+00	Decay Corr 2-Sigma Error 1.198E+00	_	Flags
	Total Acti	.vity :	1.905E+00	3.279E+00			

Grand Total Activity : 1.347E+03 3.724E+03

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted
"A" = Nuclide specific abn. limit Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116303_GE1_GAS1102_176236.CNF; 1

Title :

Sample Title: JM-70-32-120128

Start Time: 22-FEB-2012 10:27 Sample Time: 28-JAN-2012 00:00 Energy Offset: 3.84457E-01

Channel

1: 0	1.	0	0	0	0	0	0	0	0
17:									-
25: 2403 2345 2345 2254 2209 2068 2349 2775 33: 2314 2289 2336 2578 2558 2525 2519 2698 41: 2797 2967 2994 3308 3712 8373 7087 3384 49: 3621 4351 3798 4036 5727 4488 4053 4216 57: 4210 4697 5095 5481 5704 6259 10924 7696 65: 5757 5910 6532 6805 6009 6086 6163 6389 73: 6886 11648 18757 11819 28397 12099 6989 6471 81: 7098 5237 6097 8525 5252 5573 10920 7746 89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3321 3283 3390 3335 105: 3228 3405 3272 3294 3419 3444 3455 3645 113: 3804 3444 3291 3268 3218 3223 3149 3081 121: 3300 3375 3317 3171 3362 3240 3178 3281 122: 3304 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3295 3512 3387 3398 3681 4620 455: 3294 4044 3838 3363 3312 3233 3364 3447 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3309 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2866 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 2251 2504 2369 2323 2624 2478 2231 2105 2251 1907 1927 1887 1889 1858 1933 1839 1888 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1999 133: 1142 1118 1121 1115 1079 1068 1048 1098 241: 4292 13354 5343 1853 1807 1805 1717 1857 249: 1494 1564 1522 1591 1554 1580 1588 1999 133: 1142 1118 1121 1115 1079 1068 1042 1004 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1066 1166 11559 1460 1479 1452 269: 1291 1333 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 766 775 852 799 766 747 809 340: 778 847 794 860 825 798 767 882 401: 925 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 766 775 852 799 766 747 809 340: 778 847 794 860 825 798 767 882 401: 925 1134 960 844 1068 953 842 809								-	
331: 2314 2289 2366 2578 2558 2525 2519 2698 41: 2797 2297 2994 3308 3712 8373 7087 384 49: 3621 4351 3798 4036 5727 4488 4053 4216 57: 4210 4697 5095 5481 5704 6259 10924 7696 65: 5757 5910 6532 6805 6009 6086 6163 6389 73: 6886 11648 18757 11819 28397 12099 6989 6471 89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3321 3283 3390 3335 105: 3238 3405 3272 3294 3419 3441 129: 3204 3308 3278 3214 3267<									
41: 2797 2967 294 3308 3712 8373 7087 3384 49: 3621 4351 3798 4036 5727 4488 4053 4216 57: 4210 4697 5095 5481 5704 6259 10924 7696 65: 5757 5910 6532 6805 6009 6086 6163 6389 73: 6886 11648 18757 11819 28397 12099 6989 6471 81: 7098 5237 6097 8525 5252 5573 10920 7746 89: 5432 7050 4863 8321 1042 3484 3455 3455 105: 3238 3405 3272 3294 3333 3349 3381 121: 3300 3375 3317 3171 3362 3240 3178 3321 121: 3300 3375 3317 3171<									
49: 3621 4351 3798 4036 5727 4488 4053 4216 57: 4210 4697 5095 5481 5704 6259 10924 7696 65: 5757 5910 6532 6805 6009 6086 6163 6389 73: 6886 11648 18757 11819 28397 12099 6988 6471 89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3294 3419 3444 3455 3665 113: 3804 3444 3291 3268 3218 3223 3149 3081 121: 3300 3378 3214 3267 3201 3248 3391 137: 3361 3347 3295 3512 3387 3398 3361 357 145: 3797 3422 3285									
57: 4210 4697 5095 5481 5704 6259 10924 7696 65: 5757 5910 6532 6805 6009 6086 6163 6898 73: 6886 11648 18757 11819 28397 12099 6989 6471 81: 7098 5237 6097 8525 5252 5573 10920 7746 89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3321 3283 3393 3335 113: 3804 3444 3291 3268 3218 3223 3149 3081 121: 3300 3375 3317 3171 3362 3240 33178 3211 121: 3300 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3									
65: 5757 5910 6532 6805 6009 6086 6163 6389 73: 6886 11648 18757 1819 28397 12099 6989 6471 81: 7098 5237 6097 8525 5252 5573 10920 7746 89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3321 3283 3390 3355 113: 3804 3444 3291 3268 3218 3220 3178 3317 3171 3362 3240 3178 3241 2218 3224 3178 3241 3248 3393 3381 3278 3327 3291 3248 3393 33861 4620 4862 4862 4862 4420 3838 3363 3376 34343 3471 5343 3471 5343 3471 5343 3471									
73: 6886 11648 18757 11819 28397 12099 6989 6471 81: 7098 5237 6097 8525 5252 5573 10920 7746 89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3321 3283 3390 3355 113: 3804 3444 3291 3268 3218 3223 3149 3081 121: 3300 3375 3317 3362 3204 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3225 3512 3387 3398 3681 4620 145: 3797 3422 3285 3512 3387 3398 3681 4620 145: 3797 3422 3285 3512 3387 3316 3271 2904									
81: 7098 5237 6097 8525 5252 5573 10920 7746 89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3321 3283 3390 3355 113: 3804 3444 3291 3248 3223 3149 3081 121: 3300 3375 3317 3171 3362 3240 3178 3281 129: 3204 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3295 3512 3387 3398 3681 4620 145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3579 4044 3838 3363 3312 3376 3543 3471 153: 3579 4044 3838 3363 3312 3310 3257 161: 3089 3069 3284 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
89: 5432 7050 4863 8341 10472 5262 4842 3695 97: 3622 4064 3716 3327 3321 3283 3390 3335 105: 3238 3405 3272 3294 3419 3444 3449 3081 121: 3300 3375 3317 3162 3240 3178 3281 129: 3204 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3295 3512 3387 3398 3681 4620 145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 2275 2805 2710 2826 177: 2810 2680 2887 2805 2710<									
97: 3622 4064 3716 3327 3321 3283 3390 3335 105: 3238 3405 3272 3294 3419 3444 3455 3645 113: 3804 3444 3291 3268 3218 3223 3149 3081 121: 3300 3375 3317 3171 3362 3240 3178 3281 129: 3204 3308 3278 3214 3267 3201 3248 3393 137: 3361 347 3295 3512 3387 398 3681 4620 145: 3797 3422 3285 3407 3455 3376 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
105: 3238 3405 3272 3294 3419 3444 3455 3645 113: 3804 3444 3291 3268 3218 3224 3178 3281 129: 3204 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3295 3512 3387 3398 3661 4620 145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719									
113: 3804 3444 321 3268 3218 3223 3149 3081 129: 3204 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3295 3512 3387 3398 3661 4620 145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 275 2803 3136 185: 5272 14666 7814 2953 2825 2806 268 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 209: 2181 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
121: 3300 3375 3317 3171 3362 3240 3178 3281 129: 3204 3308 3278 3214 3267 3201 3248 3393 3361 3347 3295 3512 3387 3398 3681 4620 145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 1461 1405 1372 289: 1247 1261 1324 1366									
129: 3204 3308 3278 3214 3267 3201 3248 3393 137: 3361 3347 3295 3512 3387 3398 3681 4620 145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 236									
137: 3361 3347 3295 3512 3387 3398 3681 4620 145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2662 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988									
145: 3797 3422 3285 3407 3455 3376 3543 3471 153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 1889 1858 193									
153: 3559 4044 3838 3363 3312 3326 3310 3257 161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 218: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 208									
161: 3089 3069 3284 3231 3075 3014 2897 2904 169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1889 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292									
169: 2915 2907 2787 2733 2752 2805 2710 2826 177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 22806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5									
177: 2810 2680 2887 2834 2769 2775 2803 3136 185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13554 5543 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 184									
185: 5272 14666 7814 2953 2825 2806 2668 2648 193: 2719 2592 2626 2631 2543 2513 2424 2453 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 255: 1469 1413 13									
193: 2719 2592 2626 2631 2543 2513 2424 2453 201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1888 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2330 1346 1336 1364 281: 1465									
201: 2521 2504 2369 2323 2624 2478 2231 2105 209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2312 2339 2297 1901 273: 1465 1711 186									
209: 2181 2108 2137 2076 2147 2075 2019 1970 217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 255: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 138									
217: 1988 2027 1997 2032 1982 1979 1981 2033 225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 1387 1466 1552 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 20									
225: 1907 1927 1887 1889 1858 1933 1839 1888 233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 2087 1553 1									
233: 1868 1875 2080 3008 2161 2012 2118 1898 241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1364 289: 1247 1261 1324 1366 1552 4406 23595 1477 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 11									
241: 4292 13354 5343 1853 1807 1805 1717 1557 249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 96									
249: 1494 1564 1522 1591 1554 1580 1588 1969 257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1362 281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 1474 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043									
257: 1847 1741 2196 1661 1559 1460 1479 1452 265: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058									
265: 1469 1413 1394 1463 2212 2339 2297 1901 273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
273: 1465 1711 1867 1463 1330 1346 1336 1364 281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 1389									
281: 1403 1368 1387 1466 1352 1461 1405 1372 289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
289: 1247 1261 1324 1366 1552 4406 23595 14774 297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802									
297: 2087 1553 1681 1841 1271 1185 1303 1229 305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
305: 1236 1155 1152 1060 1116 1101 1083 1095 313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869	297:								
313: 1142 1118 1121 1115 1079 1068 1042 1004 321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821	305:								
321: 965 1048 1157 1338 1096 1064 1008 1098 329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 <td>313:</td> <td>1142</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	313:	1142							
329: 1133 1358 1076 1060 1028 1118 1094 1046 337: 1058 1223 1229 1043 1011 1013 944 1035 345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794	321:	965	1048		1338				
345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781	329:	1133	1358	1076					1046
345: 989 1026 1028 1062 1314 1981 13317 42634 353: 13895 1682 1518 1588 1124 799 821 788 361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781	337:	1058	1223	1229					
361: 816 766 767 743 742 738 759 791 369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781	345:	989	1026	1028				13317	
369: 802 756 775 852 799 766 747 809 377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781	353:	13895	1682	1518	1588	1124	799	821	788
377: 734 809 769 782 732 787 803 797 385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781	361:	816	766	767	743	742	738	759	791
385: 760 869 1025 966 1142 850 786 788 393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781		802	756	775	852	799	766	747	809
393: 834 821 820 837 826 791 780 823 401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781					782	732	787	803	797
401: 925 1134 960 844 1068 953 842 809 409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781							850		
409: 778 847 794 860 825 798 767 812 417: 840 804 781 805 759 789 816 781									
417: 840 804 781 805 759 789 816 781									
100 100 100 100									
425: 818 759 843 902 770 734 660 689									
	425:	818	759	843	902	770	734	660	689

433:	685	664	686	663	621	595	611	657
441:	635	567	565	602	678	652	552	523
449:	607	581	567	57 4	573	630	744	657
457:	531	542	566	522	616	716	569	498
							520	496
465:	547	504	542	529	527	640		
473:	526	570	558	462	513	510	538	683
481:	706	503	495	485	460	517	765	645
489:	474	472	447	444	483	467	434	450
497:	424	428	439	418	457	483	411	395
505:	405	431	428	470	501	630	705	611
513:	491	444	462	388	416	413	401	412
521:	383	402	424	390	399	457	385	426
529:	357	382	441	417	464	566	456	461
537:	461	430	404	411	419	395	446	503
545:	430	408	385	423	397	417	355	371
553:	415						358	366
		383	392	418	375	434		
561:	367	398	387	394	382	344	378	379
569:	418	437	378	400	412	378	396	393
577:	381	357	419	613	490	403	419	409
585:	369	386	378	368	370	328	361	351
593:	348	367	330	377	348	374	377	373
601:	353	335	354	420	398	420	672	3676
609:	22458	22322	3285	830	866	737	393	331
617:	299	288	273	278	283	289	285	274
625:	287	276	286	257	281	242	264	265
633:	305	265	285	301	276	243	272	301
641:	277	267	274	265	225	281	262	255
649:	307	263	260	234	268	244	257	266
657:	267	267	266			244	287	349
				266	260			
665:	781	946	384	267	284	273	251	261
673:	254	235	279	276	259	258	253	236
681:	284	252	266	300	272	251	231	306
689:	274	255	242	249	255	248	257	244
697:	283	286	288	280	258	342	496	422
705:	299	284	256	270	265	294	249	228
713:	259	262	234	283	205	274	318	423
721:	308	252	274	253	223	237	225	255
729:	283	261	223			258	266	
737:	249	244	241	247		350	332	326
745:	248	291	269	239		256	228	247
753:	314	215	253	229		231	207	237
761:	220	260	244	216		374	652	
769:	2413	649	322	289	267	252	224	234
777:	236	230	232					
777. 785:				235	272	242	288	248
	388	796	529	276	246	271	241	270
793:	212	241	251	261	221	228	270	255
801:	204	228	230	274	331	702	654	309
809:	234	260	218	241	242	259	217	246
817:	226	230	250	237	291	273	236	237
825:	237	304	289	247	224	213	245	361
833:	285	241	279	264	229	313	492	430
841:	263	229	261	217	234	230	257	260
849:	249	265	241	259	252	236	223	229
857:	232	240	217	248	260	250	227	216
865:	254	232	240	255	217	239	224	293
873:	272	248	270	240	219	245	222	253
881:	240	247	238	267	239	261	254	238
889:	267	215	265	267 268	239 249	251 252	254 256	238 251
897:	258	280	265 276					
905:	285	280 244		282	241	250	258	281
203:	200	244	237	250	244	257	272	301

921: 209 223 231 224 224 243 218 225 929: 221 223 205 241 522 1361 1108 379 937: 245 249 245 262 23 201 232 229 233 945: 222 237 249 225 186 210 204 204 204 955: 203 207 220 2178 961: 156 207 259 335 312 255 195 200 969: 223 199 211 183 226 185 194 203 977: 219 188 217 195 194 218 154 202 985: 222 199 176 195 212 209 181 238 993: 188 186 188 217 195 194 218 154 203 989: 188 186 188 215 177 191 188 260 1001: 394 394 231 206 199 186 167 179 1000: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 177 1049: 154 155 154 200 176 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 177 1049: 154 154 154 154 155 155 1065: 165 166 167 178 166 162 121 179 138 159 1057: 196 151 140 157 160 170 169 155 154 1081: 160 167 174 141 154 166 133 160 175 160 174 169 159 109: 242 233 189 1071: 141 154 166 133 160 175 160 170 169 155 1065: 165 164 178 156 192 242 233 189 1071: 141 154 166 133 160 175 160 170 169 155 1069: 165 166 167 174 162 147 152 128 159 1097: 172 171 147 143 151 154 148 169 157 160 175 160 144 1081: 160 167 174 162 147 152 128 153 1099: 177 142 143 151 154 148 169 155 157 1097: 172 171 157 131 156 153 152 205 1105: 218 199 157 158 148 169 155 174 149 149 147 152 128 153 1099: 177 142 143 151 154 149 149 147 152 128 153 113 171 144 138 169 165 133 146 144 158 160 167 174 162 147 152 128 153 152 205 1105: 218 199 157 158 148 169 155 171 172 116 160 157 160									
921: 209 223 231 224 224 224 243 218 225 929: 337 937: 245 249 256 223 201 232 229 233 945: 222 237 249 225 186 210 204 204 955: 203 237 203 205 203 207 220 178 969: 223 199 211 183 226 185 194 203 969: 223 199 211 183 226 185 194 203 985: 222 199 176 195 212 209 181 238 993: 188 186 188 217 195 194 218 154 202 985: 222 199 176 195 212 209 181 238 993: 188 186 188 215 177 191 188 260 1001: 394 394 231 206 199 186 167 199 1009: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 185 266 231 179 138 159 1057: 196 151 140 157 160 170 169 155 1065: 165 164 178 156 192 242 233 189 167 174 196 169 155 1065: 165 164 178 156 192 242 233 189 1073: 141 154 166 133 160 167 179 1097: 176 196 169 157 160 170 169 155 1065: 165 164 178 156 192 242 233 189 1073: 141 154 166 133 160 167 174 162 147 152 128 153 189 1077: 171 196 169 157 160 170 169 155 1065: 165 164 178 156 192 242 233 189 1077: 171 171 171 171 171 171 171 171 171	913:	213	226	224	242	236	242	237	228
929: 221 223 205 241 522 1361 1108 379 937: 245 249 256 233 201 232 229 233 945: 222 237 249 225 186 210 204 204 553 203 207 220 178 961: 156 207 259 335 312 255 195 200 969: 223 199 211 183 226 185 194 203 977: 219 188 217 195 194 218 154 202 985: 222 199 176 195 212 209 181 238 993: 188 166 188 215 177 191 188 260 1001: 394 394 231 206 199 186 167 199 1009: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 174 168 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 174 168 181 203 181 184 1017: 156 174 169 154 188 151 176 177 1049: 154 154 169 154 188 151 176 177 1049: 154 154 168 157 160 157 160 157: 196 169 159 1067: 196 169 159 150 150 150 150 150 150 150 150 150 150							243	218	225
937; 245 249 256 223 201 232 229 233 945; 222 237 249 225 186 210 204 204 953; 203 237 203 205 203 207 220 178 961; 156 207 259 335 312 255 195 200 969; 223 199 211 183 226 185 194 203 977; 219 188 217 195 194 218 154 202 985; 222 199 176 195 194 218 154 202 985; 222 199 176 195 194 218 154 203 993; 188 186 188 215 177 191 188 238 993; 188 186 188 215 177 191 188 238 1001; 394 394 231 206 199 186 167 199 1000; 163 177 167 186 189 180 167 199 1000; 163 177 167 186 189 180 167 199 1001; 176 190 194 174 215 194 200 176 1025; 173 147 168 172 171 196 169 195 1033; 203 180 167 179 166 162 155 154 1041; 156 174 169 154 188 151 176 177 1049; 154 155 194 200 176 1075; 196 151 140 157 160 170 169 155 160 167 179 166 162 155 154 1081; 154 188 151 176 177 1081; 154 166 133 160 175 160 170 169 155 1065; 165 164 178 156 133 160 177 142 143 151 154 148 126 197 197 197 197 197 197 197 197 197 197									
946; 222 237 249 225 186 210 204 204 953; 203 207 220 178 961; 156 207 259 335 312 255 195 200 969; 223 199 211 183 226 185 194 203 977; 219 188 217 195 194 218 154 203 985; 222 199 176 195 212 209 181 238 993; 188 186 188 215 177 191 188 260 1001; 394 394 231 206 199 186 167 199 1009; 163 177 167 186 181 203 181 184 1017; 176 190 194 174 215 194 200 176 1025; 173 147 168 172 171 196 169 195 1033; 203 180 167 179 166 162 155 154 1041; 156 174 169 154 188 151 176 179 1057; 196 151 140 157 199 154 188 159 1057; 196 151 140 157 169 154 188 151 176 177 1049; 154 154 185 266 231 179 138 179 1057; 196 151 140 157 160 157; 196 151 140 157 160 157; 196 151 140 157 160 157; 196 151 140 157 160 157; 196 151 140 157 160 170 169 155 156 165; 165 164 178 156 192 242 233 185 150 167; 196 151 140 157 160 170 169 155 150 1065; 165 165 164 178 156 192 242 233 185 153 160 179; 177 141 157 156 148 158 156 192 242 233 155 154 1041; 156 174 169 154 166 167 174 162 167 175 160 144 1081; 167 167 174 162 147 152 128 153 153 150 177; 171 171 185 148 154 154 154 154 154 154 154 154 154 154									
961: 156 207 259 335 312 255 195 200 969: 223 199 211 183 226 185 194 203 977: 219 188 217 195 194 218 154 202 985: 222 199 176 195 212 209 181 238 993: 188 186 188 215 177 191 188 260 1001: 394 394 231 206 199 186 167 199 1009: 163 177 167 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 179 1049: 154 154 154 185 266 231 179 138 159 1057: 196 151 140 157 160 170 169 155 1065: 165 164 178 156 192 242 233 189 1073: 141 154 166 133 160 175 160 144 1081: 160 167 174 162 147 152 148 169 175 1089: 177 142 143 151 154 148 169 151 1089: 177 142 143 151 154 148 169 151 1097: 172 171 185 145 148 169 151 152 205 1105: 218 199 157 158 148 169 151 172 1113: 171 185 145 164 179 179 179 179 179 179 179 179 179 179									
969: 1566 207 259 335 312 255 195 200 969: 223 199 211 183 226 185 194 203 977: 219 188 217 195 194 218 154 202 985: 222 199 176 195 212 209 181 238 993: 188 186 188 215 177 191 188 260 1001: 394 394 231 206 199 186 167 199 1009: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 177 1049: 154 154 185 266 231 179 138 159 1057: 196 151 140 157 160 170 169 155 1065: 165 164 178 156 192 242 233 189 167 170 1041: 156 165 164 178 156 192 242 233 189 167 179 166 162 155 164 1081: 160 167 174 162 147 152 128 153 160 175 160 170 169 155 1065: 165 164 178 156 192 242 233 189 177 142 143 151 154 148 126 197 1097: 172 171 157 131 156 153 152 205 1105: 218 199 157 158 148 169 151 172 218 153 152 205 1105: 218 199 157 158 148 169 151 172 216 897 3885 1121: 4950 4822 311 265 263 187 160 157 171 1455 164 173 165 165 163 164 173 165 165 164 174 165 153 152 205 1121: 4950 4822 311 265 263 187 166 174 145: 167 179 170 170 185 165 164 173 167 179 170 170 170 170 170 170 170 170 170 170									
969: 223 199 211 183 226 185 194 203 977: 219 188 217 195 194 218 154 202 985: 222 199 176 195 212 209 181 238 993: 188 186 186 188 215 177 191 188 260 1001: 394 394 231 206 199 166 167 199 1009: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 177 1049: 154 154 154 185 266 231 179 138 159 1057: 196 151 140 157 160 170 169 155 1057: 196 151 140 157 160 170 169 155 1065: 165 164 178 156 192 242 233 189 1073: 141 154 166 133 160 175 160 144 1081: 160 167 174 162 147 152 128 153 1089: 177 142 143 151 154 148 126 197 1097: 172 171 185 131 156 153 152 205 1105: 218 199 157 158 148 169 153 152 205 1105: 218 199 157 158 148 169 167 192 199 160 157 1113: 171 185 145 164 172 216 897 385 1121: 4950 1482 311 265 263 187 166 173 1137: 171 144 138 169 165 133 146 144 1145: 163 131 160 149 149 147 152 185 1161: 152 136 161 137 146 139 143 134 146 144 1145: 163 131 160 149 149 147 152 185 1161: 152 136 161 137 146 139 143 134 146 144 1145: 163 131 160 149 149 147 152 185 1161: 152 136 161 137 146 139 143 134 146 144 1145: 163 131 160 149 149 147 152 185 1161: 152 136 161 137 146 139 143 134 146 144 1145: 163 131 160 149 149 147 152 185 1161: 152 136 161 137 146 139 143 134 146 144 1145: 163 131 160 149 149 187 197 138 134 146 144 1145: 163 131 160 149 149 187 197 138 134 146 144 1145: 163 131 160 149 149 187 197 138 134 146 144 1147: 142 148 140 149 149 187 197 138 134 146 144 1145: 163 131 160 149 149 149 187 197 138 136 125 126 136 149 149 149 147 152 185 185 186 141 148 140 149 149 147 152 148 149 149 149 147 152 148 140 149 149 149 147 152 148 149 149 149 149 149 149 149 149 149 149									
985: 222 199 176 195 194 218 154 202 985: 222 199 176 195 212 209 181 238 993: 188 186 188 215 177 191 188 260 1001: 394 394 231 206 199 186 167 199 1009: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 177 1049: 154 154 185 266 231 179 138 159 1057: 196 151 140 157 160 170 169 155 1065: 165 164 178 156 192 242 233 189 167 170 1049: 154 154 166 133 160 175 160 170 169 155 1065: 165 164 178 156 192 242 233 189 1073: 141 154 166 133 160 175 160 175 160 170 169 155 1069: 177 142 143 151 154 148 126 197 1097: 172 171 157 131 156 153 152 205 1105: 218 199 157 158 148 169 151 172 171 131 156 153 152 205 1105: 218 199 157 158 148 169 151 172 1113: 171 185 145 164 179 229 160 157 113: 171 185 145 164 179 229 160 157 113: 171 185 145 164 179 165 133 160 175 160 177 112 171 185 145 164 179 229 160 157 113: 171 185 145 164 179 229 160 157 113: 171 185 145 164 179 229 160 157 113: 171 185 145 164 179 229 160 157 113: 171 185 145 164 179 229 160 157 113: 171 185 145 164 179 229 160 157 113: 150 150 151 172 215 158 146 147 152 128 153 152 205 115: 154 148 169 165 133 146 144 1145: 163 131 160 149 149 147 152 185 1153: 152 257 158 148 169 165 133 146 144 1145: 163 131 160 149 149 147 152 185 1153: 152 257 158 148 169 165 133 146 144 1145: 163 131 160 149 149 147 152 185 1153: 152 125 136 161 137 146 139 143 134 146 155 133 146 144 1145: 163 131 132 119 144 149 138 178 246 1221: 1221 148 140 149 149 147 152 185 1153: 152 125 136 161 137 146 149 149 147 152 185 1153: 152 125 136 161 137 146 149 149 147 152 185 1153: 152 150 141 144 148 163 151 141 145 145 145 145 145 145 145 145									
985: 222 199 176 195 212 209 181 238 993: 188 186 188 215 177 191 188 260 1001: 394 394 231 206 199 186 167 199 1009: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 177 1049: 154 188 151 176 177 1049: 154 188 151 176 177 1049: 154 188 151 176 177 1057: 196 151 140 157 160 170 169 155 1065: 165 164 178 156 174 169 154 188 151 176 177 169 165 169 170 169 155 16065: 165 164 178 156 133 160 175 160 170 169 155 1089: 177 142 143 151 154 188 126 197 1097: 172 171 157 131 156 153 152 205 1105: 218 199 157 188 148 169 153 152 205 1105: 218 199 157 188 148 169 153 152 205 1105: 218 199 157 188 148 169 151 172 113: 113: 171 185 145 164 179 129: 167 182 173 167 192 219 160 157 183 113: 171 144 138 169 165 133 146 144 172 113: 171 144 138 169 165 133 146 144 172 173 167 192 219 160 157 185 113: 171 144 138 169 165 133 146 144 172 173 173 174 175 175 175 175 177 177 177 177 177 177									
993; 188 186 188 215 177 191 188 260 1001; 394 394 231 206 199 186 167 199 1009; 163 177 167 186 181 203 181 184 1017; 176 190 194 174 215 194 200 176 1025; 173 147 168 172 171 196 169 195 1033; 203 180 167 179 166 162 155 154 1041; 156 174 169 154 188 151 176 177 1049; 154 154 185 266 231 179 138 159 1057; 196 151 140 157 160 170 169 155 1065; 165 164 178 156 192 242 233 189 1073; 141 154 166 133 160 175 160 144 1081; 160 167 174 162 147 152 128 153 1097; 172 171 157 131 156 153 152 205 1105; 218 199 157 158 148 169 151 172 1113; 171 185 145 164 172 216 897 3885 1121; 4950 1482 311 265 263 187 166 167 174 142 311 265 263 187 166 174 144 138 169 165 133 146 144 1453; 153 155 153 155 153 155									
1001: 394 394 231 206 199 186 167 199 1009: 163 177 167 186 181 203 181 184 1017: 176 190 194 174 215 194 200 176 1025: 173 147 168 172 171 196 169 195 1033: 203 180 167 179 166 162 155 154 1041: 156 174 169 154 188 151 176 177 1049: 154 154 185 266 231 179 138 159 1057: 196 151 140 157 160 170 169 155 1057: 196 151 140 157 160 170 169 155 1065: 165 164 178 156 174 166 133 160 175 160 170 169 155 1065: 165 164 178 156 174 166 133 160 175 160 144 1081: 160 167 174 162 147 152 128 153 1089: 177 142 143 151 154 148 126 197 1097: 172 171 157 131 156 153 152 205 1105: 218 199 157 158 148 169 151 172 1113: 171 185 145 164 172 216 897 3885 1121: 4950 1482 311 265 263 187 166 157 1131: 151 154 154 156 153 152 205 1137: 171 144 138 169 165 133 146 144 172 167 1829: 167 182 173 167 192 219 160 157 1137: 171 144 138 169 165 133 146 144 174 175 175 175 175 175 175 175 175 175 175									
1009: 163									
1017:									
1025: 173				167	186				
1033: 203			190	194	174	215			
1041: 156			147	168	172	171	196	169	195
1049:	1033:	203	180	167	179	166	162	155	154
1049:	1041:	156	174	169	154	188	151	176	177
1067: 196	1049:	154	154	185	266	231	179	138	159
1065	1057:	196						169	155
1073: 141									
1081: 160									
1089:									
1097:									
1105: 218 199 157 158 148 169 151 172 1113: 171 185 145 164 172 216 897 3885 1121: 4950 1482 311 265 263 187 166 174 1129: 167 182 173 167 192 219 160 157 1137: 171 144 138 169 165 133 146 144 145: 163 131 160 149 149 147 152 185 1153: 152 257 587 648 279 181 160 153 1161: 152 136 161 137 146 139 143 134 1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1281: 508 411 175 135 130 146 117 119 1281: 508 411 175 135 130 146 117 119 1281: 508 411 175 135 130 146 117 118 1297: 109 97 100 133 120 107 113 133 130: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 106 118 113 118 130 146 117 118 1321: 106 118 113 118 130 146 117 118 1321: 106 118 113 118 130 146 117 118 1337: 110 107 112 135 136: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1360: 115 107 117 131 107 112 121 121 121 121 121 121 127 1377: 688 1375 838									
1113:									
1121: 4950 1482 311 265 263 187 166 174 1129: 167 182 173 167 192 219 160 157 1137: 171 144 138 169 165 133 146 144 1145: 163 131 160 149 149 147 152 185 1153: 152 257 587 648 279 181 160 153 1161: 152 136 161 137 146 139 143 134 1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114									
1129: 167 182 173 167 192 219 160 157 1137: 171 144 138 169 165 133 146 144 1145: 163 131 160 149 147 152 185 1153: 152 257 587 648 279 181 160 153 1161: 152 136 161 137 146 139 143 134 1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1137: 171 144 138 169 165 133 146 144 1145: 163 131 160 149 149 147 152 185 1153: 152 257 587 648 279 181 160 153 1161: 152 136 161 137 146 139 143 134 1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1145: 163 131 160 149 149 147 152 185 1153: 152 257 587 648 279 181 160 153 1161: 152 136 161 137 146 139 143 134 1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1153: 152 257 587 648 279 181 160 153 1161: 152 136 161 137 146 139 143 134 1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1161: 152 136 161 137 146 139 143 134 1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132									
1169: 158 156 141 148 163 151 141 145 1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147									
1177: 142 148 140 149 149 187 197 138 1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117									
1185: 160 141 124 160 154 151 123 145 1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116									
1193: 137 152 129 137 147 124 134 158 1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1257: 129 110 141 117 120 116									
1201: 131 132 119 114 149 138 178 246 1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135									
1209: 212 138 151 143 133 141 115 120 1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 <									
1217: 122 151 146 155 139 125 136 126 1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1225: 124 123 123 138 120 127 145 117 1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1233: 117 130 134 147 532 1657 1677 525 1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118									
1241: 180 163 174 132 124 116 121 135 1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1329: 139 105 102 114 96									
1249: 118 129 119 147 180 189 171 148 1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96<									
1257: 129 110 141 117 120 116 117 119 1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125<									
1265: 134 104 139 124 113 101 107 119 1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115<									
1273: 112 146 134 127 126 143 134 249 1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>120</td> <td></td> <td></td> <td></td>						120			
1281: 508 411 175 135 130 113 111 103 1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108					124	113		107	119
1289: 121 122 95 114 105 113 102 94 1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107					127	126	143	134	249
1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 <td></td> <td></td> <td></td> <td>175</td> <td>135</td> <td>130</td> <td>113</td> <td>111</td> <td></td>				175	135	130	113	111	
1297: 109 97 100 133 120 107 113 133 1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 <td></td> <td></td> <td>122</td> <td>95</td> <td>114</td> <td>105</td> <td>113</td> <td>102</td> <td>94</td>			122	95	114	105	113	102	94
1305: 129 109 102 119 99 115 110 106 1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137			97	100	133	120	107	113	133
1313: 106 118 113 118 130 146 117 118 1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137				102	119	99		110	106
1321: 112 104 102 113 108 105 89 121 1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137			118	113	118	130	146	117	118
1329: 139 105 102 114 96 118 107 138 1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137				102			105	89	
1337: 111 108 132 116 125 133 121 113 1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137			105						
1345: 103 102 129 100 115 114 116 120 1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137			108						
1353: 95 106 100 124 126 139 94 96 1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137	1345:		102						
1361: 132 107 112 93 108 91 103 91 1369: 115 107 117 131 107 112 121 217 1377: 688 1375 838 251 177 151 105 137			106						
1377: 688 1375 838 251 177 151 105 137	1361:		107	112	93				
1377: 688 1375 838 251 177 151 105 137	1369:		107	117	131				
		688	1375	838	251				
	1385:	221	311		121				

1393:	119	113	106	102	93	104	91	133
1401:	311	524	285	135	110	97	272	672
							120	115
1409:	659	253	121	113	115	104		
1417:	133	133	106	104	124	110	105	111
1425:	122	122	127	107	97	112	107	118
1433:	104	119	115	113	120	109	103	121
1441:	108	108	123	98	115	103	116	102
1449:	94	110	109	121	114	110	111	117
1457:	106	121	141	239	491	400	169	96
1465:	117	109	87	114	100	101	119	92
	119					131	124	115
1473:		145	119	114	122			
1481:	123	114	121	111	110	132	95	115
1489:	125	131	123	99	119	138	120	133
1497:	113	134	112	122	102	115	128	119
1505:	153	120	139	238	540	641	355	158
1513:	113	139	116	133	131	90	108	143
1521:	127	113	115	135	117	114	135	104
1529:	99	108	124	117	115	114	115	135
1537:	131	170	224	180	105	135	189	196
1545:	156	100	100	96	111	109	88	96
1553:								
	90	87	84	89	74	72	87	84
1561:	96	80	85	90	88	86	81	81
1569:	77	77	73	68	76	58	69	71
1577:	82	80	63	67	81	122	214	239
1585:	122	89	82	79	87	92	79	88
1593:	100	100	143	97	81	75	142	169
1601:	93	80	83	84	72	72	73	92
1609:	82	81	67	81	76	64	61	73
1617:	49	66	67	73	70	66	67	56
1625:	53	60	57	82	48	45	51	58
1633:	56	61	58	50	52	53	59	57
1641:	44	48	67	38	57	39	56	50
1649:	41	45	53	53	44	60	46	48
1657:	63							
		48	57	99	270	305	158	63
1665:	49	55	37	48	49	45	44	37
1673:	41	41	45	41	41	49	41	45
1681:	54	41	44	67	75	42	32	36
1689:	38	35	56	70	100	91	62	54
1697:	53	40	53	34	43	50	38	34
1705:	36	42	34	38	28	31	50	40
1713:	32	29	41	47	41	32	29	45
1721:	30	49	39	42	35	24	40	107
1729:	506	764	589	175	57	44	40	31
1737:	34	48	49	36	31	39	25	30
1745:	23	31	37	27	31	28	42	33
1753:	35	33	3 <i>7</i> 39	39	30	35	34	41
1761:	41	81	505	2083	3648	2288	497	152
1769:	116	65	35		29		22	
1777:	21			28		25		22
1785:	37	25	37	36	26	20	33	23
		35	20	22	33	23	27	26
1793:	22	28	27	32	25	32	28	26
1801:	28	19	30	28	24	23	18	33
1809:	36	23	27	36	24	27	23	20
1817:	26	32	35	23	36	24	25	20
1825:	18	21	24	25	29	33	32	32
1833:	34	28	25	34	31	72	80	. 78
1841:	43	31	29	27	27	104	319	524
1849:	344	92	31	44	39	25	25	29
1857:	36	31	34	31	23	28	28	29
1865:	25	29	20	45	18	23	40	38

1873:	68	64	36	38	35	25	22	36
1881:	29	32	25	28	18	27	38	19
1889:	29	40	56	40	30	30	42	60
1897:	52	41	45	34	26	23	29	25
1905:	23	18	23		29	25 25	38	25
				22			22	23 27
1913:	29	26	28	22	37	26		
1921:	16	29	26	30	20	26	17	28
1929:	31	23	21	33	23	24	28	44
1937:	38	47	47	34	29	29	28	27
1945:	34	24	41	39	27	39	36	34
1953:	31	30	31	48	30	20	31	32
1961:	36	28	31	27	31	30	30	30
1969:	15	40	24	27	26	25	25	30
1977:	31	22	33	20	17	28	13	20
1985:	17	14	24	25	17	18	13	23
1993:	16	24	16	21	17	25	16	20
2001:	29	13	24	24	16	13	15	16
2009:	27	22	24	30	21	20	25	19
2017:	33	28	25	14	28	13	19	23
2025:	14	10	12	20	17	16	18	20
2033:	15	24	21	15	16	20	11	15
2041:	15	12	15	13	14	24	15	16
2049:	18	15	24	24	39	19	20	10
2057:	20	17	16	14	9	13	14	17
2065:	19	9	12	5	15	16	13	14
2073:	15	13	19	13	13	14	16	14
2081:	7	21	10	14	20	13	7	12
2089:	16	21	13	9	11	18	13	10
2097:	13	13	12	17	18	14	11	14
2105:	6	14	12	8	22	20	23	13
2113:	8	15	11	22	40	157	240	168
2121:	59	23	12	6	7	17	11	10
2129:	7	11	11	6	13	8	13	12
2137:	11	9 7	9	6	8	9 3	10	11
2145:	6		11	21	16	3	6	6
2153:	14	9	5	9	5	12	7	6
2161:	4	7	12	10	6	8	11	5
2169:	6	8	6	10	10	7	7	4
2177:	9	8	13	8	7	16	9	11
2185:	14	7	6	15	14	11	19	20
2193:	16	15	7	9	9	7	16	12
2201:	10	60	283	721	892	409	85	39
2209:	34	23	15	7	10	12	10	9
2217:	8	6	10	8	6	5	7	8
2225:	15	6	1	3	4	3	3	5 4
2233:	6	6	6	9	6	11	2	4
2241:	4	6 5 7	5	6	6 2 5 6 5 2	5	10	1
2249:	6		0	9	2	0	8	3 1
2257:	4	5	7	8	5	7	6	
2265:	4	5 4 2 3 8 6 1	10	7	6	4	8	7
2273:	5 8	2	5	10	5	6	3	2
2281:	8	3	2	5		7	6	4
2289:	7	8	4	19	41	51	29	14
2297:	5	6	2	2	4	6	5	1
2305:	4	1	2	8	4	2	7	5
2313:	3 2 7	6	9	1	1	2	5	1
2321:	2	2	4	2	1	2	1	3
2329:		6 2 8 3	1	7	7	2 2 5 1	3	3
2337:	5	3	2	4	2		4	3 3 2 3
2345:	1	4	1	3	3	0	2	3

2353:	2	2	2	3	5	2	2	2
2361:	4				0	5		5
		4	3	1			2	
2369:	3	1	1	1	4	3	1	3
2377:	3	5	3	2	1	5	4	1
2385:	1	4	0	1	2	1	1	2
2393:	3	2	0	4	5	3	2	0
2401:	2	4	2	2	2	0	1	0
2409:	3	1	1	2	1	3	1	3
2417:	2	3 .	2	0	1	6	3	1
2425:	4	2	1	Ō	3	1	1	3
2433:	2	2	1	2	4	ī	3	ĺ
2441:	3	3	1	1	14	33	121	242
2449:	192	52	11	9	3	3	4	2
2457:	3	1	1			2	1	0
2457:	2			1	0	2		
2403:		1	0	0	1		2	0
	3	1	1_	2	2	1	1	3
2481:	0	2	5	2	1	3	0	2
2489:	3	0	1	0	1	2	2	1
2497:	1	0	4	2	2	2	1	1
2505:	0	2	7	1	5	2 2 3 2	1	1
2513:	0	1	0	0	0	2	0	2
2521:	0	1	0	1	0	1	1	1
2529:	1	2	1	1	2	0	2	3
2537:	0	0	1	1	1	2	1	0
2545:	0	5	0		3	4	0	Ō
2553:	0	2	Ö	ī	Ō	ō	ĺ	1
2561:	0	ī	4	ī	2	Ö	2	ī
2569:	Ö	Ō	Ō	Ō	0	Ö	2	0
2577:	Ö	3	Ö	3	0	4	3	0
2585:	2	0	1	2	0	0	0	0
2593:	1	1						
2601:	1		1	0	2	0	1	0
2601:		1	0	0	1	1	1	0
	1	1	0	1	6	8	27	21
2617:	7	3	2	1	0	0	1	0
2625:	0	0	1	1	0	2	1	1
2633:	1	1	1	0	0	0	0	0
2641:	2	1	0	0	0	0	1	0
2649:	1	2	1	0	0	0	0	0
2657:	1	0	0	0	0	1	0	0
2665:	1	0	1	1	1	1	0	0
2673:	2	0	0	1	0	1	1	0
2681:	2	0	1	1	0	2	0	2
2689:	1	0	0	0	5	7	4	3
2697:	1	1	1	1	1	0	0	0
2705:	0	1	2	0	2	3	0	0
2713:	1	0	0	Ö	0	0	2	2
2721:	Ō	Ö	Ö	ő	Ö	ĺ	1	2
2729:	Ō	ĺ	ő	ĭ	Ö	Ŏ	i	1
2737:	1	Ō	Ö	2	. 0	0	Ō	0
2745:	ī	ő	1	1	0	0	Ö	0
2753:	ī	1	1	0	1	0	0	1
2761:	1	0	1	1	0	0	0	
2769:	1	5	0	2		2		1 0
2777:	0	1			4	2	2	
2777:	0		0	0	2	0	0	1
2793:		1	1	0	0	1	0	0
2/93:	1	0	0	0	0	1	0	0
	0	0	0	1	1	1,	2	0
2809:	1	2	1	0	1	1	0	1
2817:	0	0	0	0	0	0	0	1
2825:	2	0	0	3	0	0	0	0

2833:	0	1	0	1	0	1	1	1
2841:	ő	0	Ö	1	ĺ	ō	Ö	0
2849:	Ö	0	0	0	Ō	ĭ	Ö	Ö
						0	2	2
2857:	2	1	1	0	0			
2865:	0	1	0	0	0	0	0	1
2873:	0	0	0	0	0	0	0	1
2881:	2	0	0	1	1	0	1	0
2889:	0	0	1	1	1	2	1	0
2897:	0	1	1	2	0	0	1	1
2905:	1	0	0	0	0	0	0	1
2913:	0	1	0	0	0	0	0	1
2921:	0	2	2	0	0	1	0	0
2929:	0	1	1	0	1	1	1	0
2937:	0	0	0	1	1	0	2	0
2945:	0	1	0	0	0	0	0	1
2953:	0	0	0	0	0	0	2	1
2961:	1	0	0	0	0	0	0	0
2969:	1	0	0	1	0	0	0	0
2977:	1	0	3	0	0	0	1	0
2985:	0	Ö	Ō	Ö	Ō	1	0	1
2993:	Ö	í	Ö	2	Ö	ō	Ö	2
3001:	3	ō	Ö	ō	Ö	1	ĺ	0
3009:	Ö	1	Ö	ő	Ö	Ō	0	Ō
3017:	ŏ	0	Ö	Ö	ő	Ö	ĺ	Ö
3025:	ŏ	í	Ö	Ö	Ö	Ö	0	í
3033:	ő	ī	Ö	0	0	1	Ö	1
3041:	Ö	1	1	0	0	Ō	2	0
3049:	0	0	1	0	0	1	0	1
3049:	0	1	0		1	0	1	0
3065:	0	1		1	0	2	0	0
3073:	1		0	1	0	0	0	
3073:	1	0	0	0			1	1
		0	0	1	2	0		0
3089:	0	1	1	0	1	0	0	0
3097:	0	0	1	0	1	0	0	0
3105:	0	0	0	0	0	2	0	0
3113:	U	0	0	0	0	O	U	Ţ
3121:	0	1	0	2	0	0	0	1
3129:	0	1	1	0	0	0	0	0
3137:	0	0	0	0	0	1	0	0
3145:	1	0	1	0	0	1	0	0
3153:	0	1	0	0	1	0	0	0
3161:	0	0	0	0	0	0	1	0
3169:	0	0	0	0	0	0	0	0
3177:	0	0	0	0	1	0	0	0
3185:	1	0	0	0	0 2	0	0	0
3193:	1	0	0	0	2	0	0	0
3201:	0	0	1	0	0	0	0	0
3209:	0	0	0	2	1	1	0	1
3217:	0	0	0	0	0	0	0	0
3225:	0	0	0	0	1	0	0	0
3233:	0	0	0	0	0	0	1	0
3241:	1	0	0	0	1	0	0	0
3249:	0	0	1	0	0	0	0	0
3257:	0	0	0	0	0	0	0	0
3265:	0	0	0	0	0	0	0	0
3273:	0	0	0	2	0	0	0	0
3281:	0	0	0	1	0	0	0	2
3289:	0	0	0	1	0	0	0	1
3297:	0	1 0	0	0	0	0	0	0
3305:	0	0	0	0	0	0	0	0

3313:	1	0	0	0	0	1	1	0
3321:	0	0	0	1	0	0	0	1
3329:	0	0	0	0	0	0	0	0
3337:	0	0	0	0	0	1	0	0
3345:	0	0	0	1	2	0	0	0
3353:	3	0	0	0	1	0	0	0
3361:	0	0	0	0	0	. 0	1	0
3369:	0	1	0	0	0	0	0	0
3377:	0	1	0	0	0	1	0	0
3385:	0	0	1	0	0	0	0	1
3393:	0	0	0	0	0	0	0	0
3401:	0	2	1	0	1	0	0	0
3409:	0	0	0	0	1	0	0	0
3417:	1	0	0	0	0	0	0	0
3425:	0	0	0	0	0	0	0	0
3433:	0	0	0	0	0	0	0	0
3441:	0	0	0	0	0	1	0	0
3449:	0	0	0	0	0	0	0	0
3457:	0	0	0	0	1	0	0	0
3465: 3473:	0 1	0	1	0	0	0 0	0 0	1 0
3473:	0	0 0	0 0	0 1	0 0	0	0	0
3489:	0	0	1	0	0	0	0	0
3497:	Ö	Ö	0	1	1	Ö	Ö	0
3505:	Ö	ő	ĭ	Ō	Ō	Ö	Ö	Ö
3513:	ĺ	ő	Ō	ĭ	Ö	ő	Ö	Ö
3521:	1	Ö	Ö	ō	Ö	Ö	Ö	1
3529:	0	Ō	, 0	0	Ō	Ō	Ō	0
3537:	0	0	1	Ö	0	0	0	0
3545:	0	0	0	0	1	0	1	0
3553:	0	0	0	0	0	0	0	0
3561:	0	0	0	0	2	0	0	0
3569:	0	0	0	0	0	0	0	0
3577:	1	0	0	2	0	0	0	1
3585:	1	0	2	0	0	0	0	0
3593:	1	0	0	0	0	0	0	0
3601:	0	1	0	0	0	0	0	0
3609:	0	0	0	0	0	0	0	0
3617: 3625:	0 0	0	0	0	0	0	0	0
3633:	0	1 0	0	0	0	0	0	0
3641:	0	0	0 0	1 0	0 0	0 0	0 0	0 0
3649:	Ö	0	1	0	0	0	0	0
3657:	Ö	0 -	0	0	0	1	0	0
3665:	Ö	Ö	ĭ	ő	ő	Ō	Ö	Ö
3673:	0	Ö	ō	í	Ö	Ö	Ö	Ö
3681:	0	0	Ö	Ō	Ō	Ö	Ö	Ō
3689:	0	0	0	0	0	0	0	0
3697:	0	0	0	1	0	1	1	0
3705:	0	0	0	0	0	0	0	0
3713:	0	0	0	0	0	0	0	0
3721:	0	1	0	0	0	0	0	0
3729:	0	0	2	0	1	0	0	1
3737:	0	0	0	0	0	0	1	0
3745:	0	0	0	0	0	0	1	0
3753: 3761:	0 0	0	0	0	1	0	0	1
3769:	0	0 1	0 0	0 0	0 0	0	0 0	0 0
3777:	Ö	0	0	0	0	1 0	0	0
3785:	Ö	1	0	2	0	0	0	0
- · - • •	•	<u>-</u>	J	4	J	U	U	U

3793:	0	0	0	0	0	0	0	0
3801:	Ö	1	Ö	Ö	Ö	Ö	Ö	0
3809:	Ö	0	1	0	0	Ö	Ö	0
3817:	Ö	0	0	0	0	0	Ö	0
3825:	0	0	0	0	0	0	0	0
3833:	0	0		=	0	0	0	0
3841:	. 0	0	0	0	0	0	0	0
3849:	0		1	0			0	0
		0	0	0	0	0	-	
3857:	0	0	0	1	1	0	0	0
3865:	1	0	0	0	0	0	0	1
3873:	0	0	0	0	0	0	0	1
3881:	0	0	0	0	0	0	. 0	0
3889:	1	0	0	1	0	0	1	0
3897:	0	0	0	0	0	0	1	0
3905:	0	0	1	0	0	0	. 0	0
3913:	1	0	0	0	0	1	0	0
3921:	0	0	1	0	0	0	0	0
3929:	0	0	0	0	0	0	0	0
3937:	0	0	0	0	1	0	1	0
3945:	0	0	0	0	0	0	0	0
3953:	0	1	0	0	0	0	0	0
3961:	0	0	0	0	1	0	0	0
3969:	0	0	0	0	0	0	1	0
3977:	0	0	0	0	0	1	0	0
3985:	0	0	0	0	0	0	0	0
3993:	0	0	2	0	0	0	0	3
4001:	0	1	0	0	0	1	0	0
4009:	0	0	0	Ō	0	0	1	0
4017:	0	0	Ō	Ö	Ō	Ō	$\overline{f 1}$	Ō
4025:	0	0	0	Ö	Ō	Ö	0	Ō
4033:	0	0	0	Ö	Ō	Ö	Ö	Ö
4041:	0	Ö	0	Ö	Ö	Ö	0	Ö
4049:	0	ĺ	Ö	Ö	Ö	Ö	Ö	Ö
4057:	0	ō	Ö	Ö	ő	Ö	Ö	Ö
4065:	Ō	Ö	Ö	ő	ő	Õ	Ö	Ö
4073:	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0
4081:	Ö	ő	Ö	0	0	0	0	0
4089:	0	0	0	0	0	0	0	0
1005.	J	U	U	U	U	U	. 0	U

Acquisition date : 22-FEB-2012 11:31:09

Sample ID : 1201163-04

VAX/VMS Peak Search Report Generated 22-FEB-2012 12:32:04.36

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116304_GE1_GAS1102_176247.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{\text{V2}}$.2 Client ID : JM-70-32-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 11:31:09

Sample Quantity : 5.79990E+02 gram
Sample Geometry : 0

Sample ID : 1201163-04
Sample type : SOLID
Detector name : GE1 Detector Geometry: GAS-1102

Elapsed real time: 0 01:00:43.87 1.2% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 01:00:00.00

Start channel : 5 Sensitivity : 2.40000

Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
0	32.21	714	11223	1.22	31.83	30	5	45.1		
0	46.66*	9051	16328	1.80	46.29	44		4.7		PB-210
0	53.12	2087	24133	1.14	52.74	50	6	23.9		
0	63.50*	7856	28277	1.44	63.13	61	5	6.8		TH-234
0	76.70*	57804	70336	2.92	76.33	71	12	2.0		
0	93.21*	12324	32008	1.72	92.84	90	7	5.2		GA-67
0	112.76	1076	20106	1.54	112.40	110	6	42.2		
0	144.35*	2045	16487	1.39	143.99	142	5	19.4		U-235
										CE-141
0	154.24	922	20497	1.67	153.89	152		49.6		
0	164.30*	675	14992	1.28	163.95	162		55.1		U-235
0	186.49*	20099	25238	1.48	186.14	182		3.2		RA-226
0	205.92	513	11169	1.70	205.58	204		62.6		U-235
1	236.43	1501	7507	1.44	236.10	233			3.27E+00	
1	239.49*	643	9213	1.76	239.16	233		48.1		PB-212
1	242.40	17256	7156	1.45	242.07	233	14			RA-224
1	256.49	1053	7521	1.77	256.16	253			5.10E+00	
1	259.34	1349	7400	1.78	259.01	253		20.4		
7	270.59	3543	9524	3.13	270.26	267			4.99E+00	
7	275.00	836	6821	1.60	274.67	267		31.1		
0	285.76	304	6722	3.83	285.44	284		81.8		
4	295.63*	39618	6349	1.53	295.31	290			1.45E+01	
4	299.56	1443	8757	2.41	299.24	290	13	27.8		PB-212
•	214 60									GA-67
0	314.60	377	5146	2.12	314.28	313		58.1		
0	324.15	282	5307	1.17	323.84	322		78.4		RA-223
0	329.87	305	5326	1.51	329.55	328		72.7		
2 2	352.32*	68121	4460	1.59	352.01	346			4.06E+01	PB-214
0	355.96	1664	4954	2.04	355.65	346		20.4		
2	388.39	1287	6787	3.50	388.09	384		23.7		
2	402.15 405.63	690	3933	1.82	401.85	399			1.11E+00	RN-219
0		602	4713	2.09	405.33	399		37.7		
0	428.05 445.34	311	5178	2.84	427.76	425		78.1		
0	454.91	200 280	3431	1.28	445.05	443		93.6		
0	462.45	280 366	2826 3121	2.12	454.62	453		58.2		
J	402.43	200	3141	2.40	462.16	460	ь	49.5		

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	480.89	425	2924	1.77	480.61	478	6 41.4		
0	487.38	570	3268	1.70		484	7 34.3		
0	511.28*	791	4154	3.30	511.00	506	10 31.4		
0	533.75	261	2462	1.52	533.48	531	6 61.4		
5	580.63	499	1818	1.72	580.37	577		1.24E+00	
5	583.56*	182	1433	1.37		577			TL-208
4	605.99	116	1843	2.26		603		3.41E+01	
4	609.75*		1678	1.71		603	15 0.9		BI-214
4	613.26	1056	1819			603	15 33.5		
0	665.94	1286	2190	1.97		662	8 13.8		
0	703.85	390	2197			700	8 42.9		
0 0	712.29	127				709	7111.0		
0	719.97 743.41	383 513				716 739	8 42.1 10 35.4		
0	752.77	135				750	7101.7		
Ö	768.65*		2795			763	11 5.3		
Ö	786.26	1117				782	8 14.5		
Ö	806.73	1023	2078			802	9 17.2		
0	821.71	133	1176	1.72		819	5 79.3		
0	830.05	400	2779			824	12 53.6		
0	839.49	604	1826	1.88		836	8 25.8		
0	906.12	108	1439	4.07	905.92	903	6112.4		
2	934.50	2576	1253	1.94	934.31	928		3.35E+00	
2	937.77	130	1460	2.43		928	15122.4		
0	963.68	229	1658	1.71		961	8 62.7		
0	1001.81*	703	2077		1001.64	996	12 27.0		PA-234M
0	1033.54	101	947		1033.37	1031	6 98.8		
0	1053.02	257			1052.86	1049	8 50.2		
0	1069.24 1104.84	376 120	1667		1069.07	1064	11 43.3		
0	1104.84	120 11070	1074		1104.69	1101	7 92.5		BI-214
0	1134.05	181	1943 1254		1120.74 1133.90	1115 1131	12 2.5 8 69.4		D1-214
Ö	1155.91	1377	1441		1155.76	1151	11 12.0		
Ö	1182.22	151			1182.08				
Ō	1207.86	355	1119		1207.73	1203	9 35.6		
0	1238.79	4065	1687		1238.67	1232	13 5.2		
0	1254.46	256	1199		1254.34	1250	10 52.2		
0	1281.66	907	1234	2.28	1281.55	1277	10 15.9		
0	1304.43	99	857	3.25	1304.32	1301	8104.4		
0	1337.24	123	679		1337.13	1334	7 72.5		
1	1378.22	2848	711		1378.13	1367		3.09E+00	
1	1385.88	573	728		1385.78	1367	25 17.7		
0	1401.91	825	1024		1401.82	1397	9 15.6		
0	1408.55	1454	932		1408.46	1405	8 9.0		TZ 40
0	1461.48* 1509.89	940 1299	1162		1461.40	1457	11 15.5		K-40
0	1539.03	219	1314 708		1509.82 1538.97	1505 1536	11 12.1 6 40.8		
0	1543.98	219	708 576		1538.97	1536 1542	6 40.8		
5	1583.83	445	592		1583.77	1579		3.88E+00	
Ō	1598.34	311	1071		1598.28	1590	15 47.4		
0	1662.20	702	. 535		1662.16	1656	13 15.6		
						=			

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
0	1684.50	131	358	2.33 1684.47	1680	9 55.1		
0	1693.67	179	423	2.97 1693.64	1689	11 46.9		
0	1730.17	2060	444	2.47 1730.15	1724	13 6.1		
2	1765.05*	9039	219	2.34 1765.03	1758		3.45E+00	BI-214
2	1768.94	267	206	2.43 1768.92	1758	16 64.0		
0	1803.73	61	276	2.83 1803.72	1799	13113.9		
3	1838.82	202	205	2.56 1838.81	1834		1.35E+00	
3	1843.28	41	232	3.11 1843.28	1834	33177.4		
3	1848.00	1216	183	2.46 1848.00	1834	33 6.8		
0	1875.37	80	312	2.49 1875.38	1868	11 88.5		
3	1890.72	59	204	2.31 1890.73	1887	15 82.9	1.00E+00	
3	1896.69	. 75	256	3.09 1896.70	1887	15 80.1		
0	1936.92	182	300	3.20 1936.94	1930	14 43.1		
0	1971.71	48	173	1.51 1971.74	1968	8 98.8		
4	2016.93	49	152	2.89 2016.96	2008	17 99.0	2.49E+00	
4	2021.23	28	127	3.18 2021.26	2008	17155.7		
0	2040.80	24	71	2.40 2040.84	2038	6118.9		
0	2091.51	54	91	2.98 2091.56	2087	10 71.7		
0	2118.74	719	220	2.52 2118.80	2103	25 13.1		
0	2193.13	57	54	1.93 2193.20	2190	9 53.4		
0	2204.61	2481	115	2.51 2204.68	2199	13 4.4		BI-214
0	,2245.56	26	33	7.65 2245.65	2239	11 94.0		
0	2293.79	178	23	2.62 2293.89	2287	15 19.0		
0	2448.06	705	45	2.53 2448.19	2441	14 8.6		
0	2482.37	14	0	1.35 2482.50	2478	9 53.5		
0	2555.95	10	0	3.98 2556.10	2552	8 63.2		
0	2603.44	10	0	1.12 2603.60	2599	9 63.2		
0	2615.30*	67	5	2.88 2615.46	2610	11 29.0		TL-208
0	2629.55	7	0	1.33 2629.71	2627	6 75.6		
0	2695.36	20	5	1.56 2695.54	2691	9 59.9		
0	2770.97	10	5	1.31 2771.16	2766	9103.4		
0	2979.36	10	0	2.81 2979.60	2976	7 63.2		
0	3000.01	8	0	2.75 3000.25	2997	7 70.7		
0	3052.83	12	0	1.45 3053.08	3049	8 57.7		

Summary of Nuclide Activity Page: 4 Sample ID : 1201163-04 Acquisition date : 22-FEB-2012 11:31:09

Total number of lines in spectrum 119 Number of unidentified lines 75

Number of lines tentatively identified by NID 44 36.97%

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.269E+01	2.269E+01	0.411E+01	18.10
TL-208	1.41E+10Y	1.00	6.876E-01	6.876E-01	1.910E-01	27.77
PB-210	22.26Y	1.00	1.055E+02	1.057E+02	0.105E+02	9.90
PB-212	1.41E+10Y	1.00	9.326E-01	9.326E-01	4.564E-01	48.94
BI-214	1602.00Y	1.00	1.566E+02	1.566E+02	0.077E+02	4.93
PB-214	1602.00Y	1.00	1.545E+02	1.545E+02	0.100E+02	6.50
RN-219	3.28E+04Y	1.00	9.929E+00	9.929E+00	2.956E+00	29.77
RA-223	3.28E+04Y	1.00	5.790E+00	5.790E+00	4.570E+00	78.93
RA-224	1.41E+10Y	1.00	2.845E+02	2.845E+02	0.266E+02	9.34
RA-226	1602.00Y	1.00	3.436E+02	3.437E+02	6.295E+02	183.18
PA-234M	4.47E+09Y	1.00	1.486E+02	1.486E+02	0.424E+02	28.51
TH-234	4.47E+09Y	1.00	9.278E+01	9.278E+01	1.005E+01	10.83
U-235	7.04E+08Y	1.00	6.980E+00	6.980E+00	3.050E+00	43.70
	Total Nati	321 +32 .	1 2225.02	1 2225.02		

Wtd Mean Wtd Mean

Total Activity : 1.333E+03 1.333E+03

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Fla	ags
GA-67	3.26D	226.	1.533E+01	3.465E+03	12.16E+03	351.01	
NB-95M	3.61D	134.	3.856E+00	5.159E+02	0.991E+02	19.21	

Total Activity: 1.919E+01 3.981E+03

Nuclide Type : FISSION

Nuclide CE-141	Hlife 32.50D	-	Wtd Mean Uncorrected pCi/gram 2.113E+00	Wtd Mean Decay Corr pCi/gram 3.640E+00	Decay Corr 2-Sigma Error 1.105E+00	_	gs

Total Activity : 2.113E+00 3.640E+00

Grand Total Activity: 1.354E+03 5.318E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 5
Acquisition date: 22-FEB-2012 11:31:09

Nuclide	Type: NATU	RAL		
Nuclide K-40	Energy 1460.81	972DII	2 ETT	Jncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 2.269E+01 2.269E+01 18.10 OK
	Final Mean	for 1	Valid Peaks	= 2.269E+01+/- 4.106E+00 (18.10%)
TL-208	583.14 860.37 2614.66	30.22* 4.48 35.85	1.029E+00 7.505E-01 3.563E-01	7.566E-01 7.566E-01 63.91 OK Line Not Found Absent 6.749E-01 6.749E-01 30.80 OK
	Final Mean	for 2	Valid Peaks	= 6.876E-01+/- 1.910E-01 (27.77%)
PB-210	46.50	4.25*	2.613E+00	1.055E+02 1.057E+02 9.90 OK
	Final Mean	for 1	Valid Peaks	= 1.057E+02+/- 1.046E+01 (9.90%)
PB-212	238.63 300.09	44.60* 3.41	2.000E+00 1.716E+00	9.326E-01 9.326E-01 48.94 OK 3.191E+01 3.191E+01 29.22 < <wm interf<="" td=""></wm>
	Final Mean	for 1	Valid Peaks	= 9.326E-01+/- 4.564E-01 (48.94%)
BI-214	609.31 1120.29 1764.49 2204.22	46.30* 15.10 15.80 4.98	9.927E-01 6.104E-01 4.432E-01 3.885E-01	1.423E+02 1.423E+02 10.17 OK 1.555E+02 1.555E+02 9.44 OK 1.671E+02 1.671E+02 9.25 OK 1.660E+02 1.660E+02 10.65 OK
	Final Mean	for 4	Valid Peaks	= 1.566E+02+/- 7.714E+00 (4.93%)
PB-214				1.539E+02 1.539E+02 9.17 OK 1.550E+02 1.550E+02 9.22 OK
	Final Mean	for 2	Valid Peaks	= 1.545E+02+/- 1.005E+01 (6.50%)
RN-219	401.80	6.50*	1.383E+00	9.929E+00 9.929E+00 29.77 OK
	Final Mean	for 1	Valid Peaks	= 9.929E+00+/- 2.956E+00 (29.77%)
RA-223	323.87	3.88*	1.626E+00	5.790E+00 5.790E+00 78.93 OK
	Final Mean	for 1	Valid Peaks	= 5.790E+00+/- 4.570E+00 (78.93%)
RA-224	240.98	3.95*	1.987E+00	2.845E+02 2.845E+02 9.34 OK
	Final Mean	for 1	Valid Peaks	= 2.845E+02+/- 2.658E+01 (9.34%)
				3.436E+02 3.437E+02 183.18 OK
				= 3.437E+02+/- 6.295E+02 (183.18%)
				1.486E+02 1.486E+02 28.51 OK
	Final Mean	for 1	Valid Peaks	= 1.486E+02+/- 4.237E+01 (28.51%)

Nuclide Line Activity Report (continued) Page: 6
Sample ID: 1201163-04 Acquisition date: 22-FEB-2012 11:31:09

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status TH-234 10.83 OK 63.29 3.80* 2.884E+00 9.278E+01 9.278E+01 Final Mean for 1 Valid Peaks = 9.278E+01+/-1.005E+01 (10.83%) 143.76 26.49 <<WM Interf U-235 10.50* 2.601E+00 9.695E+00 9.695E+00 58.34 OK 163.35 4.70 2.462E+00 7.550E+00 7.550E+00 65.51 OK 205.31 4.70 2.188E+00 6.455E+00 6.455E+00 Final Mean for 2 Valid Peaks = 6.980E+00+/-3.050E+00 (43.70%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Nuclide Energy %Abn %Eff Status 3.465E+03 351.01 GA-67 93.31 35.70* 2.914E+00 1.533E+01 OK 208.95 2.24 2.166E+00 ---- Line Not Found ----Absent 300.22 1.537E+03 352.17 <<WM Interf 16.00 1.716E+00 6.804E+00 Final Mean for 1 Valid Peaks = 3.465E+03+/-1.216E+04 (351.01%) NB-95M 235.69 25.00* 2.015E+00 3.856E+00 5.159E+02 19.21 OK Final Mean for 1 Valid Peaks = 5.159E+02+/-9.912E+01 (19.21%)

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status
CE-141 145.44 48.40* 2.589E+00 2.113E+00 3.640E+00 30.35 OK

Final Mean for 1 Valid Peaks = 3.640E+00+/-1.105E+00 (30.35%)

Flag: "*" = Keyline

Page: 7
Acquisition date: 22-FEB-2012 11:31:09

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40	2.269E+01	4.106E+00	3.081E+00	2.612E-01	7.363
GA-67	3.465E+03	1.216E+04	1.977E+02	6.938E+02	17.528
NB-95M	5.159E+02	9.912E+01	1.482E+02	1.214E+01	3.480
CE-141	3.640E+00	1.105E+00	1.029E+00	2.369E-01	3.537
TL-208	6.876E-01	1.910E-01	8.632E-01	7.983E-02	0.797
PB-210	1.057E+02	1.046E+01	6.193E+00	4.780E-01	17.072
PB-212	9.326E-01	4.564E-01	6.263E-01	5.128E-02	1.489
BI-214	1.566E+02	7.714E+00	5.685E-01	5.288E-02	275.501
PB-214	1.545E+02	1.005E+01	7.225E-01	5.975E-02	213.815
RN-219	9.929E+00	2.956E+00	4.365E+00	3.619E-01	2.275
RA-223	5.790E+00	4.570E+00	6.971E+00	5.749E-01	0.831
RA-224	2.845E+02	2.658E+01	7.120E+00	5.830E-01	39.961
RA-226	3.437E+02	6.295E+02	9.027E+00	1.653E+01	38.069
PA-234M	1.486E+02	4.237E+01	3.305E+01	2.679E+00	4.497
TH-234	9.278E+01	1.005E+01	8.493E+00	6.293E-01	10.924
U-235	6.980E+00	3.050E+00	2.730E+00	4.814E-01	2.557

Non-Identified Nuclides										
Nuclide	Key-Line Activity K.L. (pCi/gram) Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA					
BE-7 NA-22 AL-26 TI-44 SC-46 V-48 CR-51 MN-54 CO-56 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 RB-82 RB-83 KR-85 SR-85	-1.927E+00 7.071E-02 -4.906E-02 3.861E-01 -1.845E-01 9.395E-02 -6.432E-01 3.324E-01 1.137E-01 -1.652E-01 1.020E-01 -2.165E-01 3.672E-02 4.100E-01 2.652E-01 1.789E+00 7.216E-03 1.301E+02 7.437E-01	2.304E+00 2.209E-01 1.413E-01 2.677E-01 2.400E-01 5.596E-01 4.119E+00 2.678E-01 2.482E-01 2.482E-01 2.467E-01 2.467E-01 4.755E-01 4.755E-01 4.091E-01 3.102E+00 4.418E-01 4.131E+01 2.361E-01	3.490E+00 3.279E-01 2.010E-01 3.555E-01 3.947E-01 9.358E-01 5.148E+00 3.314E-01 3.766E-01 3.766E-01 3.748E-01 7.906E-01 3.197E-01 7.182E-01 5.217E-01 4.344E+00 6.790E-01 6.380E+01 3.647E-01	3.077E-01 2.684E-02 1.606E-02 2.785E-02 3.159E-02 7.562E-02 4.488E-01 2.812E-02 3.159E-02 3.148E-02 3.256E-02 7.049E-02 2.614E-02 5.885E-02 4.284E-01 1.077E-01 5.746E+00 3.285E-02	-0.552 0.216 -0.244 1.086 -0.468 0.100 -0.125 1.003 0.302 -0.506 0.272 -0.274 0.115 0.571 0.508 0.412 0.011 2.039 2.039					
Y-88 NB-93M NB-94 NB-95 ZR-95 RU-103 RU-106 AG-108M	4.503E-01 -6.497E+01 3.908E-02 5.715E+00 1.750E-01 -3.495E-03 -9.579E-01 3.666E-01	1.795E-01 1.482E+01 1.858E-01 6.711E-01 4.421E-01 2.605E-01 1.734E+00 2.084E-01	3.081E-01 1.779E-01 3.121E-01 7.370E-01 6.735E-01 4.456E-01 2.604E+00 3.230E-01	2.448E-02 3.960E-02 2.552E-02 6.599E-02 6.628E-02 6.394E-02 3.599E-01 2.957E-02	1.462 -365.119 0.125 7.755 0.260 -0.008 -0.368 1.135					

Nuclide		K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
11401140	(por) gram,	1404		(pc1/ g1am/		
CD-109	5.302E+01		9.257E+00	1.025E+01	1.191E+00	5.171
AG-110M	2.162E-02		1.920E-01	2.929E-01	2.735E-02	0.074
SN-113	4.591E-01		3.282E-01	5.139E-01	4.361E-02	0.893
TE123M	1.052E-01		3.154E-01	4.080E-01	3.378E-02	0.258
SB-124	4.607E-02		2.486E-01	3.807E-01	3.537E-02	0.121
I-125	4.983E-01		3.637E+00	5.565E+00	5.049E-01	0.090
SB-125	1.060E+00	+	8.339E-01	1.034E+00	8.957E-02	1.025
SB-126	4.426E+00	+	1.913E+00	2.345E+00	2.150E-01	1.888
SN-126	7.830E-01		6.595E-01	9.844E-01	9.784E-02	0.795
SB-127	5.205E+01		4.265E+01	7.318E+01	6.794E+00	0.711
I-129	-1.847E-01		3.418E-01	5.205E-01	5.465E-02	-0.355
I-131	3.444E-01		1.722E+00	2.851E+00	2.356E-01	0.121
TE-132	-3.196E+01		4.583E+01	7.186E+01	5.882E+00	-0.445
BA-133	2.379E+00	+	5.831E-01	7.071E-01	9.176E-02	3.364
CS-134	1.575E-01	+	1.788E-01	3.076E-01	2.865E-02	0.512
CS-135	6.817E+00		1.365E+00	1.869E+00	1.521E-01	3.647
CS-136	4.205E-01		9.738E-01	1.464E+00	1.233E-01	0.287
CS-137	-2.224E-02		2.004E-01	3.041E-01	2.845E-02	-0.073
LA-138	2.503E-02		2.987E-01	4.907E-01	4.033E-02	0.051
CE-139	6.736E-01		2.814E-01	4.121E-01	3.294E-02	1.635
BA-140	1.009E+00		2.781E+00	4.259E+00	1.417E+00	0.237
LA-140	2.463E+00		9.207E-01	1.439E+00	1.180E-01	1.712
CE-144	1.724E-01		1.684E+00	2.704E+00	2.499E-01	0.064
PM-144	-4.203E-02		1.835E-01	2.769E-01	2.564E-02	-0.152
PM-145	-6.480E-01		9.107E-01	1.223E+00	7.967E-01	-0.530
PM-146	7.273E-01	+	4.291E-01	6.985E-01	6.057E-02	1.041
ND-147	3.830E+00		6.429E+00	9.959E+00	9.043E-01	0.385
EU-152	2.450E+01	+	3.538E+00	3.723E+00	3.943E-01	6.581
GD-153	-1.337E+00		7.731E-01	1.214E+00	1.188E-01	-1.101
EU-154	1.905E-01		6.137E-01	9.106E-01	7.453E-02	0.209
EU-155	1.186E+01		1.510E+00	1.210E+00	1.187E-01	9.807
EU-156	-2.008E+00		5.891E+00	8.763E+00	2.003E+00	-0.229
HO-166M	3.463E-01	+	3.861E-01	5.096E-01	4.688E-02	0.680
HF-172	6.162E-01		1.499E+00	2.414E+00	2.296E-01	0.255
LU-172	-9.110E-01		4.069E+00	6.719E+00	5.496E-01	-0.136
LU-173	9.595E+00		1.263E+00	1.572E+00	1.277E-01	6.105
HF-175 LU-176	-2.054E-01		2.792E-01	4.305E-01	3.560E-02	-0.477
TA-182	-9.042E-02		1.993E-01	2.848E-01	2.337E-02	-0.318
IR-182 IR-192	7.856E+01 2.134E-01	+	7.418E+00	3.621E+00	2.964E-01	21.697
HG-203	1.399E-01		4.512E-01	7.004E-01	6.136E-02	0.305
BI-207	8.287E-02		3.604E-01 1.612E-01	5.224E-01 2.760E-01	4.366E-02	0.268
BI-210M	8.717E-01		4.223E-01		2.543E-02 5.017E-02	0.300
PB-211	1.953E+01	+	7.587E+00	6.150E-01 1.075E+01	8.941E-01	1.417 1.816
BI-212	-6.982E-01	7	1.549E+00	2.318E+00	2.118E-01	-0.301
RA-225	-2.925E+00		1.848E+00	2.316E+00 2.750E+00	2.301E-01	-1.064
TH-227	8.389E+00	+	1.612E+00	2.750E+00 2.664E+00	2.182E-01	3.148
AC-228	4.716E-01	•	7.838E-01	1.187E+00	9.431E-02	0.397
-	- · · - · -			1.10/1100	J. 1512 02	0.557

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-04 Acquisition date: 22-FEB-2012 11:31:09

Nuclide	Key-Line Activity K.L (pCi/gram) Ideo		MDA (pCi/gram)	MDA error	Act/MDA
TH-230	1.583E+02	6.860E+01	9.055E+01	7.075E+00	1.749
PA-231	2.233E+01	8.581E+00	1.241E+01	1.016E+00	1.800
TH-231	1.373E+00	1.453E+00	2.409E+00	2.945E-01	0.570
PA-233	4.369E-01	9.208E-01	1.325E+00	2.955E-01	0.330
PA-234	7.569E-01	8.318E-01	1.338E+00	1.247E-01	0.566
NP-237	2.880E+01	3.667E+00	2.938E+00	2.883E-01	9.805
AM-241	1.614E+00	6.492E-01	8.629E-01	6.112E-02	1.871
AM-243	1.470E+01	1.433E+00	6.961E-01	5.924E-02	21.125
CM-243	1.021E+00	1.380E+00	2.005E+00	1.625E-01	0.509

Page: 10 Summary of Nuclide Activity

Acquisition date : 22-FEB-2012 11:31:09 Sample ID : 1201163-04

119 Total number of lines in spectrum Number of unidentified lines 75

Number of lines tentatively identified by NID 44 36.97%

Nuclide Type : NATURAL

	- <u>7 F</u> +						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Fla	gs
K-40	1.28E+09Y	1.00	2.269E+01	2.269E+01	0.411E+01	18.10	
TL-208	1.41E+10Y	1.00	6.876E-01	6.876E-01	1.910E-01	27.77	
PB-210	22.26Y	1.00	1.055E+02	1.057E+02	0.105E+02	9.90	
PB-212	1.41E+10Y	1.00	9.326E-01	9.326E-01	4.564E-01	48.94	
BI-214	1602.00Y	1.00	1.566E+02	1.566E+02	0.077E+02	4.93	
PB-214	1602.00Y	1.00	1.545E+02	1.545E+02	0.100E+02	6.50	
RN-219	3.28E+04Y	1.00	9.929E+00	9.929E+00	2.956E+00	29.77	
RA-223	3.28E+04Y	1.00	5.790E+00	5.790E+00	4.570E+00	78.93	
RA-224	1.41E+10Y	1.00	2.845E+02	2.845E+02	0.266E+02	9.34	
RA-226	1602.00Y	1.00	3.436E+02	3.437E+02	6.295E+02	183.18	
PA-234M	4.47E+09Y	1.00	1.486E+02	1.486E+02	0.424E+02	28.51	
TH-234	4.47E+09Y	1.00	9.278E+01	9.278E+01	1.005E+01	10.83	
U-235	7.04E+08Y	1.00	6.980E+00	6.980E+00	3.050E+00	43.70	
	Total Acti	37 i + 37 ·	1 333E+03	1 333ፑ⊥በ3			

Total Activity : 1.333E+03 1.333E+03

Nuclide Type : ACTIVATION

Nucliuc	Type . Acti	VATION	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma
Nuclide GA-67 NB-95M	Hlife 3.26D 3.61D	226.	pCi/gram 1.533E+01 3.856E+00	pCi/gram 3.465E+03 5.159E+02	2-Sigma Error 12.16E+03 0.991E+02	%Error Flags 351.01 19.21

Total Activity: 1.919E+01 3.981E+03

Nuclide Type : FISSION

Nuclide CE-141	Hlife 32.50D	-	Wtd Mean Uncorrected pCi/gram 2.113E+00	Wtd Mean Decay Corr pCi/gram 3.640E+00	Decay Corr 2-Sigma Error 1.105E+00	_	
-							

Total Activity : 2.113E+00 3.640E+00

Grand Total Activity: 1.354E+03 5.318E+03

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Spectrum : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_120116304_GE1_GAS1102_176247.CNF;1

Title :

Sample Title: JM-70-32-120128

Start Time: 22-FEB-2012 11:31 Sample Time: 28-JAN-2012 00:00 Energy Offset: 3.84457E-01

Channel

1:	0	- 0	0	0	0 .	0	0	0
9:	Õ	ő	Ö	Ö	ő	ő	Ö	Ö
17:	0	6	1996	2426	2326	2437	2712	2441
25:	2331	2284	2273	2232	2172	2127	2373	2854
33:	2328	2255	2363	2623	2564	2353	2539	2703
41:	2767	2895	3014	3303	3665	8289	7001	3167
49:	3522	4262	3754	4083	5693	4397	4031	4205
57:	4311	4810	5040	5411	5666	6345	10730	7828
65:	5659	5813	6422	6804	5938	5978	6245	6484
73:	6818	11374	19009	11715	28439	12159	7030	6432
81:	7093	5364	5953	8548	5325	5583	10858	7953
89:	5287	6869	4867	8362	10329	5298	5133	3611
97:	3617	4137	3789	3252	3163	3224	3314	3197
105:	3321	3231	3238	3307	3445	3467	3625	3584
113:	3804	3394	3308	3247	3180	3279	3125	3233
121:	3109	3151	3266	3182	3190	3360	3172	3218
129:	3227	3297	3348	3299	3308	3257	3251	3262
137:	3333	3293	3289	3401	3383	3276	3681	4691
145:	3693	3205	3347	3439	3387	3449	3463	3530
153:	3564	3959	3684	3360	3322	3399	3195	3185
161:	3132	3065	3387	3130	3032	3059	2807	2881
169:	2904 2860	2770	2869	2793	2771	2788	2796	2818 2991
177: 185:	5345	2699	2882	2857	2841	2850	2922 2736	2552
193:	2575	14806 2641	7764 2649	3015	2897	2805 2562	2483	2472
201:	2484	2456	2649 2422	2546 2280	2583 2579	2362	2483	2178
201:	2140	2436	2183	2076	2077	2047	2103	2008
217:	2009	2039	1969	2122	2001	1938	1952	1930
225:	1959	1897	1858	1907	1856	1864	1902	1894
233:	1921	1839	2025	2832	2163	1961	2169	1990
241:	4231	12985	5276	1875	1822	1750	1684	1620
249:	1597	1613	1545	1561	1532	1527	1582	2068
257:	1838	1771	2251	1643	1443	1483	1392	1441
265:	1461	1367	1347	1487	2143	2369	2196	1882
273:	1533	1659	1818	1442	1349	1384	1304	1441
281:	1440	1357	1343	1498	1381	1480	1374	1293
289:	1299	1287	1310	1321	1560	4294	23266	15013
297:	2078	1671	1603	1737	1300	1170	1325	1169
305:	1221	1098	1074	1078	1097	1047	1059	1008
313:	1097	1210	1164	1049	1003	1026	1021	1059
321:	1083	1053	1118	1305	1071	1042	1072	1082
329:	1157	1268	1104	1020	1095	1141	1100	1012
337:	989	1161	1085	1020	1017	1078	1076	1001
345:	988	1000	1016	1036	1289	1872	13232	42319
353:	14026	1719	1344	1608	1167	817	838	797
361:	784	787	793	807	766	762	729	756
369:	797	734	764	824	785	789	775	776
377:	805	798	795	802	752	792	742	737
385:	798 761	905	1065	910	1163	908	817	771
393: 401:	761 940	790	820	811	826	792	783	808
401:	770	1143 848	944	872 705	1061	989	809 750	799
409:	838	848 804	806 823	795	812 847	849	758 803	812 855
425:	826	850	823 818	853 848	847 748	848 702	803 697	643
	020	0.50	0.10	040	/40	102	091	043

433:	676	610	597	646	577	628	625	593
441:	583	570	596	597	695	603	564	576
449:	552	580	620	543	579	644	709	638
457:	536	600	553	544	637	661	586	560
						602	542	539
465:	499	503	529	534	559 514			676
473:	524	550	473	491	514	481	490	
481:	746	497	459	501	480	547	755	611
489:	475	469	445	433	447	450	440	464
497:	434	424	446	444	442	444	466	420
505:	400	427	415	425	505	623	658	615
513:	478	462	425	409	423	391	389	438
521:	422	417	414	411	419	406	387	426
529:	378	394	403	423	489	574	429	405
537:	433	469	397	391	403	388	452	475
545:	416	427	418	409	420	439	384	376
						426	359	393
553:	365	360	380	417	390			
561:	407	390	384	332	388	364	381	418
569:	381	420	359	393	391	410	394	394
577 :	349	349	420	607	543	396	456	432
585:	353	354	344	352	359	355	370	370
593:	356	365	367	356	360	350	392	374
601:	395	386	354	351	409	391	692	3745
609:	22481	22274	3295	830	841	677	407	317
617:	304	296	278	258	279	287	253	279
625:	267	289	284	283	246	295	275	271
633:	294	296	282	258	251	268	265	269
641:	254				280	289	236	258
		238	263	269				257
649:	293	310	242	246	259	269	242	
657:	303	258	258	290	289	278	234	304
665:	825	934	394	265	242	290	243	253
673:	239	235	249	232	271	242	250	233
681:	240	276	278	269	277	249	281	259
689:	266	243	252	276	220	250	249	240
697:	263	271	287	278	252	314	463	439
705:	306	282	253	284	254	281	288	278
713:	285	248	231	236	257	266	346	445
721:	336	265	277	271	254		245	262
729:	263			257				
737:	249		209	268	295			
745:	270		263	217			264	
753:	270 279					251	240	
				246				
	255		229	241			653	
769:	2265		284	273			237	
	230		241	222	202	219	240	255
785:	385		581	283		260	276	
793:	215		224	217		238	230	
801:	250	229	239	213	321	723	641	289
809:	220	226	221	238	246	223	220	259
817:	244	243	241	227	316	299	226	235
825:	255	288	281	253	236	240	283	
833:	295	250	233	232	256	281	519	422
841:	265	246	209	241	212	227	270	249
849:	225	227	235	241	212	227	215	259
857:	263	239				229 258	215	235
			261	253	259			
865:	227	236	260	240	253	234	257	226
873:	241	258	261	227	224	270	234	242
881:	272	264	259	242	253	231	247	253
889:	238	234	254	260	265	271	268	256
897:	249	250	274	227 242 260 234	229	259	238	276
905:	262	262	262	247	220	242	260	273

913:	254	237	255	246	223	203	203	221
921:	204	215	223	204	203	207	206	212
929:	213	237	233	235	492	1413	1093	336
937:	243	271	202	230	204	193	224	236
945:	192	200	197	204	214	193	211	183
953:	193	222	174	205	199	171	198	190
							211	195
961:	186	231	205	347	307	205	208	
969:	249	234	195	205	172	199		198
977:	179	219	187	172	205	185	191	178
985:	193	201	195	179	173	202	204	185
993:	169	180	176	187	190	195	179	248
1001:	444	349	224	217	191	193	166	166
1009:	180	203	173	196	170	192	190	176
1017:	170	180	158	184	185	202	183	179
1025:	194	177	171	177	166	165	159	179
1033:	204	175	181	150	160	171	146	161
1041:	179	145	166	146	174	172	153	175
1049:	147	161	188	279	250	185	169	177
1057:	150	172	172	185	165	154	145	150
1065:	154	185	200	191	193	255	240	164
1073:	162	149	161	155	169	156	157	140
1081:	164	157	165	145	150	139	163	153
1089:	154	173	151	144	165	147	144	138
1097:	163	142	139	161	142	145	175	215
1105:	201	161	155	155	187	147	160	155
1113:	191	184	154	160	180	244	909	3922
1121:	4870	1553	325	280	239	177	134	163
1129:	154	142	163	173	162	243	224	144
1137:	169	157	163	138	139	174	142	135
1145:	147	137			165	143	133	140
1143:	170	231	130	168		143	160	151
1161:	127		603	659	284		152	142
		124	150	145	147	155		
1169:	148	135	154	152	157	148	138	135
1177:	133	134	135	146	161	195	177	158
1185:	131	144	134	137	119	141	138	115
1193:	139	141	145	129	109	137	130	136
1201:	130	132	121	139	146	145	192	
1209:			112			122		
1217:	136		162				130	
	91		147				132	
1233:	125		140			1620		
1241:	185		155				121	
1249:	134	126	108		199	192	165	
1257:	121	137	100			124		
1265:	117	120	116	121	129	121	118	
1273:	121		141	135	120	128	116	
	495	439	230	134	122	117	123	110
1289:		134	115	118	101	123	120	
1297:		102	107	108	104	120	123	
1305:	132	118	114	109	107	131	106	
1313:	115	110	114	129	135	148	97	107
1321:	113	104	117	108	96	110	120	108
1329:	115	105	100	115	110	84	123	132
1337:	122	130	117	94 125	100	119	120	108
1345:	123	113	110	125	104	109	117	104
1353:	117	99	98	93 108 97	112	98	114	127
1361:	103	112	121	108	98	100	97	89
1369:	109	126	113	97	104	98	121	187
1377:	679	1317	113 875 185	244	144	142	142	135
1385:	254	354	185		108	113	95	115

1393:	113	117	76	111	111	118	102	153
	326				104	129	306	701
1401:		533	278	124				
1409:	641	244	129	132	105	116	110	103
1417:	128	85	84	110	119	83	97	98
1425:	118	123	114	97	109	92	106	110
1433:	111	91	114	105	118	110	114	120
1441:	112	107	102	115	88	97	101	103
1449:	98	110	110	108	108	98	122	106
1457:	99	113	128	253	450	427	172	116
						116	115	108
1465:	134	114	104	112	99			
1473:	108	103	111	112	102	115	123	116
1481:	112	111	116	98	95	114	104	110
1489:	126	103	110	124	111	117	116	112
1497:	127	107	109	95	106	131	119	128
1505:	112	123	122	243	503	658	311	152
1513:	134	129	126	112	133	131	110	125
1521:	123	122	115	126	124	135	104	122
1529:	112	118	108	132	119	128	121	123
							169	219
1537:	118	169	237	170	110	120		
1545:	124	103	85	85	81	94	91	81
1553:	71	79	87	81	91	69	80	99
1561:	81	96	85	83	83	76	77	85
1569:	87	83	75	84	78	73	73	89
1577:	99	86	63	99	92	120	197	242
1585:	158	72	84	61	86	77	74	81
1593:	80	96	120	123	79	96	113	125
1601:	101	79	83	55	70	61	71	90
1609:	76	71	74	91	57	69	71	70
1617:	72	61	83	59	76	66	56	51
1625:	56	64	77	55	62	52	64	51
1633:	60						64	50
		50	49	51	46	50		
1641:	47	52	48	53	53	39	57	51
1649:	53	42	49	49	48	49	54	42
1657:	56	58	44	84	230	294	148	70
1665:	69	47	61	34	37	36	38	41
1673:	37	52	40	44	40	43	52	37
1681:	47	44	59	93	86	53	39	31
1689:	41	31	41	56	91	97	78	47
1697:	43	44	33	48	35	39	51	40
1705:		28	40	38	29	47	31	37
1713:	41	39	48	41	35	35	37	41
1721:	36	33	35	27	37	34	5 <i>7</i> 59	126
1729:	448	814	602	163	5 <i>6</i>	49	47	42
1737:	32	46	40	103	36	37	33	32
1745:	36	22		29				30
	36	22	30	29 34	24	32	35	
1753:	36	30	31	4 1	43	25	34	37
1761:	59	95	459	2108	3761	2269	495	139
1769:	137	84	47	29	28	30	28	31
1777:	19 23	31	33	26	30	31	32	26
1785:	23	34	26	26	24	26	30	28
1793:	22	16	27	26	33	17	20	27
1801:	30	31	15	18	37	21	44	25
1809:	29	29	11	36	26	28	31	19
1817:	29	32	22	23	31	37	33	30
1825:	20	32	34	28	22	21	38	34
1833:	27	24	26	33	33	74	108	61
1841:	39	33	28	43	33	98	327	473
1849:	341	95	30	43 42	35 35	33	28	4 / 3 28
1857:	29	95 25	30 32					
1865:	25 25			23	23	29	26	38
T002:	25	20	34	30	28	17	21	33

1873:	66	63	47	32	28	27	23	28
1881:	28	30	29	31	30	27	32	21
1889:	30	50	55	34	31	33	31	53
1897:	50						26	21
		39	34	25	27	29		
1905:	29	30	30	28	20	15	27	31
1913:	32	29	24	33	24	27	21	25
1921:	19	25	19	24	32	18	35	35
1929:	22	23	28	33	33	26	34	51
1937:	57	49	30	33	30	32	23	18
1945:	31	33	26	38	23	35	30	26
1953:	23	29	26	36	26	31	36	28
1961:	33	23	31	17	18	28	27	19
1969:	31	31	26	40	29	20	25	16
1977:	27	32	21	20	25	30	27	15
1985:	22	28	19	22	15	16	16	26
1993:	21	28	30	19	17	23	25	22
2001:	22							
		26	23	17	21	15	22	18
2009:	22	22	34	33	33	23	29	26
2017:	35	25	29	23	20	28	18	15
2025:	15	22	14	17	19	21	17	15
2033:	16	20	11	19	15	11	15	19
2041:	23	18	9	13	11	12	13	20
2049:	21	18	19	23	21	24	24	13
2057:	17	15	8	14	15	11	16	12
2065:	13	7	20	15	11	12	11	9
2073:	12	14	17	15	12	14	14	9
2081:	9	14	6	17	7	15	6	12
2089:	23	22	18	14	14	14	13	9
2097:	7	10	16	12	10	14	10	12
2105:	15	16	9	12	20	18	21	11
2113:	18							
		10	14	15	47	155	258	175
2121:	42	17	12	10	9	10	3	6
2129:	9	11	8	. 8	9	8	10	9
2137:	7	8	11	8	11	5	13	14
2145:	14	8	11	16	10	10	12	9
2153:	7	12	7	10	5	11	13	10
2161:	7	14	9	10	9	10	9	9
2169:	7	15	3	9	5	8	10	7
2177:	7	6	7	5	6	8	2	9
2185:	8	11	7	8	4	3	12	25
2193:	16	14	11	9	11	10	6	15
2201:	18	66	268	822	833	373	92	36
2209:	31	23	13	6	7	6	9	10
2217:	7	4	6	3	6	6	7	6
2225:	5	6	8	10	4	4	6	9
2233:	8	8	4	4	6	3	4	3
2241:	7	8 2	5	5	8	7	8	6
2249:	4	1	8	8	6	2	5	8
2257:	5	4	4	9	8	6	8	
2265:	5 7	6	9	8	8 5	4	8	10
2273:		6				4		6
2273: 2281:	8	6	9	4	7	6	3	6
	5	7	6	4	9	3	0	5
2289:	6	6	4	15	42	59	36	5
2297:	7	6	5	3	1	2	3	2
2305:	5	3	3	5 5	4	6	2	6
2313:	6	5 5 7	3 2	5	5 3	4 3 7	1	5 4 2
2321:	3	5	2	3	3	3	2	4
2329:	2	7	4	5	5		3	
2337:	4	3 2	3	4	3	6 2	4	1 2
2345:	3	2	4	3	1	2	0	2

2353:	0	1	1	1	4	1	3	2
2361:	3	2.	3	_ 1	3	1	0	2
2369:	Ō	3	3	2	1	2	1	2
2377:	3	3	ĺ	2	0	.2	2	3
2385:	Ō	Ö	4	ī	1	2	1	2
2393:	2	1	ī	2	2	2	4	0
2401:	5	1	ī	ī	2	1	1	2
2409:	Ō	Ō	2	0	2	1	2	2
2417:	Ö	Ö	0	Ö	ī	2	2	2
2425:	2	4	4	i	1	1	3	2
2433:	1	ō	ī	0	0	6	1	2
2441:	3	3	_ 5	2	12	46	131	251
2449:	194	64	21	7	5	6	2	0
2457:	1	. 0	4	2	2	1	1	1.
2465:	1	1	0	1	1	1	1	1
2473:	2	2	1	2	0	0	2	2
2481:	0	1	2	6	1	0	0	1
2489:	0	1	1	1	1	0	2	0
2497:	1	1	2	1	1	2	0	2
2505:	3	2	1	1	1	0	1	1
2513:	2	1	3	1	0	1	1	1
2521:	0	0	1	0	1	1	1	0
2529:	2	1	1	0	4	1	0	0
2537:	1	1	1	1	1	0	0	0
2545:	0	1	0	0	0	1	0	0
2553:	0	1	3	2	2	2	0	0
2561:	0	1	1	1	0	0	2	1
2569:	1	1	2	1	0	0	0	1
2577: 2585:	0 0	1	0	0	0	2 0	2 1	0 1
2593:	0	0 1	1 0	3 0	0 1	0	0	1
2601:	0	0	5	1	1	2	0	0
2609:	2	0	2	1	4	16	23	17
2617:	7	5	2	0	Ō	0	2	1
2625:	í	ō	Õ	ĺ	ĭ	4	1	0
2633:	0	Ö	1	Ō	Ō	ī	0	Ö
2641:	Ō	Ō	- 1	Ö	1	0	1	0
2649:	0	1	0	1	0	0	0	2
2657:	2	0	0	0	2	2	1	1
2665:	0	0	2	0	1	0	0	0
2673:	1	1	1	1	0	0	1	1
2681:	1	0	1	3	3 2 3 1	0	1	2
2689:	0	0	1	0	2	4	4	9
2697:	3	1	0	1	3	1	1	0
2705:	1	1	0	1		0	1	1
2713:	0	0	1	0	1	0	0	1
2721:	0	0	2	1	0	0	2	3
2729: 2737:	2 1	4	2	1	1	0	0	0
2745:	1	0	0	2	0	0	2 1	0
2743:	0	1 2	0 1	0 0	0 0	0	0	1 0
2761:	0	0	2	1	0	1	1	1
2769:	ĺ	2	1	5	2	0	1	0
2777:	1	Ō	i	1	1	1	1	0
2785:	2	Ö	ī	Ō	Ō	ī	1	ĺ
2793:	2	0	Ō	Ö	Ö	0	0	1
2801:	0	0	0	0	0	0	3	1
2809:	0	3	0	1	0		1	1
2817:	0	0	1	0	0	2 2 0	1	1
2825:	0	0	1	2	0	0	0	0

2833:	1	0	0	0	0	0	1	0
2841:	1	2	0	0	1	0	0	0
2849:	0	0	1	1	0	0	0	1
2857:	0	1	1	0	1	0	1	0
2865:	0	0	0	ĺ	0	1	0	0
2873:	1	Ō	Ö	0	1	0	0	0
2881:	0	2	Ö	i	0	Ō	1	0
2889:	1	1	Ö	ī	1	1	0	0
2897:	0	ī	Ö	ī	0	0	1	1
2905:	2	0	1	ō	Ö	Ō	1	0
2913:	. 0	Ō	0	i	Ö	Ō	0	1
2921:	1	2	1	ī	Ō	0	0	1
2929:	0	0	0	1	0	1	0	0
2937:	0	0	0	0	1	2	0	0
2945:	0	0	0	Ö	0	0	1	1
2953:	0	0	0	0	0	0	1	0
2961:	0	0	1	Ō	0	0	0	0
2969:	0	0	0	0	1	0	0	0
2977:	1	0	4	2	3	0	0	0
2985:	0	1	Q	3	0	0	0	0
2993:	0	0	0	0	0	0	2	3
3001:	2	1	0	0	0	0	0	0
3009:	0	0	0	0	0	0	0	0
3017:	0	0	1	1	0	0	0	1
3025:	0	0	0	0	0	0	0	1
3033:	0	0	0	1	0	0	1	0
3041:	0	0	0	0	0	0	0	0
3049:	0	1	2	1	1	5	2	0
3057:	0	1	0	0	1	0	1	0
3065:	0	0	1	0	0	0	0	1
3073:	0	0	1	0	0	0	0	0
3081:	1	1	0	0	1	0	0	0
3089:	0	0	0	0	0	0	0	0
3097:	0	1	0	2	0	1	0	0
3105:	0	0	1	0	0	0	0	0
3113:	0	0	0	0	0	0	0	0
3121:	0	1	0	0	0	1	0	0
3129:	0	0	1	0	0	0	0	0
3137:	1	1	1	0	1	0	1	0
3145:	0	0	0	0	0	1	2	0
3153:	0	0	0	0	0	0	0	0
3161:	0	0	1	0	0	0	0	0
3169:	0	0	0	0	0	0	0	0
3177: 3185:	0	0	0	0	0	1	0	1
3193:	0 0	0	0	0	0	0	0	. 0
3201:	1	0 0	0	1	0	1	0	0
3209:	0	0	0	0	0	0	1	0 0
3217:	0	0	0 0	0 0	0 0	0 0	0 2	1
3225:	0	0	0	0	0	0	0	0
3233:	0	1	0	0	0	1	0	0
3241:	0	0	0	0	0	0	0	0
3249:	0	1	0	0	0	1	0	0
3257:	Ö	1	0	0	0	0	0	0
3265:	ő	Ō	0	0	0	0	0	0
3273:	ő	ő	Ö	Ö	1	1	0	0
3281:	ő	ĭ	Ö	1	0	0	0	0
3289:	Ö	1 1	Ö	0	Ö	2	Ö	0 -
3297:	Ö	Ō	Ö	Ö	ő	Õ	ŏ	1
3305:	1	Ŏ	Ö	Ö	Ö	Ö	ŏ	0
			-	~	-	-	-	-

3313:	0	0	0	0	1	0	0	0
3321:	0	0	0	0	1	0	0	0
3329:	0	0	0	0	0	1	0	1
3337:	0	Ō	Ö	Ö	0	0	0	1
3345:	Ö	Ö	Ö	Ö	1	0	0	0
3353:	Ö	1	Ö	Ö	ī	Ō	Ō	0
3361:	Ö	Ō	Ö	Ö	ī	Ö	Ö	Ō
3369:	Ö	Ŏ	í	Ö	Ō	Ö	1	1
3377:	Ö	Ŏ	0	ő	Ö	Ö	0	0
3385:	ĺ	Ö	ĺ	Ö	Ö	1	Ō	Õ
3393:	0	1	ī	Ö	Ō	ō	Ō	0
3401:	Ō	0	Ō	Ö	Ö	Ö	Ō	0
3409:	Ō	0	Ö	Ŏ	Ö	Ö	0	1
3417:	Ò	1	Ō	Ö	Ō	0	0	0
3425:	0	0	Ō	Ō	Ō	0	0	0
3433:	1	0	0	Ō	0	0	1	0
3441:	0	0	0	0	0	0	0	0
3449:	1	0	0	0	0	0	0	1
3457:	0	0	0	0	0	0	0	0
3465:	2	0	0	0	0	0	0	0 -
3473:	1	0	0	0	0	0	0	0
3481:	0	0	1	0	0	0	0	0
3489:	0	0	0	0	0	0	0	0
3497:	0	0	0	0	0	0	0	0
3505:	0	1	0	0	0	0	1	1
3513:	0	0	, O	0	1	0	1	0
3521:	1	0	0	0	0	0	0	0
3529:	0	0	0	0	0	0	0	0
3537:	0	0	0	0	0	0	0	0
3545:	0	0	0	0	0	0	0	1
3553:	0	0	0	0	1	0	0	0
3561:	0	0	0	1	0	0	0	0
3569:	1	0	0	0	0	0	1	0
3577:	0	0	0	0	0	0	0	0
3585:	0	0	0	0	0	0	0	0
3593:	0	1	0	0	0	0	0	1
3601:	0	0	1	0	0	1	0	0
3609:	0	0	0	0	0	0	1	0
3617:	0	0	0	1	0	0	0	0
3625:	0	0	0	0	0	0	0	1
3633:	0	0	0	0	0	0	0	1
3641:	0	0	0	0	0	0	0	0
3649:	0	0	0	0	0	0	0	0
3657:	0	0	0	0	0	0	0	0
3665:	1	0	0	0	0	2	0	1
3673:	1	0	0	0	0	0	1	0
3681:	0	0	0	0	0	1	0	0
3689:	0	1	0	0	0	0	0	0
3697: 3705:	0 1	0	0	0	0	0	0	0
3713:	1	0	1	0	0	0	0	0
3713: 3721:	0	0 0	0	0	0	1	0	0
3721:	1	0	0	0	0	0	1	0
3737:	0	0	0 1	0 0	0	0 1	1	0 2 1 0
3745:	0	1	0	2	0	0	0	∠ 1
3753:	0	0	0	0	0	0	0	υ Τ
3761:	0	0	0	0	1	0	0	
3769:	1	0	0	1	0	0	0	1 0
3777:	Ō	0	0 .	0	0	0	0	1
3785:	ő	1	0	0	0	0	0	0
	•	-	J	J	J	•	J	Ü

3793: 3801: 3809: 3817:	0 0 0 0	0 0 0	0 1 0 0	0 0 0	0 1 0 0	0 0 0	0 0 1 0	0 0 0
3825:	Ō	Ö	Ö	Ō	Ō	0	0	0
3833:	0	0	0	0	0	0	0	0
3841:	1	0	0	0	1	1	0	0
3849:	1	0	0	0	0	1	0	0
3857:	1	0	0	0	0	0	0	0
3865:	0	0	0	0	0	0	0	0
3873:	0	0	0	0	0	1	0	0
3881:	0	1	0	0	0	1	1	0
3889:	0	0	0	0	0	0	0	1
3897:	0	0	0	0	0	0	0	0 0
3905: 3913:	0	0	0	0	0	1	0 0	
3913: 3921:	1 0	0 0	0	1	0 1	1 0	0	1 0
3921: 3929:	1	0	0 0	0	0	0	0	0
3929: 3937:	0	1	0	0	0	1	0	0
3945:	0	0	0	0 0	0	0	0	0
3953:	0	0	0	0	0	0	0	2
3961:	0	. 0	0	0	0	0	0	0
3969:	0	1	0	0	0	1	Ö	0
3977:	Ö	0	1	0	0	1	Ö	0
3985:	Ö	Ö	1	0	0	0	Ö	0
3993:	Ö	Ö	0	Ö	0	Ö	i	0
4001:	Ö	ő	ĺ	Ö	Ö	ő	Ō	0
4009:	Ö	Ö	Ō	ő	í	Ö	Ö	Ŏ
4017:	Ō	Ö	Ö	Ö	0	Ö	Ö	1
4025:	0	1	Ö	ĺ	Ö	Ö	Ö	0
4033:	1	0	Ö	0	Ö	0	0	0
4041:	0	0	Ō	1	0	0	0	0
4049:	0	1	0	0	0	1	0	0
4057:	0	0	0	0	0	0	1	0
4065:	0	0	0	0	1	0	0	0
4073:	. 0	1	0	1	0	1	0	0
4081:	0	0	0	0	0	1	0	0
4089:	1	1	0	0	0	0	1	0

Acquisition date : 22-FEB-2012 10:29:18 Sample ID : 1201163-05

VAX/VMS Peak Search Report Generated 22-FEB-2012 11:31:41.46

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116305_GE3_GAS1102_176237.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{V}2.2$ Client ID : JM-70-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 10:29:18

Sample Quantity : 6.21010E+02 GRAM

Sample ID : 1201163-05 Sample type : SOLID Detector name : GE3 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 01:02:01.59 3.3% Elapsed live time: 0 01:00:00.00

Start channel : 5 Sensitivity : 2.40000 End channel : 4096 Gaussian : 15.00000

Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
0	26.58*	497	10635	2.49	26.86	25	5	63.1		
0	31.70	684	10721	1.39	31.98	30	5	46.0		
0	46.32*	7702	19945	1.22	46.60	44	6	6.2		PB-210
0	53.73	1504	19196	1.70	54.01	51	5	28.1		
0	63.23*	7914	31687	1.79	63.51	61	6	7.5		TH-234
1	67.72	1521	10796	1.22	68.00	67	16		2.35E+03	
1	74.84	21442	20986	1.35	75.12	67	16	2.3		AM-243
0	87.09	5304	21236	1.68	87.38	86	4	8.2		NP-237
										SN-126
										CD-109
0	97.97	949	18905	1.90	98.26	97		46.4		
0	113.16*	901	18217	1.50	113.45	111		48.0		
0	143.88	1912	21128	1.57	144.17	141		25.6		U-235
0	154.54	1144	17879	1.80	154.83	153		37.5		
0	163.63	724	13330	1.79	163.92	162		48.5		U-235
0	186.10*	18264	22075	1.85	186.39	182		3.3		RA-226
4	235.90	1971	9320	1.84	236.19	231			6.93E+00	
4	242.06	14606	5915	1.34	242.35	231	16	2.2		RA-224
0	257.68	1913	11741	3.92	257.97	254		20.9		
7	270.38	3114	10809	2.87	270.68	265			1.16E+01	
7	274.63	726	4706	1.42	274.92	265		28.1		
0	284.29	316	5928	2.19	284.58	283		73.8		
0	295.34*	32281	12076	1.85	295.64	291	11	1.7		PB-214
0	313.60	239	4522	2.88	313.90	312		85.6		
0	323.96	333	4452	1.49	324.26	322		61.1		RA-223
0	329.71	305	4520	1.73	330.01	328		67.1		LA-140
0	338.29*	324	4302	1.54	338.59	337		61.8		
5	349.12	139	2636	1.14	349.42	348			2.59E+02	
5	351.99*	55400	3840	1.62	352.29	348		0.9		PB-214
0	388.58	775	6166	3.67	388.88	385		37.2		
1	401.54	648	3386	1.75	401.84	397			8.30E+00	
1	404.75	425	3420	1.75	405.05	397		43.7		PB-211
0	427.21	405	4429	2.60	427.51	424		55.6		
0	454.84	222	2512	1.51	455.14	453		69.2		
0	461.94	214	2287	1.47	462.24	461		68.6		
0	469.61	138	2250	2.45	469.91	468	51	L04.9		

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	480.55	294	2975	1.59	480.86	478	7 62.8		
0	486.73*	331	2833	1.87	487.04	485	7 54.6		LA-140
0	510.72*	549	3269	3.19	511.03	507	9 38.7		
0	533.52	237	2136	1.48	533.83	531	6 63.1		
0	580.23	311	2273	2.00	580.54	577	7 51.9		
0	597.69	211	2023	3.44	598.00	595	7 72.1		
0	609.39*	38547	3753	1.85	609.70	604	12 1.2		BI-214
0	651.22	100	1285	3.16	651.54	649	6115.0		
0	665.44	1038	2053	1.60	665.76	662	9 16.9		
0	683.85	96	1307	1.55	684.17	682	6121.4		
0	703.59	295	1850	2.00	703.91	700	8 52.1		
0	719.77	268	1512	1.37	720.09	717	7 49.6		
0	742.30 768.26*	324	1865	1.74	742.63	739	9 49.2		
0	786.28	3654 714	2312 1903	1.88 1.84	768.58 786.41	763 782	11 6.1 9 23.3		
0	806.42	792	1882	1.94	806.75	802	9 23.3		
2	831.84	160	1027	1.57	832.17	829		4.48E-01	DB-211
2	839.01	452	1207	2.14		829	15 26.0	4.401 01	ID ZII
ō	910.17	145	1599	2.60	910.50	908	8 97.2		
Ō	934.14	1823	1884			930	10 10.1		
0	964.49*	144	1067			962	6 73.8		
0	1001.21*	452	1578		1001.55	997	10 34.3		PA-234M
0	1052.20	195	932		1052.54	1049	7 53.8		
0	1069.92	173	1154		1070.27	1066	9 72.5		
0	1103.41	118	1142	3.27	1103.76	1100	9105.3		
0	1120.36	7847	1614		1120.71	1115	12 3.0		BI-214
0	1134.10	113	633		1134.45	1132	5 69.9		
0	1155.19	957	1137		1155.54	1151	10 14.7		
3	1181.88	150	798		1182.23	1177		1.11E+00	
0	1207.85	209	789		1208.21	1205	7 46.8		
0	1238.22*	2872	1045		1238.57	1234	10 5.6		
0 0	1253.08 1281.09	156 747	826		1253.44 1281.45	1250	8 65.5		
0	1304.20	101	999 575		1304.55	1277	10 17.4 7 80.8		
2	1377.73	1962	632		1378.09	1302		1.09E+00	
2	1385.38	383	622		1376.09	1373	17 24.0	1.091400	
3	1401.58	505	690		1401.95	1397		1.82E+00	
3	1408.08	1062	574		1408.44	1397	16 9.4	1.022.00	
0	1460.83*	686	862		1461.20	1457	10 17.8		K-40
0	1479.27	80	596		1479.64	1477	7103.2		
0	1509.43	911	1023		1509.80	1505	11 15.2		
0	1540.90	443	1148	6.92	1541.27	1534	14 34.0		
0	1549.95	63	409	3.12	1550.33	1548	6104.6		
0	1583.17	363	649		1583.54	1578	11 29.2		
0	1596.29	344	834		1596.66	1589	15 38.1		LA-140
0	1622.83	60	367		1623.21	1620	8113.2		
0	1661.38	446	487		1661.76	1655	13 22.5		
0 0	1683.59 1693.80	66 106	274		1683.97	1681	8 90.7		
0	1729.60	106 1364	268 351		1694.18	1690	9 59.4		
0	1764.63*	6153	339		1729.99 1765.02	1724 1759	12 7.7 13 2.8		BI-214
	_,01.00	0100	239	2.30	1/05.02	エノンフ	10 2.0		DT-714

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
0	1838.05	155	164	2.42 1838.44	1834	9 33.8		
0	1847.51	926	196	2.83 1847.90	1843	11 8.8		
1	1869.84	23	32	2.50 1870.23	1869	10 67.2	1.98E+00	
1	1872.84	105	138	2.55 1873.23	1869	10 44.1		
0	1880.31	26	8.8	2.45 1880.70	1879	5116.4		
0	1892.95	122	503	9.75 1893.34	1885	22 95.5		
0	1935.86	93	165	2.95 1936.25	1932	10 55.7		
0	2009.70	41	135	2.26 2010.10	2005	10109.4		
0	2018.19	47	121	4.43 2018.59	2015	10 93.2		
0	2051.89	58	132	1.92 2052.29	2046	12 84.4		
2	2062.10	28	79	2.88 2062.50	2058	20120.3	1.17E+00	
2	2067.10	31	76	2.88 2067.50	2058	20109.4		
1	2109.83	34	68	2.64 2110.24	2104	28 90.5	8.66E-01	
1	2118.54	399	68	2.64 2118.95	2104	28 12.5		
0	2204.24	1722	61	2.62 2204.65	2199	13 5.2		BI-214
0	2219.90	20	22	1.43 2220.32	2217	7 92.7		
1	2287.83	17	7	2.70 2288.25	2287	17 47.0	1.37E+01	
1	2293.34	107	28	2.70 2293.75	2287	17 25.9		
1	2296.34	20	28	2.71 2296.75	2287	17133.4		
0	2371.28	8	6	3.66 2371.70	2367	8128.0		
0	2378.68	6	4	1.62 2379.10	2376	6141.1		
0	2396.14	9	2	2.58 2396.56	2393	7 81.3		
0	2401.08	7	2	1.87 2401.50	2400	4 94.8		
0	2447.82	506	7	2.92 2448.25	2442	13 9.1		
0	2608.98	7	1	1.39 2609.42	2605	7101.4		
0	2615.76*	23	12		2611	10 72.6		
0	2694.23	12	0	3.33 2694.67	2691	7 57.7		
0	2770.33	9	0	2.36 2770.78	2767	7 66.7		

Summary of Nuclide Activity Page: 4 Acquisition date : 22-FEB-2012 10:29:18 Sample ID : 1201163-05

Total number of lines in spectrum 113 Number of unidentified lines 68
Number of lines tentatively identified by NID 45 39.82%

Nuclide Type : NATURAL

	21		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclid	de Hlife	Decay		pCi/GRAM	2-Sigma Error		
K-40	1.28E+09Y	1.00	2.087E+01	2.087E+01	0.427E+01	20.44	
PB-210	22.26Y	1.00	9.215E+01	9.235E+01	0.994E+01	10.77	
PB-211	L 3.28E+04Y	1.00	1.329E+01	1.329E+01	0.493E+01	37.10	
BI-214	1602.00Y	1.00	1.376E+02	1.376E+02	0.075E+02	5.48	
PB-214	1602.00Y	1.00	1.379E+02	1.379E+02	0.321E+02	23.31	
RN-219	3.28E+04Y	1.00	1.040E+01	1.040E+01	0.315E+01	30.24	
RA-223	3.28E+04Y	1.00	7.447E+00	7.447E+00	5.314E+00	71.36	
RA-224	1.41E+10Y	1.00	2.556E+02	2.556E+02	0.843E+02	33.00	
RA-226		1.00	3.246E+02	3.246E+02	5.958E+02	183.56	
PA-234	M 4.47E+09Y	1.00	1.168E+02	1.168E+02	0.422E+02	36.15	
TH-234		1.00	9.436E+01	9.436E+01	1.063E+01	11.26	
U-235	7.04E+08Y	1.00	8.977E+00	8.977E+00	2.427E+00	27.04	
	Total Act	ivity :	1.220E+03	1.220E+03			

Nuclide Type : ACTIVATION

HUCTIUC	Type . Acid	CAMTION					
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	_	
NB-95M	3.61D	133.	5.365E+00	7.121E+02	2.480E+02	34.83	_
LA-140	12.79D	3.97	1.105E+00	4.391E+00	1.317E+00	30.00	
AM-243	7380.00Y	1.00	1.439E+01	1.439E+01	0.141E+01	9.80	
	Total Acti	vity:	2.086E+01	7.309E+02			

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Siqma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
CD-109	464.00D	1.04	6.333E+01	6.579E+01	0.985E+01	14.97
	1.00E+05Y	1.00	6.365E+00	6.365E+00	0.872E+00	13.71
NP-237	2.14E+06Y	1.00	1.867E+01	1.867E+01	0.254E+01	13.60
	Total Act	ivity :	8.837E+01	9.083E+01		

Grand Total Activity : 1.329E+03 2.042E+03

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Nuclide Line Activity Report Page: 5
Sample ID: 1201163-05 Acquisition date: 22-FEB-2012 10:29:18

Nuclide Type: NATURAL Nuclide Energy %Abn %Eff pCi/GRAM pCi/GRAM %Eff K-40 1460 81 10 67: pCi/GRAM pCi/GRAM %Error Status K-40 1460.81 10.67* 3.724E-01 2.087E+01 2.087E+01 20.44 OK Final Mean for 1 Valid Peaks = 2.087E+01+/-4.266E+00 (20.44%) PB-210 46.50 4.25* 2.378E+00 9.215E+01 9.235E+01 10.77 OK Final Mean for 1 Valid Peaks = 9.235E+01+/-9.941E+00 (10.77%) 404.84 2.90* 1.151E+00 1.541E+01 1.541E+01 45.11 OK 831.96 2.90 5.990E-01 1.114E+01 1.114E+01 62.77 OK PB-211 Final Mean for 2 Valid Peaks = 1.329E+01+/-4.930E+00 (37.10%) BI-214 609.31 46.30* 7.958E-01 1.265E+02 1.265E+02 10.83 OK OK OK 2204.22 4.98 2.817E-01 1.484E+02 1.484E+02 12.14 OK Final Mean for 4 Valid Peaks = 1.376E+02+/-7.543E+00 (5.48%) PB-214 295.21 19.19 1.499E+00 1.356E+02 1.356E+02 45.01 OK 351.92 37.19* 1.298E+00 1.387E+02 1.387E+02 27.24 OK Final Mean for 2 Valid Peaks = 1.379E+02+/-3.213E+01 (23.31%) RN-219 401.80 6.50* 1.158E+00 1.040E+01 1.040E+01 30.24 OK Final Mean for 1 Valid Peaks = 1.040E+01+/-3.146E+00 (30.24%) RA-223 323.87 3.88* 1.391E+00 7.447E+00 7.447E+00 71.36 OK Final Mean for 1 Valid Peaks = 7.447E+00+/-5.314E+00 (71.36%) RA-224 240.98 3.95* 1.749E+00 2.556E+02 2.556E+02 33.00 OK Final Mean for 1 Valid Peaks = 2.556E+02+/-8.434E+01 (33.00%) RA-226 186.21 3.28* 2.074E+00 3.246E+02 3.246E+02 183.56 OK Final Mean for 1 Valid Peaks = 3.246E+02+/-5.958E+02 (183.56%) PA-234M 1001.03 0.92* 5.083E-01 1.168E+02 1.168E+02 36.15 OK Final Mean for 1 Valid Peaks = 1.168E+02+/-4.222E+01 (36.15%) 63.29 3.80* 2.668E+00 9.436E+01 9.436E+01 11.26 OK TH-234 Final Mean for 1 Valid Peaks = 9.436E+01+/-1.063E+01 (11.26%)

Nuclide Line Activity Report (continued) Page: 6
Sample ID: 1201163-05 Acquisition date: 22-FEB-2012 10:29:18

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma %Abn %Eff Nuclide Energy pCi/GRAM pCi/GRAM %Error Status U-235 143.76 10.50* 2.377E+00 9.264E+00 9.264E+00 31.53 OK 163.35 2.233E+00 8.337E+00 8.337E+00 52.35 4.70 OK 205.31 4.70 1.952E+00 ---- Line Not Found -----Absent

Final Mean for 2 Valid Peaks = 8.977E+00+/-2.427E+00 (27.04%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma %Abn %Eff Nuclide Energy pCi/GRAM pCi/GRAM %Error Status 25.00* 1.777E+00 5.365E+00 7.121E+02 34.83 NB-95M 235.69 OK Final Mean for 1 Valid Peaks = 7.121E+02+/-2.480E+02 (34.83%) LA-140 328.77 20.50 1.374E+00 1.310E+00 5.207E+00 75.79 OK 487.03 45.50 9.761E-01 9.004E-01 3.578E+00 55.75 OK 815.85 23.50 6.097E-01 ---- Line Not Found -----Absent 1596.49 95.49* 3.485E-01 1.251E+00 4.972E+00 39.37 OK Final Mean for 3 Valid Peaks = 4.391E+00+/-1.317E+00 (30.00%) AM-243 74.67 66.00* 2.729E+00 1.439E+01 1.439E+01 9.80 OK

Final Mean for 1 Valid Peaks = 1.439E+01+/-1.411E+00 (9.80%)

Uncorrected Decay Corr 2-Sigma

Nuclide Type: FISSION

%Eff %Abn Nuclide Energy pCi/GRAM pCi/GRAM %Error Status CD-109 88.03 3.72* 2.722E+00 6.333E+01 6.579E+01 14.97 OK Final Mean for 1 Valid Peaks = 6.579E+01+/-9.848E+00 (14.97%) SN-126 87.57 37.00* 2.723E+00 6.365E+00 6.365E+00 13.71 OK Final Mean for 1 Valid Peaks = 6.365E+00+/-8.723E-01 (13.71%) NP-237 86.50 12.60* 2.726E+00 1.867E+01 1.867E+01 13.60 OK Final Mean for 1 Valid Peaks = 1.867E+01+/-2.540E+00 (13.60%)

Flag: "*" = Keyline

Page: 7
Acquisition date: 22-FEB-2012 10:29:18

---- Identified Nuclides ----

	Activity	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/GRAM)		(pCi/GRAM)		
K-40	2.087E+01	4.266E+00	3.518E+00	3.259E-01	5.933
NB-95M	7.121E+02	2.480E+02	1.368E+02	4.196E+01	5.205
CD-109	6.579E+01	9.848E+00	8.863E+00	1.051E+00	7.423
SN-126	6.365E+00	8.723E-01	8.572E-01	8.760E-02	7.425
LA-140	4.391E+00	1.317E+00	1.367E+00	1.251E-01	3.212
PB-210	9.235E+01	9.941E+00	5.968E+00	4.672E-01	15.472
PB-211	1.329E+01	4.930E+00	9.740E+00	1.025E+00	1.364
BI-214	1.376E+02	7.543E+00	5.806E-01	5.803E-02	236.995
PB-214	1.379E+02	3.213E+01	7.154E-01	1.927E-01	192.719
RN-219	1.040E+01	3.146E+00	4.314E+00	4.533E-01	2.412
RA-223	7.447E+00	5.314E+00	6.802E+00	2.488E+00	1.095
RA-224	2.556E+02	8.434E+01	6.640E+00	2.170E+00	38.493
RA-226	3.246E+02	5.958E+02	8.283E+00	1.520E+01	39.184
PA-234M	1.168E+02	4.222E+01	3.697E+01	3.997E+00	3.159
TH-234	9.436E+01	1.063E+01	7.566E+00	5.627E-01	12.473
U-235	8.977E+00	2.427E+00	2.495E+00	4.471E-01	3.598
NP-237	1.867E+01	2.540E+00	2.515E+00	2.536E-01	7.424
AM-243	1.439E+01	1.411E+00	4.770E-01	4.123E-02	30.176

11011 1	denerried Naci	LIUCS				
Nuclide	Key-Line Activity (pCi/GRAM)	K.L. Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
BE-7 NA-22 AL-26 TI-44 SC-46 V-48 CR-51 MN-54 CO-56 CO-57 CO-58 FE-59 CO-60 ZN-65 GA-67 SE-75 RB-82 RB-83 KR-85 SR-85 Y-88 NB-93M	-8.175E-01 9.532E-02 1.186E-01 7.213E-01 9.383E-02 -2.220E-01 -5.532E-01 6.061E-02 1.683E-02 3.066E-02 2.544E-02 1.715E-01 6.276E-02 1.412E+00 2.164E+03 -4.360E-03 -3.113E+00 1.472E-01 4.457E+01 2.546E-01 5.398E-01 1.335E+01	+	2.509E+00 2.386E-01 1.402E-01 1.402E-01 2.572E-01 6.211E-01 3.837E+00 2.076E-01 2.698E-01 1.804E-01 2.683E-01 6.104E-01 2.379E-01 5.305E-01 7.587E+03 3.810E-01 3.896E+00 4.225E-01 3.987E+01 2.278E-01 2.147E-01 5.991E+00	3.604E+00 3.601E-01 2.435E-01 3.224E-01 4.385E-01 1.039E+00 4.950E+00 3.549E-01 4.124E-01 3.001E-01 4.115E-01 9.242E-01 3.590E-01 8.296E-01 2.135E+02 4.987E-01 4.582E+00 7.061E-01 6.340E+01 3.622E-01 3.577E-01 8.437E+00	3.857E-01 3.153E-02 2.225E-02 2.548E-02 5.065E-02 1.140E-01 1.875E+00 3.927E-02 4.608E-02 2.982E-02 4.468E-02 9.518E-02 3.082E-02 7.845E-02 7.482E+02 2.109E-01 4.817E-01 1.188E-01 6.746E+00 3.854E-02 3.263E-02 2.260E+00	-0.227 0.265 0.487 2.237 0.214 -0.214 -0.171 0.041 0.102 0.062 0.186 0.175 1.702 10.138 -0.009 -0.679 0.209 0.703 0.703 1.509 1.583
NB-94 NB-95 ZR-95	3.828E-02 6.381E+00 -2.683E-01		2.023E-01 8.191E-01 4.386E-01	3.444E-01 8.264E-01 7.056E-01	3.923E-02 8.604E-02 7.803E-02	0.111 7.721 -0.380

	Key-Line				
	Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/GRAM) Ided	7100 01101	(pCi/GRAM)		1100,11011
	(E ==, ====, ====		(1000)		
RU-103	-3.086E-01	2.956E-01	4.494E-01	6.968E-02	-0.687
RU-106	-7.092E-01	1.600E+00	2.737E+00	3.883E-01	-0.259
AG-108M	-1.518E-04	2.130E-01	3.283E-01	3.276E-02	0.000
AG-110M	1.389E-01	2.439E-01	3.085E-01	2.898E-02	0.450
SN-113	3.486E-01	3.430E-01	5.068E-01	5.409E-02	0.688
TE123M	-6.043E-02	2.760E-01	3.696E-01	3.336E-02	-0.163
SB-124	1.462E-01	3.046E-01	3.850E-01	3.875E-02	0.380
I-125	5.866E-01	3.327E+00	5.323E+00	5.028E-01	0.110
SB-125	1.548E+00 +	8.795E-01	1.043E+00	1.123E-01	1.484
SB-126	3.668E+00 +	1.861E+00	2.433E+00	2.421E-01	1.508
SB-127	4.436E+01 +	5.405E+01	7.752E+01	7.432E+00	0.572
I-129 I-131	2.367E-01	3.571E-01	5.115E-01	5.726E-02	0.463
	-1.727E+00	1.786E+00	2.743E+00	6.059E-01	-0.629
TE-132 BA-133	-2.757E+01	4.521E+01 4.679E-01	6.641E+01	1.854E+01	-0.415
CS-134	1.313E+00 5.129E-01		4.979E-01	1.359E-01 3.181E-02	2.637 1.622
CS-134 CS-135	7.273E+00	2.436E-01 3.373E+00	3.162E-01 1.829E+00	8.014E-01	3.977
CS-135	1.577E-01	1.086E+00	1.629E+00 1.643E+00	1.728E-01	0.096
CS-137	4.909E-02	2.053E-01	3.201E-01	2.994E-02	0.153
LA-138	-1.175E-01	3.344E-01	5.470E-01	4.922E-02	-0.215
CE-139	2.439E-01	2.477E-01	3.783E-01	3.342E-02	0.645
BA-140	-5.236E-01	2.836E+00	4.417E+00	1.488E+00	-0.119
CE-141	2.231E+00	8.204E-01	9.885E-01	2.297E-01	2.257
CE-144	-3.310E-01	1.485E+00	2.456E+00	2.374E-01	-0.135
PM-144	1.708E-01	1.918E-01	3.017E-01	2.930E-02	0.566
PM-145	-1.447E-01	7.444E-01	1.177E+00	7.666E-01	-0.123
PM-146	6.517E-01 +	4.573E-01	7.256E-01	7.754E-02	0.898
ND-147	4.650E+00	6.599E+00	1.045E+01	1.105E+00	0.445
EU-152	2.250E+01 +	3.413E+00	4.095E+00	4.578E-01	5.496
GD-153	5.087E-01	7.183E-01	1.116E+00	1.122E-01	0.456
EU-154	2.649E-01	6.630E-01	1.000E+00	8.761E-02	0.265
EU-155	7.689E+00 +	1.046E+00	1.090E+00	1.099E-01	7.054
EU-156	7.522E-01	6.265E+00	9.616E+00	2.286E+00	0.078
HO-166M	1.512E-01	4.336E-01	5.404E-01	5.330E-02	0.280
HF-172	-2.013E-01	1.333E+00	2.211E+00	2.176E-01	-0.091
LU-172	9.161E-01	4.788E+00	7.704E+00	7.508E-01	0.119
LU-173 HF-175	7.129E+00	3.367E+00	1.485E+00	6.758E-01	4.801
LU-176	-1.003E-04 -2.993E-01	3.265E-01	4.210E-01	1.265E-01	0.000
TA-182	6 6	2.117E-01 7.311E+00	2.685E-01 3.785E+00	1.119E-01 3.545E-01	-1.115 18.168
IR-192	6.877E+01 + 5.246E-01	5.574E-01	7.199E-01	7.703E-02	0.729
HG-203	-1.664E-01	3.924E-01	4.975E-01	2.424E-01	-0.334
BI-207	1.137E-01	1.661E-01	2.898E-01	2.999E-02	0.392
TL-208	7.686E-01	6.051E-01	9.589E-01	9.822E-02	0.802
BI-210M	2.635E-01	4.528E-01	5.814E-01	2.392E-01	0.453
BI-212	1.999E+00	1.597E+00	2.517E+00	2.523E-01	0.794
PB-212	2.221E+00	8.059E-01	6.449E-01	2.050E-01	3.445
RA-225	-1.747E+00	1.667E+00	2.618E+00	2.252E-01	-0.667

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-05 Acquisition date: 22-FEB-2012 10:29:18

Nuclide	Key-Line Activity (pCi/GRAM)	K.L. Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
TH-227	1.167E+01	+	4.078E+00	2.560E+00	7.882E-01	4.560
AC-228	1.143E+00	+	1.119E+00	1.343E+00	1.551E-01	0.851
TH-230	1.840E+02	+	3.574E+01	8.213E+01	6.473E+00	2.240
PA-231	2.497E+01		1.313E+01	1.170E+01	5.011E+00	2.133
TH-231	2.930E+00	+	1.893E+00	2.397E+00	3.201E-01	1.223
PA-233	5.616E-01		8.996E-01	1.289E+00	5.828E-01	0.436
PA-234	-1.952E-01		7.304E-01	1.208E+00	1.174E-01	-0.162
AM-241	2.884E+00		5.403E-01	7.944E-01	5.626E-02	3.630
CM-243	-1.772E-02		1.259E+00	1.874E+00	8.986E-01	-0.009

Summary of Nuclide Activity Page: 10

Sample ID: 1201163-05 Acquisition date: 22-FEB-2012 10:29:18

Total number of lines in spectrum 113
Number of unidentified lines 68

Number of lines tentatively identified by NID 45 39.82%

Nuclide Type : NATURAL

			nea mean	wed ricair			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags	;
K-40	1.28E+09Y	1.00	2.087E+01	2.087E+01	0.427E+01	20.44	
PB-210	22.26Y	1.00	9.215E+01	9.235E+01	0.994E+01	10.77	
PB-211	3.28E+04Y	1.00	1.329E+01	1.329E+01	0.493E+01	37.10	
BI-214	1602.00Y	1.00	1.376E+02	1.376E+02	0.075E+02	5.48	
PB-214	1602.00Y	1.00	1.379E+02	1.379E+02	0.321E+02	23.31	
RN-219	3.28E+04Y	1.00	1.040E+01	1.040E+01	0.315E+01	30.24	
RA-223	3.28E+04Y	1.00	7.447E+00	7.447E+00	5.314E+00	71.36	
RA-224	1.41E+10Y	1.00	2.556E+02	2.556E+02	0.843E+02	33.00	
RA-226	1602.00Y	1.00	3.246E+02	3.246E+02	5.958E+02	183.56	
PA-234M	4.47E+09Y	1.00	1.168E+02	1.168E+02	0.422E+02	36.15	
TH-234	4.47E+09Y	1.00	9.436E+01	9.436E+01	1.063E+01	11.26	
U-235	7.04E+08Y	1.00	8.977E+00	8.977E+00	2.427E+00	27.04	
	Total Acti	.vity :	1.220E+03	1.220E+03			

Wtd Mean Wtd Mean

Nuclide Type : ACTIVATION

	1,70		Wtd Mean	Wtd Mean			
Nuclide	Hlife	Decay	Uncorrected pCi/GRAM	Decay Corr pCi/GRAM	Decay Corr 2-Sigma Error	2-Sigma %Error	Flags
NB-95M	3.61D	133.	·	7.121E+02	2.480E+02	34.83	1 1490
LA-140	12.79D	3.97	1.105E+00	4.391E+00	1.317E+00	30.00	
AM-243	7380.00Y	1.00	1.439E+01	1.439E+01	0.141E+01	9.80	
	Total Acti	Lvity :	2.086E+01	7.309E+02			

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	
CD-109	464.00D	1.04	6.333E+01	6.579E+01	0.985E+01	14.97
SN-126	1.00E+05Y	1.00	6.365E+00	6.365E+00	0.872E+00	13.71
NP-237	2.14E+06Y	1.00	1.867E+01	1.867E+01	0.254E+01	13.60
	Total Acti	vity:	8.837E+01	9.083E+01		

Grand Total Activity: 1.329E+03 2.042E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116305_GE3_GAS1102_176237.CNF; 1

Title :

Sample Title: JM-70-31-120128

Start Time: 22-FEB-2012 10:29 Sample Time: 28-JAN-2012 00:00 Energy Offset: -2.78447E-01

Channel

1:	0	0	0	0	0	0	0	1
9:	384	2419	2637	2496	3182	2689	2779	3502
17:	2825	2439	2426	2469	2115	2178	2131	2154
25:	2168	2297	2280	2385	2031	2178	2146	2591
	2355				2605	2417	2361	2571
33:		2135	2207	2308				3337
41:	2625	2780	2912	3006	3210	5264	9653	
49:	3232	3977	3732	3477	4866	4841	3784	3873
57:	3934	4285	4752	4998	5177	5249	8668	9821
65:	5417	5318	5532	6567	5537	5530	5733	5845
73:	5966	7212	18815	9205	23042	17404	5855	6209
81:	6458	5297	4688	8842	5404	4314	8748	8991
89:	4487	6679	4781	5921	11850	5237	4875	3461
97:	3224	3778	3728	3182	2967	2975	3072	3109
105:	3072	2952	2968	3029	3156	3166	3137	3203
113:	3492	3190	3146	2982	2929	2925	2880	2887
121:	2904	3012	3063	2900	3055	2971	2912	2970
129:	2939	2915	2936	2965	2922	2936	2976	3019
137:	2976	3057	2999	3024	3069	3016	3199	4172
145:	3590	3023	2971	3023	3085	3097	3065	3158
153:	3015	3481	3595	3016	3038	2878	2936	2720
161:	2778	2790	2876		2756	2624	2555	2675
				3008				
169:	2653	2618	2510	2430	2529	2494	2508	2554
177:	2512	2423	2459	2524	2447	2515	2587	2551
185:	3194	11945	9923	2634	2505	2527	2330	2251
193:	2268	2304	2309	2328	2241	2311	2205	2043
201:	2264	2181	2149	2033	2056	2251	1878	2021
209:	1904	1930	1932	1830	1804	1837	1752	1820
217:	1804	1806	1806	1693	1761	1794	1725	1713
225:	1671	1693	1579	1651	1649	1591	1602	1667
233:	1690	1641	1676	2529	2153	1652	1907	1654
241:	2056	10050	6917	1562	1496	1419	1403	1413
249:	1383	1439	1392	1293	1306	1332	1367	1591
257:	1757	1503	1908	1626	1303	1267	1319	1230
265:	1231	1231	1244	1225	1598	2239	1882	1917
273:	1317	1360	1645	1285	1134	1197	1163	1188
281:	1246	1130	1238	1308	1258	1223	1217	1156
289:	1189	1098	1105	1126	1117	1674	14424	17895
297:	2086	1223	1180	1345	1189	1001	1117	1061
305:	1046	891	884		930	923	900	956
313:	960	971		915				
			978	896	882	875	911	909
321:	915	828	945	1138	995	879	928	913
329:	966	1083	988	875	911	911	925	889
337:	859	983	1090	875	823	880	904	905
345:	884	906	906	864	986	994	4872	32702
353:	17839	1390	1103	1006	902	724	676	650
361:	731	650	642	657	643	653	646	668
369:	684	671	709	689	723	688	679	676
377:	668	679	682	661	641	691	689	709
385:	683	685	876	789	939	877	701	740
393:	651	702	683	689	646	704	734	705
401:	728	998	847	745	895	889	782	691
409:	705	684	693	667	651	698	684	779
417:	699	682	714	715	691	719	710	654
425:	658	743	787	733	632	627	566	591
						·		

433:	548	539	539	559	601	544	540	534
441:	529	505	494	480	554	514	460	470
449:	517	503	506	566	492	548	674	568
457:	452	518	512	467	475	595	521	481
465:	429	469	462	446	506	509	481	446
473:	449	490	441	457	443	436	416	509
481:	618	484	399	407	422	423	592	558
489:	405	391	376	420	390	405	394	358
497:	382	388	341	378	370	428	358	395
505:	353	360	386	399	387	510	543	488
513:	437	400	339	372	356	382	374	351
521:	403	339	336	306	371	369	344	359
529:	365	355	345	388	375	499	423	343
537:	378	391	364	384	351	380	411	406
545:	361	357	355	350	325	322	336	355
553:	338	348	329	339	330	352	350	352
561:	327	358	325	325	344	322	330	329
569:	358	373	293	370	360	346	323	316
577:	300	321	336	461	483	356	327	349
585:	280	310	324	294	284	287	305	304
593:	277	307	301	323	351	319	359	308
601:	273	283	295	332	328	321	359	1299
609:	14101	20339	3461	520	491	398	361	263
617:	269	241	269	234	224	216	257	246
625:	207	218	226	230	251	219	230	222
633:	243	239	245	231	230	208	243	247
641:	237	236	244	216	230	242	230	236
649:	220	256	230	247	220	212	197	222
657:	245	223	218	238	223	217	222	234
665:	528	841	355	256	225	213	256	222
673:	223	213	239	228	233	243	218	216
681:	227	220	241	268	231	237	206	222
689:	219	201	233	201	199	233	213	229
697:	204	235	277	223	213	255	405	373
705:	258	206	212	222	214	238	242	252
713:	235	201	200	224	213	241	236	373
721:	275	239	203	225	223	222	257	235
729:	209	223	205	201	184	219	234	213
737:	208	207	199	226	251	266	341	262
745:	223	218	203	218	202	201	211	201
753:	286	232	191	230	208	211	198	224
761:	206	198	195	210	229	294	472	1298
769:	1944	596	257	241	234	213	213	214
777:	193	190	193	202	208	210	187	189
785:	303	611	459	240	203	215	212	189
793:	197	193	234	205	224	197	216	213
801:	216	198	195	213	239	518	601	272
809:	233	205	217	191	206	180	220	202
817:	196	185	196	200	242	235	189	195
825:	214	240	227	203	213	203	212	297
833:	261	194	202	198	211	266	388	353
841:	221	202	196	200	221	196	207	211
849:	191	215	220	197	205	201	202	220
857:	192	191	225	227	216	181	209	189
865:	206	216	222	214	229	193	197	224
873:	214	220	181	221	200	212	228	212
881:	206	230	222	198	205	225	205	215
889:	228	222	218	208	202	216	216	191
897:	235	226	226	219	213	202	209	206
905:	230	226	187	206	212	229	241	257

913:	208	206	185	220	183	194	170	181
921:	157	211	154	189	202	197	190	158
929:	208	186	187	179	379	1044	886	284
937:	187	206	169	194	175	179	168	187
945:	177	185	177	162	168	174	158	154
953:	165	181	180	165	182	130	164	171
961:	187	178		248	265	194	165	184
	197		163			162	169	147
969:		169	184	162	187		169	160
977: 985:	182	171	169	174	187	155 172	166	142
	161	169	163	176	161		165	202
993:	156	153	153	167	158	169	156	166
1001:	356 130	304	184	172	171	152	162	180
1009:	139	150	156	155	144	151 154	142	150
1017:	144	164	150	126	152	154		
1025:	150	151	167	148	161	137	162	136
1033:	167	176	147	143	137	157	146	131
1041:	136	138	137	152	141	155	147	138
1049:	126	125	174	202	207	169	124	144
1057:	146	160	130	115	160	134	134	135
1065:	132	119	148	126	165	181	169	141
1073:	145	133	128	121	127	132	134	126
1081:	131	121	142	129	130	145	134	130
1089:	129	136	127	123	148	140	138	123
1097:	145	131	134	142	137	138	159	154
1105:	157	133	131	109	128	116	118	132
1113:	113	132	136	137	134	167	605	2788
1121:	3685	1101	210	186	160	152	118	124
1129:	134	137	162	133	146	190	164	113
1137:	113	134	121	139	135	123	140	128
1145:	130	145	108	127	137	117	122	133
1153:	129	198	453	480	220	134	124	101
1161:	117	111	120	115	121	116	143	123
1169:	128	117	116	115	145	141	118	112
1177:	104	136	121	125	136	180	162	121
1185:	111	123	104	110	110	109	114	122
1193:	95	111	121	123	123	112	101	105
1201:	100	111	109	121	117	118	125	258
1209:	161	111	108	108	116	113	103	119
1217:	121	124	121	128	97	105	107	103
1225:	114	112	110	108	115	118	113	121
1233:	113	89	92	142	360	1223	1243	387
1241:	150	120	114	101	99	114	108	100
1249:	100	85	96	127	153	177	137	111
1257:	96 87	128	101	92	97	100	103	87
1265:		113	97	94	102	101	83	108
1273:	98	96	120	110	92	108	119	197
1281:	399	366	134	121	106	104	94	98
1289:	85	110	108	90	97	88	84	72
1297:	95	90	102	93	83	80	98	115
1305:	124	91	85	83	82	85	91	101
1313:	76	87	94	93	115	92	90	113
1321:	86	102	93	81	102	106	89	72
1329:	102	91	99	95	90	79		106
1337:	98	87	88	80	87	79		99
1345:	105	92	96	85	83	95	88	91
1353:	93	86	75	70	109	90	101	86
1361:	89	100	81	87	88	99	89	99
1369:	76	101	95	92	91	85	106	166
1377:	493	952	620	166	102	103	87	126
1385:	212	235	167	89	83	94	106	99

1393:	79	96	95	99	101	97	99	135
1401:	220	320	176	113	111	92	236	516
1409:	490	192	108	79	108	99	88	89
1417:	98	91	105	98	97	87	86	89
	110		97	93	94	88	90	102
1425:		101				88	73	88
1433:	92	99	85	82	90			
1441:	87	89	83	104	86	98	88	114
1449:	84	74	79	76	88	94	95	90
1457:	88	87	118	191	377	316	116	99
1465:	89	72	96	79	93	96	94	94
1473:	116	85	83	85	70	109	99	115
1481:	99	96	88	94	101	119	96	106
1489:	95	89	87	104	111	120	95	111
1497:	104	110	100	91	98	104	91	105
1505:	90	85	123	194	354	461	210	121
1513:	102	107	87	92	95	89	97	102
1521:	106	89	91	91	108	93	108	89
1529:	108	93	109	84	103	97	90	102
1537:	114	144	152	134	117	104	131	168
1545:	99	75	64	70	89	74	92	73
1553:	74	64	90	70	76	67	67	69
1561:	68	73	68	64	70	60	69	65
1569:	70	78	69	66	58	87	64	81
1577:	67	65	81	63	79	87	166	163
1585:	121	70	67	50	56	65	71	62
1593:	71	78	98	98	93	65	105	113
1601:	88	5 4	61	55	68	63	61	70
1609:	60	52	52	59	55	59	68	62
1617:	62	51	48	50	54	54	71	56
1625:	48	50	44	43	42	53	40	49
1633:	53	43	47	45	43	33	39	42
1641:	41	41						38
1649:	48		35	48	46	41	34	
1657:	46	38	40	42	41	45	42	40
1665:	47	48	51	77	153	202	122	41
1673:		40	24	40	38	34	22	37
	28	38	33	30	34	29	39	39
1681: 1689:	29	46	40	56	72	36	31	30
	39	24	34	48	51	63	55	41
1697:	27	31	26	36	31	31	32	24
1705:	38	33	28	31	30	30	22	33
1713:	27	21	24	19	33	28	33	20
1721:	27	27	27	27	37	31		95
1729:	320	570	383	110	41	28	30	33
1737:	34	44 27	32	25	19	28	30	32
1745:	23	27	15	25	23	23	29	29
1753:	25	28	32	28	24	32	17	27
1761:	34	74	376	1448	2508	1491	315	81
1769:	49	40	34	21	27	21	28	27
1777:	22	18	17	17	19	20	25	27
1785:	14	22	15	17	19	20	30	19
1793:	27	21	23	27	30	14	24	26
1801:	20	20	18	26	22	19	29	31
1809:	26	17	29	26	13	23	23	28
1817:	24	24	24	16	24	17	22	24
1825:	22	16	18	19	30	20	21	20
1833:	25	13	23	38	33	61	71	41
1841:	23	16	19	16	41	92	253	331
1849:	233	64	33	26	14	22	34	22
1857:	24	21	28	23	23	24	24	18
1865:	24	18	21	16	15	26	19	35

1873; 61									
1881: 25 29 13 20 21 19 22 23 24 1997: 36 36 38 18 29 19 28 31 1995: 20 20 30 19 25 12 21 24 1921: 21 23 23 21 22 25 21 24 1921: 21 23 23 21 22 25 21 24 1922: 27 10 14 19 23 22 28 33 39 30 21 30 36 38 38 38 39 30 21 30 36 36 38 38 38 39 30 21 30 36 36 38 38 38 39 30 21 30 36 36 38 38 38 39 30 21 30 36 36 38 38 38 39 30 21 30 36 36 38 38 38 39 30 21 30 36 36 36 38 38 38 39 30 21 30 36 36 36 38 38 38 39 30 21 30 36 36 36 38 38 38 39 30 21 30 36 36 36 38 38 38 39 30 21 30 36 36 36 36 38 38 38 39 30 21 30 36 36 36 38 38 38 38 30 30 30 36 36 38 38 38 39 30 21 30 36 36 36 36 36 38 38 38	1873.	61	4.8	3.4	10	21	17	22	25
1889: 26									
1897; 36 36 38 18 29 19 28 31 1905; 20 20 30 19 25 12 21 28 1913; 22 16 25 18 17 17 21 34 1921; 21 23 23 21 22 25 21 24 1922; 27 10 14 19 23 22 28 33 1937; 37 44 19 24 9 24 23 21 1945; 22 24 25 27 24 13 27 24 1953; 18 28 26 21 21 19 23 27 24 1953; 18 28 26 21 21 19 23 26 16 1969; 10 27 26 25 18 18 26 16 1969; 10 27 26 25 18 18 24 22 1985; 13 17 17 19 14 13 15 12 1993; 20 22 15 13 13 22 13 14 2009; 15 27 24 19 14 15 11 16 2017; 23 22 28 12 21 13 15 7 2025; 16 9 13 17 16 16 22 14 2033; 7 18 11 10 15 10 7 10 2044; 19 14 13 15 7 7 2041; 9 14 13 17 16 16 22 14 2059; 8 10 7 10 13 16 20 11 2065; 9 15 16 21 11 9 7 6 6 2073; 11 15 15 17 8 8 19 10 2089; 14 13 6 6 6 11 6 6 10 2097; 12 6 9 13 13 9 7 10 2081; 5 7 8 9 9 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 9 4 8 2 2 2215; 7 5 7 6 6 5 7 7 7 10 12 7 12 8 2217; 7 5 7 7 5 7 7 6 6 5 7 7 2129; 6 7 8 9 9 5 5 5 7 2129; 6 7 8 9 9 5 5 5 7 7 7 7 7 7 7									
1905; 20 20 30 19 25 12 21 28 19913; 22 16 25 18 17 17 21 34 1929; 21 23 23 21 22 25 21 24 1929; 27 10 14 19 23 22 28 33 1937; 37 44 19 24 9 24 23 21 1945; 22 24 25 27 24 13 27 24 1953; 18 28 26 21 21 19 23 19 1961; 21 21 19 19 28 18 26 26 1969; 10 27 26 25 18 18 24 22 1977; 23 23 16 23 24 13 10 21 1988; 13 17 17 19 14 13 15 12 1993; 20 22 15 13 13 22 13 14 2009; 15 27 24 19 14 15 11 16 2017; 23 22 28 12 21 13 15 19 2017; 23 22 28 12 21 13 15 17 2025; 23 22 28 12 21 13 15 7 2025; 36 37 37 38 35 37 38 2049; 18 13 17 16 16 22 27 28 2041; 9 14 13 17 16 16 22 27 28 2049; 18 10 7 10 13 16 10 11 2057; 8 10 7 10 13 16 10 11 2057; 8 10 7 10 13 16 10 11 2057; 9 14 13 17 16 16 10 11 2065; 9 14 13 17 16 16 16 20 11 2065; 9 14 13 17 16 11 18 18 2089; 14 13 6 6 11 18 15 96 2073; 11 15 15 17 8 8 19 10 2089; 14 13 6 6 11 6 16 10 11 2089; 14 13 6 6 11 6 16 10 10 2011; 12 6 9 7 5 7 8 6 8 7 10 2121; 45 11 5 7 6 5 7 7 4 10 7 2121; 6 5 6 4 12 12 6 13 3 2177; 7 5 7 7 4 5 8 6 8 7 10 2177; 6 5 6 4 12 7 2 4 4 2201; 14 49 216 487 601 295 71 18 2215; 6 7 8 6 5 7 7 4 5 8 6 8 7 10 2215; 6 7 7 7 7 7 7 7 7 7									
19913; 22									
19291: 21									
1929: 27									
1937; 37									
1945; 22 24 25 27 24 13 27 24 1951; 18 28 26 21 21 19 23 19 1961; 21 21 19 28 18 26 16 1669; 10 27 26 25 18 18 24 22 1987; 23 23 16 23 24 13 10 21 1983; 20 22 15 13 17 17 19 14 13 15 12 1993; 20 22 25 13 15 19 14 14 2009; 15 27 24 19 14 15 11 16 2017; 23 22 28 12 21 13 15 7 2025; 16 9 13 17 16 16 22 14 2033; 7 18 11 10 15 10 7 10 2049; 18 12 9 17 33 25 10 11 2057; 8 10 7 7 10 13 16 20 11 2065; 9 15 16 21 11 15 16 21 11 2065; 9 15 16 21 11 2081; 5 12 2089; 14 13 6 6 11 18 18 8 19 2089; 14 13 6 6 11 6 6 6 20097; 12 6 9 13 13 3 9 7 10 2105; 10 9 10 9 11 22 19 9 2113; 11 5 5 6 6 11 18 18 10 7 6 2121; 45 11 5 7 6 6 5 7 7 6 6 5 7 7 7 7 7 7 7 7 7									
1953: 18 28 26 21 21 19 23 19 1961: 21 21 19 19 28 18 26 16 1969: 10 27 26 25 18 18 24 22 1977: 23 23 23 16 23 24 13 10 21 1985: 13 17 17 19 14 13 15 12 1993: 20 22 15 13 13 22 13 14 2001: 11 14 25 13 15 19 14 2009: 15 27 24 19 14 15 11 16 2017: 23 22 28 12 21 13 15 7 2025: 16 9 13 17 16 16 22 14 2033: 7 18 11 10 15 10 7 2041: 9 14 13 17 16 16 22 14 2049: 18 12 9 17 33 25 10 11 2057: 8 10 7 10 13 16 20 11 2065: 9 15 16 21 11 9 7 6 2073: 11 15 15 17 8 8 19 10 2065: 9 15 16 21 11 9 7 6 2073: 11 15 15 17 8 8 19 10 2089: 14 13 6 6 6 11 6 16 10 2097: 12 6 9 13 13 9 7 10 2010: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 8 6 8 7 10 2129: 6 7 8 9 9 5 5 5 4 2129: 6 7 8 9 9 5 5 5 4 2129: 6 7 7 7 7 7 8 6 8 7 10 2129: 6 7 7 7 7 7 8 6 8 7 10 2129: 6 7 7 7 7 7 8 6 8 7 10 2121: 45 11 5 7 7 6 12 12 6 13 3 2121: 45 11 5 7 7 6 2 10 2121: 45 11 5 7 7 6 2 6 3 3 2121: 45 11 5 7 7 6 6 5 7 2129: 6 7 7 7 8 6 8 7 10 2129: 6 7 7 7 8 6 8 7 10 2129: 6 7 7 7 7 7 7 7 7 7									
1961: 21									
1969: 10									
1997: 23 23 16 23 24 13 10 21 1993: 20 22 15 13 13 22 13 14 2001: 11 14 25 13 15 19 14 14 2009: 15 27 24 19 14 15 11 16 2017: 23 22 28 12 21 13 15 7 2025: 16 9 13 17 16 16 62 21 2033: 7 18 11 10 15 10 7 10 2041: 9 14 13 17 16 16 22 14 2033: 7 18 11 10 15 10 7 10 2041: 9 14 13 17 16 11 18 2049: 18 12 9 17 33 25 10 11 2057: 8 10 7 10 13 16 20 11 2057: 8 10 7 10 13 16 20 11 2057: 8 10 7 10 13 16 20 11 2057: 8 10 7 10 13 16 20 11 2057: 12 10 12 7 12 8 2081: 5 12 7 10 12 7 12 8 2089: 14 13 6 6 6 11 9 7 6 2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 5 7 8 6 8 7 10 2129: 6 7 8 9 9 5 5 4 2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 5 11 7 6 2 2 2177: 7 5 7 3 4 9 10 8 2185: 5 9 7 7 5 7 3 4 9 10 8 2193: 10 9 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2217: 6 5 6 4 12 7 2 4 6 2225: 7 6 7 8 6 8 1 2217: 6 5 6 7 3 1 5 5 5 4 6 2225: 7 6 7 3 1 5 5 5 4 6 2233: 4 5 2 2 7 6 5 6 4 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 4 11 20 45 32 7 2289: 1 4 4 4 11 20 45 32 7 2232: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0 2337: 2 3 2 1 1 3 3 0 2337: 1 1 1 4 7 3 3 2 2 2337: 1 1 3 3									
1985: 13 17 17 19 14 13 15 12 1993: 20 22 15 13 13 14 13 15 12 2001: 11 14 25 13 15 19 14 14 14 2009: 15 27 24 19 14 15 11 16 2017: 23 22 28 12 21 13 15 7 7 2025: 16 9 13 17 16 16 22 14 2033: 7 18 11 10 15 10 7 10 2041: 9 14 13 17 16 16 16 22 14 2033: 7 18 11 10 15 10 7 10 2041: 9 14 13 17 16 11 18 18 18 2049: 18 12 9 17 33 25 10 11 2057: 8 10 7 10 13 16 20 11 2065: 9 15 16 21 11 9 7 6 2073: 11 15 15 17 8 8 8 19 10 2073: 11 15 15 17 8 8 8 19 10 2081: 5 12 7 10 12 7 12 8 8 19 2089: 14 13 6 6 6 11 6 6 6 10 2097: 12 6 9 13 13 13 9 7 10 2105: 10 10 13 16 16 10 2097: 12 6 9 13 13 13 9 7 10 2105: 10 10 13 16 16 10 2097: 12 6 9 13 13 13 9 7 10 2105: 10 10 10 10 10 10 10 10 10 10 10 10 10									
1993 20									
2001: 11									
2009:									
2017: 23 22 28 12 21 13 15 7 2025: 16 9 13 17 16 16 62 14 2033: 7 18 11 10 15 10 7 10 2041: 9 14 13 17 16 11 18 18 2049: 18 12 9 17 33 25 10 11 2057: 8 10 7 10 13 16 20 11 2057: 8 10 7 10 13 16 20 11 2057: 8 10 7 10 13 16 20 11 2065: 9 15 16 21 11 9 7 6 2073: 11 15 15 17 8 8 19 10 2081: 5 12 7 10 12 7 12 8 2089: 14 13 6 6 6 11 6 6 6 6 10 2097: 12 6 9 13 13 9 7 10 2015: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 7 6 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2169: 6 9 7 5 5 11 6 12 12 6 13 3 22177: 7 5 7 7 5 7 7 7 6 2 10 2225: 7 6 6 9 7 5 11 6 12 12 3 2217: 6 5 6 4 12 7 2 4 4 2225: 7 6 5 6 4 12 7 2 4 4 2225: 7 6 5 6 4 12 7 2 4 4 2225: 7 6 5 6 4 12 7 2 4 4 2225: 7 6 5 6 4 12 7 2 4 4 2225: 7 6 5 6 4 12 7 2 4 4 2225: 7 6 5 6 4 12 7 2 4 4 2225: 7 6 5 6 4 4 4 3 9 5 3 2289: 1 4 4 4 4 11 20 45 32 7 2289: 1 4 4 4 4 11 20 45 32 7 2289: 1 4 4 4 4 4 11 20 45 32 7 2289: 1 4 4 4 4 4 4 4 4 4									
2025: 16									
2033: 7 18 11 10 15 10 7 10 2041: 9 14 13 17 16 11 18 18 2049: 18 12 9 17 33 25 10 11 2057: 8 10 7 10 13 16 20 11 2055: 9 15 16 21 11 9 7 6 2073: 11 15 15 17 8 8 19 10 2081: 5 12 7 10 12 7 12 8 2089: 14 13 6 6 11 6 16 10 2097: 12 6 9 13 13 3 9 7 10 2105: 10 9 11 22 19 9 11 22 19 9									
2041: 9									
2049: 18 12 9 17 33 25 10 11 2057: 8 10 7 10 13 16 20 11 2055: 9 15 16 21 11 19 7 6 2073: 11 15 15 17 8 8 19 10 2089: 14 13 6 6 11 6 16 10 2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 10 12 12 19 9 2121: 45 11 5 7 8 8									
2057: 8 10 7 10 13 16 20 11 2065: 9 15 16 21 11 9 7 6 2073: 11 15 15 17 8 8 19 10 2089: 14 13 6 6 11 6 16 10 2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 2129: 6 7 8 9 9 5 5 4 2129: 6 7 8 9 9 5 5 4 2129: 6 7									
2065: 9 15 16 21 11 9 7 6 2073: 11 15 15 17 8 8 19 10 2089: 14 13 6 6 11 6 16 10 2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 10 2129: 6 7 8 9 9 5 5 4 21217: 5 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2 10 2153: 5									
2073: 11 15 15 17 8 8 19 10 2081: 5 12 7 10 12 7 12 8 2089: 14 13 6 6 11 6 16 10 2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 2129: 6 7 8 9 9 5 5 4 2137: 5 5 5 7 8 6 10 9 2 2145: 13 6 4 13 6 10 9 2 2153: 5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2081: 5 12 7 10 12 7 12 8 2089: 14 13 6 6 11 6 16 10 2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 7 2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2177: 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td></td> <td></td>							9		
2089: 14 13 6 6 11 6 16 10 2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 2 6 13 3 2169: 6 9 7 5 11 7 6 2 10 2193: 10 9 9 7 7 4 10 7 7 11									
2097: 12 6 9 13 13 9 7 10 2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 7 3 4 9 10 8 2177: 7									
2105: 10 9 10 9 11 22 19 9 2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 8 14 40 118 150 96 2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 9 9 5 5 4 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2161: 8 6 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201:									
2113: 11 5 8 14 40 118 150 96 2121: 45 11 5 7 6 6 5 7 2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2177: 7 5 7 3 4 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201: 14 49 <			0						
2121: 45 11 5 7 6 6 5 7 2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2177: 7 5 7 3 4 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7			5						
2129: 6 7 8 9 9 5 5 4 2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2171: 7 7 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 <									
2137: 5 5 7 8 6 8 7 10 2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2177: 7 5 7 3 4 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2227:									
2145: 13 6 4 13 6 10 9 2 2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2177: 7 5 7 3 4 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 6 7 3 1 5 4 6 2233: 4 4 <		5				9			
2153: 5 4 6 12 12 6 13 3 2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2177: 7 5 7 3 1 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2241: 6		13	5						Τ.0
2161: 8 6 5 11 7 6 2 10 2169: 6 9 7 5 11 6 12 3 2177: 7 5 7 3 4 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td>2</td>								12	2
2169: 6 9 7 5 11 6 12 3 2177: 7 5 7 3 4 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 6 5 6 4 12 7 2 4 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 <td>2161:</td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td>	2161:					7			
2177: 7 5 7 3 4 9 10 8 2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 4 5 8 6 8 1 2209: 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1				7			6		3 T.O
2185: 5 9 5 7 7 4 10 7 2193: 10 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 4 5 8 6 8 1 2209: 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1 4 3 9 5 3 2 2265: 6 2 8			5						Q
2193: 10 9 9 9 9 4 8 2 12 2201: 14 49 216 487 601 295 71 18 2209: 7 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7			9						7
2201: 14 49 216 487 601 295 71 18 2209: 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 11 20 45 32 7 2297: 12 2									
2209: 7 7 4 5 8 6 8 1 2217: 6 5 6 4 12 7 2 4 2225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 3 5 2 10 2289: 1 4 4 11 20 45 32 7 2297: 12 2 6									
2217: 6 5 6 4 12 7 2 4 2225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 3 5 2 10 2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2313: 5 5 1			7						
2225: 7 6 7 3 1 5 4 6 2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 3 5 2 10 2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 4 2									
2233: 4 5 2 7 6 2 6 4 2241: 6 4 6 3 5 3 5 5 2249: 4 3 5 7 6 5 2 4 2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 3 5 2 10 2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2329: 1 1 4 7			6						6
2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 3 5 2 10 2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2321: 3 2 1 1 3 3 2 2 2337: 2 3 2 1	2233:		5		7	6	2		4
2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 3 5 2 10 2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2321: 3 2 1 1 3 3 2 2 2337: 2 3 2 1	2241:			6		5			5
2257: 6 1 4 3 9 5 3 2 2265: 6 2 8 6 4 4 7 4 2273: 7 4 2 3 0 6 0 3 2281: 7 5 4 4 3 5 2 10 2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2321: 3 2 1 1 3 3 2 2 2337: 2 3 2 1	2249:	4	3	5		6	5	2	4
2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0		6	1				5		2
2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0			2			4	4		4
2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0			4	2				0	3
2289: 1 4 4 11 20 45 32 7 2297: 12 2 6 2 1 6 3 4 2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0			5			3	5		10
2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0			4			20			
2305: 3 4 4 2 3 4 4 4 2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0				6	2	´ 1			
2313: 5 5 1 0 1 3 2 1 2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0 2345: 2 3 3 2 3 6 3 1		3	4			3	4		4
2321: 3 4 5 3 2 5 4 4 2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0 2345: 2 3 3 2 3 6 3 1		5	5			1	3		1
2329: 1 1 4 7 3 3 2 2 2337: 2 3 2 1 1 3 3 0 2345: 2 3 3 2 3 6 3 1		3	4		3	2	5	4	4
2337: 2 3 2 1 1 3 3 0 2345: 2 3 3 2 3 6 3 1		ī	1			3	3		2
2345: 2 3 3 2 3 6 3 1		2	3		1	1	3	3	0
	∠3 4 5:	2	3	3	2	3	6	3	1

2353:	2	3	4	0	0	1	1	1
2361:	0	ĺ	Ō	ĺ	ĺ	ī	Ō	1
2369:	1	4	3	2	3	0	2	0
2377:	1	- 5	3	1	ő	í	3	1
							1	0
2385:	2	0	1	0	2	1		
2393:	0	0	3	1	6	1	0	1
2401:	4	4	0	1	1	1	3	2
2409:	4	0	2	2	4	1	2	1
2417:	0	4	0	2	0	1	1	1
2425:	3	1	1	4	1	1	2	3
2433:	3	0	1	1	1	2	0	2
2441:	1	0	2	4	4	32	95	158
2449:	144	55	9	4	4	1	0	2
2457:	6	1	1	2	0	2	1	0
2465:	3	. 0	3	1	0	1	3	0
2473:	0	1	4	1	1	0	1	1
2481:	1	0	5	0	2	3	1	0
2489:	1	Ō	0	2	0	0	2	0
2497:	ī	Ö	1	0	1	Ö	1	3
2505:	0	2	1	3	0	2	2	1
2513:	Ö	0	0	0	ő	Ō	ō	ī
2521:	1	í	0	Ö	2	ő	í	ī
2529:	0	1	0	Ö	0	í	Ō	1
2537:	1	0	0	0	0	0	1	2
2545:	0	2	0	0	0	1	0	1
2553:	0	1	0		0	0	0	1
2561:	0	1		1 0	0	1	0	0
2569:	0		0				0	1
		1	0	0	1	0	-	
2577:	0	1	1	0	1	1	1	0
2585:	1	1	2	0	0	0	0	0
2593:	0	1	0	1	0	2	0	0
2601:	0	0	0	0	0	0	1	1
2609:	2	4	0	1	2	7	10	12
2617:	3	1	2	0	1	0	0	0
2625:	0	0	2	0	0	1	1	0
2633:	0	0	1	0	0	0	1	0
2641:	0	0	0	0	1	2	0	0
2649:	1	0	1	0	1	0	0	0
2657:	0	1	1	0	0	1	0	0
2665:	0	1	1	0	1	0	1	2
2673:	1	1	0	1	0	0	0	0
2681:	0	1	1	0	0	0	1	1
2689:	1	0	0	0	2	3	4	3
2697:	0	0	0	3	1	1	1	0
2705:	0	0	0	0	1	0	0	0
2713:	2	0	0	0	0	0	1	1
2721:	0	1	0	0	0	0	0	0
2729:	0	0	0	0	0	. 0	2	1
2737:	0	0	1	1	1	2	1	0
2745:	0	0	0	ō	1	Ō	0	0
2753:	0	Ō	Ö	Ö	Ō	1	1	Ö
2761:	0	Ō	Ö	Ö	Ö	ō	Ō	Ö
2769:	0	4	3	2	Ö	Ŏ	2	Ö
2777:	0	Ō	ő	ō	ő	ő	ī	1
2785:	Ö	Ö	ŏ	ĺ	ő	ĭ	Ō	0
2793:	Ō	Ö	ĭ	Ö	ő	ī	ő	0
2801:	Ö	Ö	ĺ	Ö	0	1	1	1
2809:	Ö	Ö	2	Ö	0	1	i	1
2817:	ĺ	1	0	0	1	0	0	0
2825:	. 0	Ō	0	0	0	0	0	0
2020.	J	U	U	U	J	U	U	U

2833:	1	0	1	0	0	2	0	2
2841:	0	Ö	0	0	0	0	0	Ó
2849:	1	Ō	Ō	2	0	0	0	1
2857:	0	1	Ŏ	3	Ō	0	0	0
2865:	Ö	0	Ö	Ō	Ō	0	0	0
2873:	Ö	Ö	Ö	Ö	1	Ō	2	0
2881:	ĺ	Ö	ĺ	2	ō	Ö	0	0
2889:	Ō	2	0	Ō	ŏ	3	Ö	1
2897:	i	Õ	ĭ	Ö	ő	Ö	Ö	1
2905:	Ō	ĺ	1	Ö	ő	0	Ō	1
2913:	Ö	Ō	Ō	Ö	ō	2	Ō	0
2921:	Ö	ĺ	3	Ö	Ö	ō	Ö	0
2929:	Ö	ī	Ö	ĺ	Ō	1	0	0
2937:	Ō	Ō	1	ō	1	0	0	0
2945:	0	Ö	0	Ö	1	0	0	0
2953:	0	Ō	Ō	Ö	0	0	0	0
2961:	0	0	0	0	2	0	1	0
2969:	0	0	0	0	0	0	0	0
2977:	0	1	2	1	0	0	0	0
2985:	0	0	0	0	0	0	0	1
2993:	0	0	0	0	0	- 0	1	0
3001:	0	3	0	0	0	0	0	0
3009:	1	0	0	0	3	1	0	1
3017:	0	0	0	0	0	0	0	1
3025:	0	0	0	0	0	0	0	0
3033:	0	0	0	0	0	0	0	0
3041:	0	0	0	0	0	0	1	0
3049:	1	0	0	0	2	1	1	0
3057:	1	0	0	0	1	0	0	0
3065:	0	0	0	0	0	0	1	0
3073:	0	0	0	0	0	0	0	0
3081:	0	0	0	0	1	0	0	0
3089:	0	0	0	0	1	0	2	0
3097:	0	0	0	0	0	0	0	0
3105:	0	0	0	0	0	1	0	0
3113:	0	0	0	0	0	0	0	0
3121:	0	0	1	0	0	0	0	0
3129:	0	0	1	0	0	0	0	0
3137:	0	0	0	0	1	0	0	0
3145: 3153:	1 1	0	0	0	0	0	0	0
3161:	0	0 0	0	0	0	0	0 2	0
3169:	0	0	0	0	0	0 0	0	0 0
3177:	0	0	0 1	0 0	0	0	0	0
3185:	1	1	0	0	1 0	0	0	0
3193:	0	0	0	0	0	0	0	0
3201:	ĺ	1	0	0	0	0	0	0
3209:	ī	Ō	Ö	Ö	0	Ö	Ö	0
3217:	ĺ	Ö	Ö	Ö	Ö	ĺ	Ö	0
3225:	Ō	ő	Ö	2	Ö	1	Ö	Ö
3233:	Ö	1	Ö	ō	ő	Ō	Ö	Ö
3241:	Ö	Ō	ő	1	Ö	ĭ	Ö	0
3249:	1	Ö	Ö	Ō	ő	Ō	Ö	Ö
3257:	0	Ö	Ö	Ö	ŏ	ŏ	Ö	Ö
3265:	0	Ō	Ö	Ö	ō	Ö	ĺ	Ö
3273:	0	1	0	Ö	Ō	Ö	0	Ö
3281:	0	. 0	3	Ö	Ö	Ö	Ō	Ö
3289:	0	0	0	0	0	0	0	0
3297:	1	0	0	0	0	0	0	0
3305:	0	0	0	0	0	0	0	0

3313:	0	0	0	0	0	0	0	0
3321:	Ö	Ö	ĭ	Ŏ	Ö	Ö	0	Ō
3329:	Ö	Ö	Ō	Ö	0	Ö	Ō	Ŏ
3337:	0	0	0	0	0	Ŏ	1	Ö
3345:	0	0	0	0	1	0	0	Ô
3353:	0	0	0		0	1	0	0
3361:	0			0	0	0	0	Q
3369:		0	0	0		0	1	1
3377:	0	0	0	0	0	0	0	1
3385:	0	0	0	0	0	0	1	0
3393:	0	0	0	0		0	0	1
3401:	0	0 0	0	0	0	0	0	0
3409:	0	0	0 1	0	0	0	0	0
3417:	0	0	0	0	0	0	0	0
3425:	1	0	0	0	0	0	0	0
3433:	0	1	0	1	0	0	1	Ö
3441:	2	0	0	0	0	0	0	Ö
3449:	0	0	0	0	0	0	1	0
3457:	0	0	0	0	0	0	0	0
3465:	0	0	1	0	0	0	0	1
3473:	Ö	0	0	0	0	0	1	Ō
3481:	0	1	0	0	0	1	1	Ö
3489:	i 1	0	1	0	0	0	0	Ö
3497:	Ō	0	0	0	0	0	Ö	Ö
3505:	0	0	0	0	1	0	0	Ö
3513:	Ö	0	0	0	0	0	0	Ö
3521:	Ö	Ö	0	0	0	0	Ŏ	Ö
3529:	Ö	Ö	0	0	0	0	Ö	Ö
3537:	Ö	0	Ö	0	0	0	Ö	Ö
3545:	Ö	0	0	0	0	1	0	0
3553:	ĺ	1	Ö	0	0	0	Ö	Ö
3561:	0	Ō	ĺ	Ö	Ŏ	Ö	Ö	0
3569:	Ō	Ö	0	0	Ŏ	Ŏ	Ö	0
3577:	0	Ö	1	Ŏ	Ö	Ö	Ō	Ö
3585:	0	Ō	0	Ö	0	Ö	Ō	Ō
3593:	0	2	Ō	0	0	Ō	0	Ō
3601:	0	0	0	1	Ō	1	0	0
3609:	0	0	0	0	1	0	0	0
3617:	0	0	0	0	1	0	0	0
3625:	0	1	0	0	0	0	0	0
3633:	0	0	0	1	0	0	0	0
3641:	0	0	0	0	0	1	0	0
3649:	0	0	0	0	0	0	0	0
3657:	0	0	0	0	0	0	0	0
3665:	0	0	1	0	0	0	0	0
3673:	0	0	0	0	0	0	0	0
3681:	0	0	0	0	0	0	0	0
3689:	0	0	0	0	0	0	0	0
3697:	0	0	0	0	0	0	0	0
3705:	1	1	0	1	0	0	0	0
3713:	0	0	1	0	0	1	0	0
3721:	0	0	0	0	1	0	1	0
3729:	0	0	0	0	0	0	0	0
3737:	0	0	0	0	0	0	0	0
3745:	1	0	0	0	0	0	0	0
3753:	1	0	1	0	0	0	0	0
3761:	1	0	1	1	0	0	1	0
3769:	0	1	0	0	0	0	0	0
3777: 3785:	0 1	0	0	0	0	0	0	0
5705:	T	0	1	0	0	0	0	1

2702	•	•		•	_	•	•	•
3793:	0	0	0	0	0	0	0	0
3801:	0	0	0	0	0	0	0	0
3809:	0	0	0	1	0	0	0	0
3817:	0	0	0	0	0	0	0	0
3825:	0	0	0	0	0	0	0	0
3833:	0	0	0	0	0	0	0	0
3841:	0	1	0	0	0	0	0	0
3849:	0	0	0	0	0	0	0	0
3857:	0	0	0	0	0	0	0	0
3865:	0	0	0	0	0	1	0	0
3873:	0	0	0	0	0	0	0	0
3881:	0	0	1	0	0	0	0	1
3889:	0	0	0	0	1	1	0	0
3897:	0	0	1	0	0	0	0	0
3905:	0	0	0	0	0	0	Ō	0
3913:	0	0	Ō	Ō	0	Ō	Ō	Ō
3921:	0	1	Ō	Ö	Ö	Ö	Ö	0
3929:	0	Ō	Ō	Ö	Ö	Ö	Ö	1
3937:	0	Ö	Ö	Ö	Ö	Ö	Ö	0
3945:	0	Ō	Ö	o ·	Ö	Ö	Ö	ĺ
3953:	0	Ö	Ö	Ö	Ö	Ö	ĺ	0
3961:	Ö	Ö	Ö	Ö	Ö	ő	Ō	0
3969:	Ö	Ö	Ö	Ö	Ö	Ö	0	0
3977:	Ö	Ö	Ö	ő	Ö	2	Ö	0
3985:	ĺ	Ö	Ö	Ö	Ö	1	Ö	0
3993:	1	Ö	í	Ö	0	i	1	. 0
4001:	Ō	Ö	0	Ö	0	0	0	0
4009:	í	Ö	0	0	0	0	1	0
4017:	Ō	1	1	2	0	0	0	0
4025:	ő	0	0	0	0	0	0	0
4033:	Ö	0	0	1	0		1	
4041:	0	0	0			0		0
4049:	0	0	0	0	0	0	1	0
4057:	0	0	-	0	0	0	0	0
4065:	0		0	0	0	1	0	1
4073:	0	0	0	0	0	0	0	0
4073:		0	0	0	0	0	0	0
4081: 4089:	1	0	0	0	0	0	0	0
±009;	0	0	0	0	0	0	0	0

Walsom

Acquisition date : 22-FEB-2012 11:07:23 Sample ID : 1201163-06

VAX/VMS Peak Search Report Generated 22-FEB-2012 12:08:10.38

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_120116306_GE2_GAS1102_176242.
Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF V2.2
Client ID : JM-88-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 11:07:23

Sample Quantity : 4.07100E+02 gram

Sample ID : 1201163-06
Sample type : SOLID
Detector name : GE2 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 01:00:30.61 0.8% Elapsed live time: 0 01:00:00.00

Start channel : 5

End channel : 4096 Gaussian : 15.00000 Sensitivity : 2.40000 Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	26.45	1048	14026	4.31	26.39	23	7 37.9		
0	31.80	280	8473	1.03	31.74	31	4 93.5		
0	46.20*	4375	18688	1.53	46.15	44	5 9.2		PB-210
0	53.75*	2114	16552	1.40	53.70	51	5 18.8		
0	63.35*	9987	22287	1.69	63.30	61	5 4.9		TH-234
1	67.99	1615	9556	1.44	67.94	67		3.92E+03	
1	71.17	529	18994	1.44	71.13	67	16 73.9		
1	75.17*	25926	18746	1.45	75.13	67	16 1.9		AM-243
0	86.69	4472	22264	1.25	86.66	86	4 9.6		NP-237
									SN-126
									CD-109
0	92.92*	14616	26531	1.48	92.88	90	7 4.1		GA-67
0	98.43	998	13151	2.44	98.40	98	5 35.3		
9	110.07*	1161	24311	3.25	110.04	105		3.65E+00	
9	113.26	1486	17055	2.48	113.23	105	12 29.8		
0	143.85*	2209	18578	1.28	143.84	141	7 20.9		U-235
0	154.15	1266	16133	1.46	154.14	152	6 32.3		
0	163.44*	668	11821	1.63	163.44	162	5 49.6		U-235
1	183.15	161	4459	1.33	183.15	182		4.77E+00	
1	186.10*	21261	8668	1.46	186.10	182	9 1.8		RA-226
0	195.91	621	12086	1.88	195.91	194	6 56.6		
0	205.31	698	10679	1.57	205.31	203	6 47.6		U-235
1	236.03	2248	6987	1.70	236.05	232		9.20E+00	
1	241.97*	17963	5215	1.39	241.99	232	15 1.9		RA-224
4	256.14*	730	5029	1.45	256.16	254		1.60E+01	
4	258.82	1411	6120	1.81	258.84	254	9 17.7		
6	269.97	3481	8510	2.79	270.00	266		1.82E+01	
6	274.53	1137	7285	2.24	274.56	266	12 26.6		
0	285.94	216	6372	1.14	285.98	284	6118.3		
0	295.15*	39441	8199	1.46	295.19	291	8 1.3		PB-214
0	299.71	287	4030	0.98	299.75	299	4 63.7		GA-67
0	305.16	305	5379	1.96	305.21	303	6 77.3		
0	314.06	255	5088	1.68	314.11	312	6 89.4		
0	323.68	498	5115	1.33	323.73	322	6 46.2		RA-223
0	329.75	421	4332	1.64	329.81	328	5 47.8		
0	338.14*	250	4277	1.68	338.20	337	5 79.4		

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	351.79*	67663	7102	1.43	351.85	347	9 0.9		PB-214
0	387.75	1053	5589	3.39	387.83	384	8 25.3		
1	401.75	796	4281	1.86	401.83	398		3.51E+00	
1	405.09	629	3680	1.73	405.17	398	12 29.9		PB-211
0	426.88	576	5204	2.00	426.97	423	8 44.3		
0	455.07	420	3318	1.40	455.17	452	7 46.6		
0	461.56	335	3316	1.59	461.66	459	7 57.9		
0	480.28	455	2952	1.87	480.39	477	7 40.9		
0	486.70	467	2832	1.57	486.82	484	7 38.9		
0	510.77*	753	3228	2.68	510.89	507	9 28.4		
0	533.55	178	2106	1.64	533.68	532	6 82.7		
0	560.96	128	1888	1.74	561.10	559	6108.5		
0	580.75	428	2682	1.48	580.90	577	8 43.0		DT 014
0	609.06*	50365	3056	1.75	609.22	604	10 1.0		BI-214
0	621.40	90	1170	2.71	621.56	620	5115.5		RU-106
0 0	639.08 649.76	114 125	1384 1582	3.28	639.25	637	6105.6		
0	665.25	1292	2260	2.65 1.97	649.94 665.43	646 661	7107.0 9 14.4		
0	702.84	515	1606	1.88	703.04	700	7 27.2		
0	719.44	454	1977	1.80	703.04	716	9 36.5		
0	734.38	99	1304	5.50	734.58	732	6117.4		
Ö	742.26	399	2149	2.06	742.47	738	10 44.6		
Ö	752.23	195	1240	1.63	752.45	750	6 58.9		
Ö	767.93*	4901	2618	2.01	768.15	762	12 5.1		
0	785.76	1117	1868	2.06	785.99	782	9 15.2		
0	805.71	1051	1943	1.75	805.95	802	9 16.3		
0	820.53	149	1255	1.75	820.77	819	6 77.1		
0	825.58	113	1019	2.17	825.82	824	5 86.2		
0	831.44	310	1474	1.85	831.68	829	7 42.7		PB-211
0	838.81	571	1749	1.83	839.05	835	8 26.7		
0	933.63	2554	2101	2.01	933.91	928	11 8.0		
0	943.81	142	1615	5.09	944.10	941	9103.5		
0	963.42	299	1441	1.85	963.72	960	8 45.6		
0	1000.48*	618	1488		1000.79	997	9 23.9		PA-234M
0	1051.60	333	1494		1051.93	1047	10 44.8		
0	1069.37	249	1265		1069.70	1066	9 53.1		
0	1103.91	89	955		1104.25	1101	7117.5		
0	1119.80*	10670	1501		1120.16	1114	11 2.4		BI-214
0	1133.48	173	1141		1133.83	1130	8 69.5		
0	1154.71	1197	1022		1155.07	1151	8 10.9		
0	1181.90	187	1052		1182.28	1179	9 64.0		
0 0	1207.25	329	1001		1207.63	1203	9 36.4		
0	1237.61 1253.56	3884 328	1032 1100		1238.00 1253.96	1233	10 4.5		
0	1280.59	1051	1057			1249	11 40.8		
3	1377.11	2668	629		1281.00 1377.56	1277 1370	11 13.5 20 5.0	8.23E-01	
3	1384.73	481	644		1377.56	1370	20 3.0	0.23E-01	
2	1400.88	864	660		1401.34	1376		6.75E-01	
2	1407.38	1493	645		1401.34	1396	18 7.7	J. / JE- UE	
ō	1460.00*	721	1253		1460.47	1454	13 21.6		K-40
Ŏ	1508.55	1268	1012		1509.05	1504	10 10.9		
		-							

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
4	1537.86	310			1532	18 32.8	1.12E+00	
4	1542.92	261	532		1532	18 31.4		
0	1582.08	376	621	2.42 1582.61	1578	9 26.0		
3	1593.95	110	424	2.16 1594.48	1591	13 61.6	1.34E+00	
3	1598.75	208		2.69 1599.28	1591	13 42.2		
6	1656.86 1660.65	29	80	1.46 1657.41	1656	10 80.0	1.72E+00	
6	1660.65	579	305	2.71 1661.20	1656	10 13.4		
0	1682.87	100	272	2.06 1683.44	1679	8 60.4		
0	1692.02	170		2.45 1692.58	1688	12 50.4		
3		38		3.21 1723.40	1723	13 51.5	1.59E+00	
3	1728.80		214	2.63 1729.38	1723	13 5.5		
2	1757.65	33	56	2.67 1758.24	1757	15 60.1	2.80E+00	
2	1763.74*			2.52 1764.33	1757	15 2.3		BI-214
3	1837.75			2.93 1838.37	1834	19 42.3	1.80E+00	
3	1846.71	1167	196	2.58 1847.33	1834	19 7.2		
0	1871.79	155	312	3.29 1872.42	1865	13 49.5		
3	1889.51	85	212	3.29 1890.15	1885	18 68.6	2.30E+00	
3	1895.38	88	195	3.30 1896.02	1885	18 66.8		
4		77	259	3.65 1935.86	1929	15 84.8	1.72E+00	
4		45	141	2.00 1940.83	1929	15 88.0		
0	2008.20	63	161	8.00 2008.88	2003	12 84.6		
0		98		8.66 2019.74	2014	13 55.6		
0	2117.58*	564	112	2.65 2118.31	2113	11 11.2		
0	2203.05 2246.66	2292	95	2.77 2203.80	2196	16 4.6		BI-214
0	2246.66	21	33	1.35 2247.44	2241	12116.0		
0	2292.23	141	30	1.74 2293.02	2288	10 22.2		
0	2446.43	615	21	3.23 2447.28	2440	13 8.6		
0	2481.74	14	2	1.85 2482.60	2478	11 70.0		
0	2613.31*	93	3	3.18 2614.22	2609	11 22.9		
0	2622.14	5	2	1.82 2623.05				
0	2481.74 2613.31* 2622.14 2767.30*	18	3	4.82 2768.27	2763	11 62.4		

Summary of Nuclide Activity Page: 4

Sample ID : 1201163-06 Acquisition date : 22-FEB-2012 11:07:23

Total number of lines in spectrum 116 Number of unidentified lines 65 Number of lines tentatively identified by NID 51 43.97%

Nuclide Type : NATURAL

	- 1 1 - 1 - 1		7.74 -3 No	7.71 3 36			
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flag	s
K-40	1.28E+09Y	1.00	2.720E+01	2.720E+01	0.659E+01	24.23	
PB-210	22.26Y	1.00	8.611E+01	8.630E+01	1.126E+01	13.04	
PB-211	3.28E+04Y	1.00	3.074E+01	3.074E+01	0.788E+01	25.62	
BI-214	1602.00Y	1.00	2.340E+02	2.340E+02	0.123E+02	5.24	
PB-214	1602.00Y	1.00	2.417E+02	2.417E+02	0.162E+02	6.72	
RN-219	3.28E+04Y	1.00	1.809E+01	1.809E+01	0.521E+01	28.78	
RA-223	3.28E+04Y	1.00	1.609E+01	1.609E+01	0.759E+01	47.19	
RA-224	1.41E+10Y	1.00	4.645E+02	4.645E+02	0.434E+02	9.34	
RA-226	1602.00Y	1.00	5.694E+02	5.694E+02	10.43E+02	183.16	
PA-234M	4.47E+09Y	1.00	2.067E+02	2.067E+02	0.535E+02	25.88	
TH-234	4.47E+09Y	1.00	1.926E+02	1.926E+02	0.202E+02	10.47	
U-235	7.04E+08Y	1.00	1.459E+01	1.459E+01	0.324E+01	22.24	
	Total Acti	vity :	2.102E+03	2.102E+03			

Nuclide	Nuclide Type : ACTIVATION												
			Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma							
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error		Flags						
GA-67	3.26D	225.	2.273E+00	5.118E+02	17.01E+02	332.39	•						
NB-95M	3.61D	133.	9.056E+00	1.208E+03	0.181E+03	14.95							
AM-243	7380.00Y	1.00	2.788E+01	2.788E+01	0.330E+01	11.82							
	Total Act:	ivity :	3.921E+01	1.748E+03									

Nuclide Type : FISSION

MACTIAC	TABC . LID!	2 TOM					
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error		s
RU-106	368.20D	1.05	1.942E+00	2.037E+00	2.370E+00	116.33	
CD-109	464.00D	1.04	8.469E+01	8.798E+01	1.639E+01	18.62	
SN-126	1.00E+05Y	1.00	8.514E+00	8.514E+00	1.496E+00	17.57	
NP-237	2.14E+06Y	1.00	2.500E+01	2.500E+01	0.434E+01	17.35	
	Total Act:	ivity :	1.201E+02	1.235E+02			

Grand Total Activity : 2.261E+03 3.973E+03

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Page: 5
Acquisition date: 22-FEB-2012 11:07:23

	Type: NATU			
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff	Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 2.720E+01 24.23 OK
	Final Mean	for 1 v	Valid Peaks	= 2.720E+01+/- 6.590E+00 (24.23%)
PB-210	46.50	4.25*	2.204E+00	8.611E+01 8.630E+01 13.04 OK
	Final Mean	for 1 V	Valid Peaks	= 8.630E+01+/- 1.126E+01 (13.04%)
PB-211	404.84 831.96	2.90* 2.90	1.241E+00 6.924E-01	3.225E+01 3.225E+01 31.51 OK 2.846E+01 2.846E+01 43.80 OK
	Final Mean	for 2 V	Valid Peaks	= 3.074E+01+/- 7.877E+00 (25.62%)
BI-214	1120.29	15.10	5.508E-01	2.250E+02 2.250E+02 9.87 OK 2.366E+02 2.366E+02 10.39 OK 2.438E+02 2.438E+02 10.30 OK 2.329E+02 2.329E+02 11.53 OK
	Final Mean	for 4 V	Valid Peaks	= 2.340E+02+/- 1.226E+01 (5.24%)
PB-214	295.21 351.92	19.19 37.19*	1.574E+00 1.383E+00	2.408E+02 2.409E+02 9.34 OK 2.426E+02 2.426E+02 9.67 OK
	Final Mean	for 2 V	Valid Peaks	= 2.417E+02+/- 1.624E+01 (6.72%)
RN-219	401.80	6.50*	1.248E+00	1.809E+01 1.809E+01 28.78 OK
	Final Mean	for 1 V	Valid Peaks	= 1.809E+01+/- 5.206E+00 (28.78%)
RA-223	323.87	3.88*	1.472E+00	1.609E+01 1.609E+01 47.19 OK
	Final Mean	for 1 V	Valid Peaks	= 1.609E+01+/- 7.593E+00 (47.19%)
RA-224	240.98	3.95*	1.806E+00	4.645E+02 4.645E+02 9.34 OK
				= 4.645E+02+/- 4.338E+01 (9.34%)
RA-226				5.694E+02 5.694E+02 183.16 OK
				= 5.694E+02+/- 1.043E+03 (183.16%)
PA-234M	-			2.067E+02 2.067E+02 25.88 OK
				= 2.067E+02+/- 5.350E+01 (25.88%)
TH-234				1.926E+02 1.926E+02 10.47 OK
	Final Mean	for 1 V	/alid Peaks	= 1.926E+02+/- 2.016E+01 (10.47%)

Nuclide Line Activity Report (continued) Page: 6
Sample ID: 1201163-06 Acquisition date: 22-FEB-2012 11:07:23

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma %Eff Nuclide Energy %Abn pCi/gram pCi/gram %Error Status **U-235** 143.76 10.50* 2.361E+00 1.644E+01 1.644E+01 27.44 OK 1.170E+01 163.35 4.70 1.170E+01 53.16 2.238E+00 OK 205.31 4.70 1.990E+00 1.376E+01 1.376E+01 51.35 OK

Final Mean for 3 Valid Peaks = 1.459E+01+/-3.244E+00 (22.24%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma Nuclide %Eff pCi/gram pCi/gram %Error Energy %Abn Status GA-67 93.31 35.70* 2.610E+00 2.892E+01 6.513E+03 350.91 OK 208.95 2.24 1.970E+00 ---- Line Not Found -----Absent 300.22 16.00 1.555E+00 2.125E+00 4.784E+02 356.62 OK Final Mean for 2 Valid Peaks = 5.118E+02+/-1.701E+03 (332.39%)

NB-95M 235.69 25.00* 1.831E+00 9.056E+00 1.208E+03 14.95 OK

Final Mean for 1 Valid Peaks = 1.208E+03+/-1.806E+02 (14.95%)

AM-243 74.67 66.00* 2.598E+00 2.788E+01 2.788E+01 11.82 OK

Final Mean for 1 Valid Peaks = 2.788E+01+/-3.297E+00 (11.82%)

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status

RU-106 621.84 9.80* 8.768E-01 1.942E+00 2.037E+00 116.33 OK

Final Mean for 1 Valid Peaks = 2.037E+00+/- 2.370E+00 (116.33%)

CD-109 88.03 3.72* 2.618E+00 8.469E+01 8.798E+01 18.62 OK

Final Mean for 1 Valid Peaks = 8.798E+01+/-1.639E+01 (18.62%)

SN-126 87.57 37.00* 2.618E+00 8.514E+00 8.514E+00 17.57 OK

Final Mean for 1 Valid Peaks = 8.514E+00+/-1.496E+00 (17.57%)

NP-237 86.50 12.60* 2.619E+00 2.500E+01 2.500E+01 17.35 OK

Final Mean for 1 Valid Peaks = 2.500E+01+/-4.336E+00 (17.35%)

Flag: "*" = Keyline

Page: 7
Acquisition date: 22-FEB-2012 11:07:23

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40 GA-67 NB-95M RU-106 CD-109 SN-126 PB-210 PB-211	2.720E+01 5.118E+02 1.208E+03 2.037E+00 8.798E+01 8.514E+00 8.630E+01 3.074E+01	6.590E+00 1.701E+03 1.806E+02 2.370E+00 1.639E+01 1.496E+00 1.126E+01 7.877E+00	4.747E+00 2.493E+02 2.000E+02 3.915E+00 1.405E+01 1.359E+00 9.716E+00	4.867E-01 8.749E+02 1.644E+01 5.302E-01 2.167E+00 1.921E-01 8.144E-01 1.328E+00	5.730 2.053 6.040 0.520 6.263 6.265 8.882 2.088
BI-214 PB-214 RN-219 RA-223 RA-224 RA-226 PA-234M TH-234 U-235 NP-237 AM-243	2.340E+02 2.417E+02 1.809E+01 1.609E+01 4.645E+02 5.694E+02 2.067E+02 1.926E+02 1.459E+01 2.500E+01 2.788E+01	1.226E+01 1.624E+01 5.206E+00 7.593E+00 4.338E+01 1.043E+03 5.350E+01 2.016E+01 3.244E+00 4.336E+00 3.297E+00	8.572E-01 1.047E+00 6.525E+00 9.860E+00 9.642E+00 1.233E+01 5.195E+01 1.165E+01 3.743E+00 3.530E+00 7.689E-01	7.693E-02 9.168E-02 5.875E-01 8.452E-01 7.934E-01 2.257E+01 4.770E+00 9.706E-01 6.480E-01 4.893E-01 8.428E-02	272.999 230.871 2.772 1.632 48.173 46.194 3.979 16.528 3.897 7.082 36.261

	Key-Line				
	Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram) Ided	01101	(pCi/gram)		,
	(1 , 5		(F == / J=/		
BE-7	-3.400E-01	3.475E+00	5.358E+00	4.954E-01	-0.063
NA-22	-4.006E-02	3.430E-01	4.967E-01	4.895E-02	-0.081
AL-26	-2.986E-02	1.657E-01	2.881E-01	2.604E-02	-0.104
TI-44	1.234E+00 +	2.290E-01	5.043E-01	4.728E-02	2.447
SC-46	-3.586E-01	3.710E-01	6.035E-01	5.410E-02	-0.594
V-48	-1.606E-01	8.659E-01	1.429E+00	1.308E-01	-0.112
CR-51	1.629E+00	5.699E+00	7.246E+00	6.526E-01	0.225
MN-54	2.985E-01	4.191E-01	5.082E-01	4.562E-02	0.587
CO-56	-1.216E-01	3.933E-01	5.826E-01	5.231E-02	-0.209
CO-57	1.592E-01	2.693E-01	4.410E-01	3.740E-02	0.361
CO-58	-6.823E-02	3.882E-01	5.791E-01	5.203E-02	-0.118
FE-59	-1.439E-01	8.391E-01	1.226E+00	1.217E-01	-0.117
CO-60	2.964E-01	3.254E-01	4.893E-01	4.537E-02	0.606
ZN-65	9.259E+00	1.278E+00	1.581E+00	1.469E-01	5.856
SE-75	-4.229E-01	5.709E-01	7.187E-01	5.956E-02	-0.588
RB-82	-2.430E+00	5.430E+00	6.340E+00	5.658E-01	-0.383
RB-83	1.800E-01	6.116E-01	1.004E+00	1.606E-01	0.179
KR-85	7.729E+01	5.737E+01	8.981E+01	8.316E+00	0.861
SR-85	4.417E-01	3.279E-01	5.133E-01	4.753E-02	0.861
Y-88	6.795E-01	2.894E-01	4.854E-01	4.333E-02	1.400
NB-93M	2.908E+01	1.316E+01	1.693E+01	5.096E+00	1.718
NB-94	1.004E-01	2.937E-01	4.924E-01	4.420E-02	0.204
NB-95	1.614E+01	1.708E+00	1.387E+00	1.236E-01	11.640
ZR-95	-2.417E-01	8.412E-01	9.917E-01	9.660E-02	-0.244

	Vor. Line					
	Key-Line Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide		Ided	ACC CITOI	(pCi/gram)	MDII CIICI	1100/1121
	(F == / J = s/	- 40 4		(Po=/ J=/		
RU-103	-3.794E-01		3.875E-01	6.478E-01	9.433E-02	-0.586
AG-108M	1.122E-01		3.046E-01	4.640E-01	4.091E-02	0.242
AG-110M	-8.154E-03		3.205E-01	4.453E-01	3.852E-02	-0.018
SN-113	2.077E-02		4.784E-01	7.461E-01	6.869E-02	0.028
TE123M	2.556E-01		4.222E-01	5.567E-01	4.478E-02	0.459
SB-124	3.635E-01		3.682E-01	5.707E-01	5.142E-02	0.637
I-125	1.940E+00		5.697E+00	8.946E+00	9.175E-01	0.217
SB-125	3.105E+00	+	1.411E+00	1.546E+00	1.434E-01	2.009
SB-126	8.326E+00	+	3.144E+00	3.550E+00	3.128E-01	2.345
SB-127	3.136E+01		6.477E+01	1.103E+02	9.606E+00	0.284
I-129	2.009E-01		6.266E-01	8.762E-01	1.074E-01	0.229
I-131	-6.005E-01		2.399E+00	4.149E+00	3.662E-01	-0.145
TE-132	1.978E+01		6.729E+01	9.925E+01	8.147E+00	0.199
BA-133	2.526E-01		4.382E-01	6.349E-01	8.450E-02	0.398
CS-134	2.351E+00		3.888E-01	5.390E-01	4.861E-02	4.361
CS-135	1.495E+01		2.095E+00	2.748E+00	2.259E-01	5.442
CS-136	1.120E+00		1.573E+00	2.362E+00	2.238E-01	0.474
CS-137	6.532E-01		3.191E-01	4.978E-01	4.300E-02	1.312
LA-138	1.308E-01		4.508E-01	7.379E-01	7.438E-02	0.177
CE-139	3.629E-01		3.738E-01	5.600E-01	4.458E-02	0.648
BA-140	-1.944E+00		4.121E+00	6.190E+00	2.062E+00	-0.314
LA-140 CE-141	4.068E+00		1.327E+00	2.340E+00	2.283E-01	1.738
CE-141 CE-144	4.158E+00 -1.027E+00		1.368E+00	1.506E+00	3.433E-01	2.761 -0.284
PM-144	2.465E-01		2.227E+00 2.767E-01	3.610E+00 4.268E-01	3.010E-01 3.734E-02	0.578
PM-145	-1.509E+00		1.595E+00	1.940E+00	1.267E+00	-0.778
PM-146	1.726E+00	+	8.231E-01	1.038E+00	9.551E-02	1.663
ND-147	5.171E+00	т	9.558E+00	1.483E+01	1.370E+00	0.349
EU-152	3.940E+01	+	5.874E+00	5.732E+00	6.953E-01	6.873
GD-153	1.630E-01		1.206E+00	1.616E+00	1.884E-01	0.101
EU-154	-1.403E-01		9.525E-01	1.378E+00	1.358E-01	-0.102
EU-155	1.029E+01	+	1.785E+00	1.764E+00	2.445E-01	5.834
EU-156	-7.858E-01	•	9.255E+00	1.384E+01	3.179E+00	-0.057
HO-166M	-3.437E-01		5.504E-01	7.451E-01	6.547E-02	-0.461
HF-172	-9.005E-01		1.991E+00	3.234E+00	2.725E-01	-0.278
LU-172	4.527E-01		6.357E+00	1.050E+01	9.736E-01	0.043
LU-173	1.378E+01		1.790E+00	2.224E+00	1.827E-01	6.194
HF-175	-1.449E-01		4.918E-01	6.151E-01	5.355E-02	-0.236
LU-176	3.373E-01		2.701E-01	3.967E-01	3.347E-02	0.850
TA-182	1.195E+02	+	1.241E+01	5.564E+00	5.164E-01	21.479
IR-192	-1.003E-01		6.822E-01	1.052E+00	9.711E-02	-0.095
HG-203	-1.372E-01		5.573E-01	7.072E-01	5.979E-02	-0.194
BI-207	2.137E-02		2.540E-01	4.140E-01	3.788E-02	0.052
TL-208	1.747E+00		8.964E-01	1.398E+00	1.272E-01	1.250
BI-210M	2.627E-02		6.515E-01	8.339E-01	6.862E-02	0.032
BI-212	-3.423E-01		2.916E+00	3.476E+00	3.068E-01	-0.098
PB-212	5.670E+00		7.777E-01	1.002E+00	8.244E-02	5.658
RA-225	-1.182E+00		2.773E+00	4.310E+00	4.001E-01	-0.274

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-06 Acquisition date: 22-FEB-2012 11:07:23

Nuclide	Key-Line Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
TH-227	1.970E+01	+	2.945E+00	3.840E+00	3.157E-01	5.132
AC-228	-5.560E-01		1.106E+00	1.820E+00	1.637E-01	-0.305
TH-230	3.148E+02	+	5.834E+01	1.285E+02	1.198E+01	2.451
PA-231	1.043E+00		1.341E+01	1.703E+01	1.431E+00	0.061
TH-231	1.048E+01	+	4.288E+00	4.194E+00	6.177E-01	2.500
PA-233	2.340E+00		1.530E+00	1.877E+00	4.203E-01	1.247
PA-234	-8.847E-01		1.100E+00	1.777E+00	1.486E-01	-0.498
AM-241	4.037E+00		8.466E-01	1.238E+00	9.257E-02	3.262
CM-243	3.539E-01		1.846E+00	2.698E+00	2.213E-01	0.131

Summary of Nuclide Activity Page: 10

Acquisition date : 22-FEB-2012 11:07:23 Sample ID : 1201163-06

Total number of lines in spectrum 116 Number of unidentified lines 65

Number of lines tentatively identified by NID 51 43.97%

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	$\mathtt{Hlif}\epsilon$	e Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flag	រូន
K-40	1.28E+091	7 1.00	2.720E+01	2.720E+01	0.659E+01	24.23	
PB-210	22.26	1.00	8.611E+01	8.630E+01	1.126E+01	13.04	
PB-211	3.28E+04Y	7 1.00	3.074E+01	3.074E+01	0.788E+01	25.62	
BI-214	1602.00	7 1.00	2.340E+02	2.340E+02	0.123E+02	5.24	
PB-214	1602.00	7 1.00	2.417E+02	2.417E+02	0.162E+02	6.72	
RN-219	3.28E+045	1.00	1.809E+01	1.809E+01	0.521E+01	28.78	
RA-223	3.28E+045	1.00	1.609E+01	1.609E+01	0.759E+01	47.19	
RA-224	1.41E+10	7 1.00	4.645E+02	4.645E+02	0.434E+02	9.34	
RA-226	1602.003	7 1.00	5.694E+02	5.694E+02	10.43E+02	183.16	
PA-234M	4.47E+09	7 1.00	2.067E+02	2.067E+02	0.535E+02	25.88	
TH-234	4.47E+093	1.00	1.926E+02	1.926E+02	0.202E+02	10.47	
U-235	7.04E+08	7 1.00	1.459E+01	1.459E+01	0.324E+01	22.24	
	Total Ac	rtivitv ·	2 102F±03	2 1028+03			

Total Activity : 2.102E+03 2.102E+03

Nuclide Type : ACTIVATION

	1750 . 11011		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
GA-67	3.26D	225.	2.273E+00	5.118E+02	17.01E+02	332.39
NB-95M	3.61D	133.	9.056E+00	1.208E+03	0.181E+03	14.95
AM-243	7380.00Y	1.00	2.788E+01	2.788E+01	0.330E+01	11.82
	Total Acti	ivity :	3.921E+01	1.748E+03		

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Fla	.gs
RU-106	368.20D	1.05	1.942E+00	2.037E+00	2.370E+00	116.33	_
CD-109	464.00D	1.04	8.469E+01	8.798E+01	1.639E+01	18.62	
SN-126	1.00E+05Y	1.00	8.514E+00	8.514E+00	1.496E+00	17.57	
NP-237	2.14E+06Y	1.00	2.500E+01	2.500E+01	0.434E+01	17.35	
	m-4-1 2 - 1 '	• .					

Total Activity : 1.201E+02 1.235E+02

Grand Total Activity: 2.261E+03 3.973E+03

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116306_GE2_GAS1102_176242.CNF; 1

Title :

Sample Title: JM-88-31-120128

Start Time: 22-FEB-2012 11:07 Sample Time: 28-JAN-2012 00:00 Energy Offset: 6.87229E-02

Channel

1:	0	0	0	0	0	1	3	1128
9:	2441	3019	3903	3353	4108	4363	3904	4498
17:	3446	2602	2727	2406	2077	2021	1914	2120
25:	2213	2266	2289	2241	2031	2032	2092	2406
								2327
33:	2141	2114	2189	2230	2322	2103	2263	
41:	2473	2531	2567	2731	2823	6576	8291	2704
49:	2856	3789	3206	3177	5042	4104	3144	3218
57:	3474	3769	4039	4384	4586	4823	10362	8138
65:	4401	4474	5114	5902	4771	4715	5058	5058
73:	5210	8668	19990	9080	28802	13781	5475	5270
81:	6096	4361	4686	8612	4397	4258	10258	7829
89:	4391	6618	3806	7739	11374	4522	4380	2794
97:							2437	2384
	2670	3371	3276	2613	2507	2382		
105:	2462	2539	2468	2501	2747	2726	2794	2737
113:	3082	2733	2607	2473	2409	2429	2395	2478
121:	2439	2503	2543	2400	2432	2493	2483	2572
129:	2526	2416	2555	2486	2407	2530	2540	2569
137:	2593	2574	2646	2688	2613	2709	3035	4271
145:	2990	2577	2603	2710	2744	2797	2803	2763
153:	2832	3506	3033	2700	2565	2683	2664	2501
161:	2475	2385	2819	2641	2321	2334	2310	2246
169:								2174
	2240	2361	2266	2207	2221	2256	2199	
177:	2155	2203	2192	2249	2259	2225	2352	2212
185:	5053	15818	6815	2124	2181	2076	2104	2073
193:	2006	2110	2170	2281	2106	2064	1976	1992
201:	1951	1977	1845	1910	2230	1972	1726	1694
209:	1687	1696	1822	1637	1678	1666	1636	1678
217:	1543	1590	1501	1491	1615	1539	1541	1492
225:	1548	1553	1485	1558	1467	1534	1459	1425
233:	1448	1445	1877	2701	1692	1615	1659	1422
241:	4287	13426	4007		1221	1247	1207	1256
241:				1304				
	1229	1262	1225	1312	1306	1267	1345	1715
257:	1464	1603	1957	1210	1132	1166	1192	1149
265:	1141	1029	1082	1192	2127	2046	2043	1515
273:	1234	1410	1495	1126	1048	1009	1059	1027
281:	1119	1075	1120	1153	1036	1255	1118	1037
289:	989	1034	1059	1043	1057	4523	25940	11866
297:	1186	970	1035	1310	955	1017	1004	1021
305:	1018	891	905	845	797	908	828	898
313:	851	979	932	838	845	830	876	884
321:	836	834	967		908	831	859	870
	965			1214				
329:		1120	966	832	903	957	911	851
337:	849	1021	967	852	841	877	903	833
345:	869	830	880	877	1035	1496	17150	42881
353:	8957	810	694	737	679	708	693	667
361:	700	663	668	664	668	734	642	694
369:	670	686	725	700	687	726	611	715
377:	715	706	729	694	707	720	678	674
385:	711	845	951	921	1057	785	698	736
393:	683	681	714	753	735	642	734	698
401:	893	1143	790		1076	940	734	757
401:	734			806				
		784	699	718	739	691	709	759
417:	726	712	727	784	723	714	704	715
425:	734	734	842	737	685	629	583	632

433:	555	560	556	532	558	559	520	553
441:	535	557	554	526	577	519	495	456
449:	498	520	502	488	501	543	704	538
457:	502	462	455	507	556	654	516	473
465:	490	480	475	445	524	530	491	493
473:	458	540	482	438	464	418	445	660
481:	593	437	390	410	398	508	687	506
489:	393	397	419	372	418	410	404	369
497:	364	364	368	378	349	425	408	
505:	391	394	355	398		600	633	495
513:	385	379	361	332	350	357	365	372
521:	349	345	370	364	379	337	344	336
529:	354	358	363	298	437	481	346	376
537:	346	385	361	347	352	352	406	389
545:	353	391	352	358	349	331	335	332
553:	990	332	363	317	338	317	289	376
561:	357	337	337	320	326	366	337	341
569:	372	347	345	352	337	353	351	345
577:	310	334	378	546	423	348	422	349
585: 593:	334	293	327	319	295	306	294	285
593: 601:	335 314	293 340	332	315 354	303 342	315 321	291 481	309 6441
609:	27834	15855	338 1290	354 256	34 <i>2</i> 256	321 269	266	259
617:	27634	250	232	248	262	269 271	260	219
625:	241	235	232	233	252	254	243	274
633:	277	255	263	245	248	277	245	264
641:	237	226	214	222	250	211	236	243
649:	296	236	259	226	219	242	264	221
657:	244	241	230	273	258	250	238	363
665:	905	794	291	222	231	247	230	250
673:	215	249	233	224	218	213	251	235
681:	231	239	237	272	219		239	238
689:	244	220	238	210	216		218	254
697:	250	275	227	216	249		484	368
705:	253	226	245	256	253	242	228	220
713:	226	224	209	228	242	240	339	428
721:	272	225	240	217	224		233	246
729:	234	212	237					
737:	219	188	229	242				245
745:	234	247	223	226				255
753:	312	238	193	225				198
761:		221	239	207				
769:	1712	401	233	227				207
777: 785:	222 563	204	202	235				232
785: 793:	220	725 209	397 233	224 198	225 215		195 242	188
801:	200	209 195	233 222	198 236	215 417	197 760	242 478	234 228
809:	228	230	232	236 201	218	232	233	228
817:	213	229	196	237	324	232 278	233 179	190
825:	224	263	257	198	236	236	299	344
833:	229	215	225	187	242	373	515	327
841:	220	231	204	208	234	217	243	216
849:	213	207	219	255	233	216	227	224
857:	220	240	258	234	207	228	260	204
865:	247	220	264	259	223	239	251	245
873:	228	225	237	208	204	218	244	289
881:	251	225	231	253	217	246	217	214
889:	222	217	258	214	230	234	248	262
897:	244	250	198	212	250	219	256	257
905:	240	240	253	242	188	222	258	242
	<u> </u>							8119

913:	237	217	209	253	216	216	219	197
921:	183	224	216	201	219	240	215	179
929:	222	210	226	248	819	1381	755	253
937:	175	187	183	181	183	201	206	211
945:	200	218	200	171	167	188	171	190
953:	174	163	193	169	209	175	186	194
961:	196	195	243	327	250	161	174	171
969:	218	176	183	167	181	186	172	200
977:	218	160	172	185	180	164	170	184
985:	172	181	161	171	191	182	190	185
993:	172	162	179	149	160	176	208	315
1001:	422	285	185	174	184	164	183	197
1009:	193	172	153	149	163	170	168	172
1017:	173	181	167	162	173	187	162	164
1025:	165	152	153	177	164	163	161	155
1033:	181	153	168	157	165	181	143	132
1041:	146	161	160	152	145	149	146	144
1049:	171	175	221	287	198	161	166	158
1057:	144	151	148	144	145	141	143	148
1065:	152	137	147	181	200	250	184	137
1073:	143	135	140	124	124	155	138	161
1081:	148	135	146	141	136	140	136	154
1089:	129	142	139	163	146	135	144	134
1097:	129	142	140	140	129	149	152	167
1105:	164	139	144	132	143	142	166	153
1113:	129	139	149	155	157	368	2025	4952
1121:	3218	714	173	125	154	135	135	154
1129:	140	147	146	133	204	236	159 115	138 141
1137: 1145:	151 132	133 134	138 142	137 136	139 141	138 140	132	130
1143:	169	404	660	430	180	114	132	126
1161:	127	137	122	138	120	134	121	138
1169:	117	132	129	138	146	136	112	148
1177:	119	105	118	125	156	175	153	136
1185:	122	132	122	120	103	136	116	122
1193:	132	123	104	132	105	116	118	119
1201:	103	122	113	123	111	149	217	239
1209:	159	118	101	111	118	116	133	111
1217:	124	120	140	108	101	106	117	112
1225:	133	117	115	111	117	108	108	103
1233:	108	116	114	257	996	1796	1058	265
1241:	114	92	110	125	110	103	128	103
1249:	102	97	130	150	152	190	155	128
1257:	122	109	93	103	104	118	120	116
1265:	111	123	91	121	104	130	135	101
1273:	113	133	135	107	102	132	157	382
1281:	486	283	154	115	110	97	90	91
1289:	96	105	104	105	96	104	96	118
1297: 1305:	104	111	98	113	110	111	129	114
1313:	114 107	93 107	93 92	90	112	118	109	89 123
1321:	95	89	90	104	107 91	113 118	101 82	104
1321:	119	104	90 85	106 93	120	97	82 89	$\frac{104}{114}$
1337:	105	104	123	93 97	109	99	92	98
1345:	116	72	104	113	103	107	101	98
1353:	106	99	87	103	80	97	96	100
1361:	101	109	88	109	109	98	99	111
1369:	89	87	96	107	101	97	114	384
1377:	1038	1078	457	141	103	92	100	199
1385:	269	232	141	91	88	97	108	100

1393:	84	105	104	87	109	94	128	232
1401:	420	369	176	112	109	188	519	705
						97	111	92
1409:	379	144	104	101	84			
1417:	98	91	107	108	100	98	81	94
1425:	106	96	89	96	89	93	84	93
1433:	82	84	114	101	101	90	99	89
1441:	98	90	101	108	105	81	103	84
1449:	92	101	100	95	104	82	106	102
1457:	115	106	189	314	348	191	127	100
1465:	111	94	105	101	104	112	106	112
1473:	115	100	91	116	100	98	119	111
1481:	118	109	93	110	115	106	100	99
						112	91	116
1489:	107	92	101	125	106			103
1497:	121	109	123	94	131	93	103	
1505:	111	103	168	390	594	411	184	126
1513:	90	109	100	104	103	100	106	100
1521:	104	102	91	97	117	111	135	112
1529:	99	102	117	101	107	114	108	104
1537:	120	207	194	126	99	115	201	175
1545:	114	82	77	79	84	75	69	75
1553: ·	72	87	93	68	90	72	68	92
1561:	86	70	77	80	65	70	74	79
1569:	74	81	73	67	69	78	76	67
1577:	62	62	75 69	78	83	176	229	161
1585:	78	61	90		61	80	62	71
				74				
1593:	88	108	114	81	78	110	141	133
1601:	84	56	64	75	79 	80	74	68
1609:	62	67	78	59	71	54	60	54
1617:	55	52	67	63	62	56	58	67
1625:	43	44	51	60	51	49	51	52
1633:	56	39	54	70	51	57	44	53
1641:	54	41	53	47	56	38	53	36
1649:	42	51	36	37	48	42	46	35
1657:	60	48	68	155	243	193	84	55
1665:	33	39	41	36	31	36	36	32
1673:	28	32	38	31	31	40	29	42
1681:	47	30	69	75	47	33	34	42
1689:	40	41	56	75 69	94	67	47	32
1697:	37	33	27	37	31	41	30	34
1705:	34						29	
		28	36	31	40	32		29
1713:	36	31	40	30	23	34	29	35
1721:	40	24	29	42	26	33	79	332
	653	554	258	68	36	33	28	26
1737:	26	32	31	23	28	30	29	36
1745:	29	29	27	35	37	30	29	20
1753:	40	29	34	29	27	41	26	37
1761:	84	334	1471	3114	2660	957	185	48
1769;	28	38	26	39	30	19	26	22
1777:	25	25	20	23	20	27	26	24
1785:	22	25	27	24	24	15	24	20
1793:	16	28	22	13	21	25	20	23
1801:	16	22	22	20	28	19	22	22
1809:	27	22	21	24	27	22	32	21
1817:	22	21	24	18	18	22	26	25
1825:	20	19						
1833:	39		23	27	25	36	24 76	23
		25	23	36	61	67	76	38
1841:	30	31	19	35	59	228	453	354
1849:	156	43	24	19	19	34	21	21
1857:	24	11	21	23	23	26	26	26
1865:	25	21	29	34	33	23	41	66

1873:	60	58	31	24	22	23	29	23
1881:	20	26	17	26	19	30	27	23
1889:	34	54	39	32	39	41	34	50
1897:	44	29	27	31	21	11	25	35
1905:	27	20	25	30	27	22	29	24
1913:	28	29	22	28	24	25	33	26
1921:	22	27	29	28	24	34	24	23
1929:	24	24	26	30	26	39	36	40
1937:	45	27	25	43	28	32	22	25
1945:	31	18	17	21	24	24	25	28
1953:	32	27	24	35	22	18	21	23
1961:	25	16	29	27	17	27	24	25
1969:	22	26	27	22	28	17	24	19
1977:	22	22	23	15	31	22	12	19
1985:	20	24	23	14	9	22	18	20
1993:	18	25	24	22	19	19	14	20
2001:	18	16	13	24	19	18	20	10
2009:	18	22	32	22	17	9	16	31
2017:	27	20	23	22	17	20	15	21
2025:	15	13	8	10	16	18	15	9
2033:	13	14	16	17	15	17	18	11
2041:	9	16	16	16	23	10	15	9
2049:	20	18	23	14	19	25	15	16
2057:	13	13	6	10	13	13	12	16
2065:	13	8	15	7	13	16	8	8
2073:	24	15	12	13	5	8	11	11
2081:	4	18	13	7	15	13	14	9
2089:	14	14	13	10	13	8	17	17
2097:	9	9	12	10	8	16	6	14
2105:	. 7	7	17	15	22	28	11	9
2113:	13	11	7	43	112	208	172	75
2121:	19	11	7	12	8	10	9	9
2129:	6	9	6	7	10	15	13	9 8
2137:	10	8	6	7	10	10	7	7
2145:	7	10	9	12	5	15	6	10
2153:	13	6	9	6	7	4	5	8
2161:	7	11	8	9	11	3 7	8	7
2169:	6	6	8	9	5		8	9
2177:	10	1	6	7	14	6	10	6
2185:	10	9	12	8	9	6	14	14
2193:	14	17	9	7	9	4	13	25
2201:	57	242	635	759	426	153	25	12
2209:	7	9 4 2 3	4	4	3	5	4	11
2217: 2225:	9 4	4	6	7	4 5 4 3 4	6	1	3 5 3 4 6
2223:	4	2	5 6	4	5	4	6	5
2233:	2	3 5		8 5	4	3	7	3
2241:	2 3 6		6	5	3	6	3	4
2249:	8	10	2 5	1	4	7	3	
2265:	11	6 2 3	5 7	7	8 3 9 9	5 7	10	4
2273:	6	2	2	6	3		4	9
2281:	6	10	6	3 4	9	7	. 3	ב ה
2289:	5		19	31	61	6 24	5 16	3
2297:	2	2	5	4	2		16	g C
2305:	2 2 2	3	1	2	ے 2	2 7	5	∠ 1
2313:	2	3	5	1	2	1	4	⁴ ⊑
2321:	3	3	3	2	5	4	2	5
2329:	3 5	4	3	5	5 3 6 3		2	2
2337:	2 2	4 2 3 3 4 2 5	2	5 1	0	1 1	6	<u>ر</u> ح
2345:	2	_ 5	4	1	3	4	1	4 9 5 3 6 2 4 5 5 2 3 3
			=	-	_	-		9

2353:	2	0	1	1	1	0	2	3
2361:	0		2	3	3	ĭ	4	3
2361:		2				2	1	1
	2	2	1	6	1			
2377:	3	1	3	3	2	3	2	1
2385:	1	2	2	6	4	3	3	0
2393:	4	0	0	4	0	0	1	0
2401:	3	0	3	2	1	1	2	0
2409:	2	5	3	2	2	1	0	2
2417:	1	1	2	4	3	2	3	2
2425:	1	0	2	0	2	1	0	3
2433:	0	0	2	2	2	0	4	1
2441:	1	3	5	8	49	124	170	176
2449:	· 77	20	2	Ö	1	1	3	3
2457:	1	0	2	ĺ	Ō	3	1	1
2465:	Ō	0	1	1	2	0	Ō	0
2473:	2					0	0	4
	2	1	1	1	1		=	
2481:	5	1	1	2	1	1	1	0
2489:	0	0	0	1	2	1	1	2
2497:	2	3	0	2	2	0	1	1
2505:	2	4	1	1	2	2	1	1
2513:	1	2	1	1	1	2	0	0
2521:	0	2	1	0	0	0	1	1
2529:	0	1	0	2	1	0	0	1
2537:	1	1	1	0	3	1	1	1
2545:	0	0	4	0	1	0	0	0
2553:	0	1	0	Ö	0	0	1	3
2561:	1	1	1	ĺ	1	0	0	0
2569:	1	3	Ō	2	0	ĺ	3	Ö
2577:	Ō	1	1	0	2	ī	Ö	Ö
2585:	1	0	0		1	0	2	0
2593:	0			1			0	
		1	1	1	0	2		1
2601:	1	. 0	0	0	0	0	2	1
2609:	0	4	2	2	29	22	28	9
2617:	4	3	0	0	1	1	3	2
2625:	0	1	0	0	1	0	1	0
2633:	1	0	0	0	1	0	1	1
2641:	1	0	2	0	0	1	0	1
2649:	1	1	1	0	1	1	1	0
2657:	0	0	1	0	0	1	3	0
2665:	1	0	0	1	0	1	0	1
2673:	1	1	0	0	2	2	1	0
2681:	0	1	0	0	1	0	1	0
2689:	1		1	Ö	0		3	2
2697:	0	1 3	ō	Ö	ĺ	8 2	1	ō
2705:	Ö	Ō	Ö	í	Ō	Õ	Õ	1
2713:	Ö	2	i 1	Ō	ĺ	ŏ	ő	0
2721:	1	0	Ō	0	0	7	4	3
2729:	0	0	2	1		1 2	2	0
2723:	0	0	0		2 2	0	0	0
2745:	0			0	2			
2745: 2753:		0	0	1	0	0	0	0
	0	0	1	1	2 2	1	1	0
2761:	0	0	0	1	2	1	4	4
2769:	4	3 1	3 2	1	0	1	2	0
2777:	0	1	2	0	0	0	0	2
2785:	2	1	3	0	2	0	0	. 0
2793:	1	0	0	0	0	1	0	1
2801:	1	0	0	1	2	0	0	1
2809:	0	0	0	1	1	1	1	1
2817:	0	0	1	0	0	0	1	0
2825:	1	0	0	2	1	Ō	0	Ō
		•	-	_		-	-	-

2833:	0	0	0	0	0	0	0	1
2841:	2	0	0	1	1	0 0	2 0	1 0
2849: 2857:	1 0	0 0	0 0	0 0	0 0	2	1	0
2865:	0	0	2	0	1	0	1	0
2873: 2881:	0 0	1 1	0 1	1 0	0 0	0 0	1 0	2 0
2889:	ő	0	1	0	Ŏ	Ö	Ö	Ö
2897:	0	1	1	0	1	0	0	0 0
2905: 2913:	0 1	0 0	1 1	2 1	0 1	0 1	0 0	1
2921:	0	0	0	0	0	1	0	2
2929: 2937:	0 0	0 0	1 1	1 0	1 0	0 0	0 1	0 2
2945:	1	Ö	0	Ö	1	ĺ	0	1
2953: 2961:	0 0	0	0	1	1 0	0 1	0 0	0 1
2969:	0	0 1	0 1	0	0	0	0	2
2977:	0	2	2	0	0	0	0	0
2985: 2993:	1 0	1 0	0 1	0 1	0 0	0 1	1 1	1 0
3001:	0	Ö	0	0	1	Ō	0	Ö
3009: 3017:	0 0	0 0	0 0	0 0	0 1	0 0	0 1	0
3025:	0	2	0	0	0	0	1	0
3033: 3041:	0	0	0	0	1	0	0	1
3041: 3049:	0 1	1 0	0 0	0 0	1 2	0 1	0 0	0
3057:	1	0	0	0	0	0	0	0
3065: 3073:	0 0	0 1	2 1	0 0	0 0	0 0	0 0	0 1
3081:	0	0	0	0	0	1	0	1
3089: 3097:	0 0	0 0	0 0	0	0	0	0 0	0 0
3105:	0	0	0	0 0	1 0	1	0	0
3113:	0	0	0	0	0	1	1	0
3121: 3129:	0 0	0 0	0 0	1 0	0 0	0 0	1 0	0 1
3137:	0	0	2	0	0	0	2	0
3145: 3153:	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0
3161:	2	1	0	0	1	0	0	0
3169: 3177:	0 2	0 0	0 0	0	0 0	0	0 1	0 0
3185:	0	0	0	0 0	0	0 0	0	0
3193: 3201:	0 0	1	0	2	1	0	1	1
3201:	0	0 0	0 0	0 0	0 0	0 0	2 0	0 0
3217:	0	0	0	0	0	. 1	0	1
3225: 3233:	0 0	0 0	0 2	0 1	0 0	1 0	0 0	1 0
3241:	0	0	0	0	1	0	0	0
3249: 3257:	0	0 1	0 0	0 0	0 0	0 1	0 0	0 0
3265:	0	1	0	0	0	0	1	0
3273: 3281:	1 1	0 1	1	1		0	0	0
3289:	0	0	0 0	1 0	0 2 1 1	0	1 0	0 0
3297:	0	1	0	0	1	1	0	0
3305:	1	0	0	0	0	0	0	0

3313:	0	0	0	0	0	0	0	0
3321:	0	0	0	0	0	1	0	0
3329:	0	0	0	0	0	0	0	1
3337:	0	0	0	0	1	0	0	0
3345:	0	0	0	0	0	0	0	0
3353:	0	1	0	0	0	0	0	0
3361:	1	1	0	0	0	0	0 0	1 0
3369:	0 0	0	0	0	1 1	0 1	1	1
3377: 3385:	1	0 0	0 0	0 0	0	0	1	2
3393:	0	Ö	0	0	0	Ö	Ō	0
3401:	Ö	Ö	Ö	Ö	Ö	ő	ő	ĺ
3409:	Ö	1	Ö	ő	Ö	Ö	1	0
3417:	0	ō	0	Ō	0	0	0	0
3425:	0	0	1	0	0	0	0	0
3433:	0	0	0	0	0	0	0	0
3441:	0	0	0	0	0	0	0	0
3449:	0	0	0	0	0	0	0	0
3457:	1	0	0	0	0	0	0	1
3465:	0	0	0	0	1	1	0	0
3473:	0	2	0	0	1	0	1	0 1
3481: 3489:	0 0	1 0	0	0	0 0	1 1	0 0	0
3469: 3497:	0	0	0 1	0 0	1	0	0	0
3505:	0	1	0	0	0	0	0	0
3513:	Ö	Ō	Ö	Ö	Ö	ĭ	ő	Ö
3521:	Ö	Ö	Ö	ő	Ö	ō	Ö	Ō
3529:	Ö	Ö	Ö	Ö	Ö	Ō	1	0
3537:	0	0	0	Ō	0	1	0	0
3545:	0	0	0	0	0	0	0	0
3553:	0	0	1	0	0	0	0	0
3561:	1	0	0	0	0	0	0	0
3569:	1	0	0	0	0	0	0	0
3577:	0	0	1	0	0	1	0	0
3585:	0	0	0	0	0	0	0	0
3593: 3601:	0 0	0	0	0	0	0	0	0
3609:	1	0 0	0 1	0 0	0 0	0 0	1 0	0
3617:	0	0	0	0	0	0	0	0
3625:	Ö	í	ő	0	Ö	ő	ŏ	Ő
3633:	Ö	Ō	Ö	ŏ	ő	ő	Ö	Ö
3641:	0	0	1	Ō	Ō	0	0	1
3649:	0	1	0	0	0	0	0	0
3657:	0	1	0	1	0	0	0	2
3665:	0	0	0	1	1	0	0	0
3673:	0	0	0	0	0	1	0	1
3681:	0	0	0	0	0	0	0	0
3689: 3697:	0 0	0	0	0	0	1	0	0
3697: 3705:	0	0 0	0	0 0	0 0	1 0	0 0	0 0
3713:	0	0	0	0	0	0	0	0
3721:	Ö	Ö	1	1	1	0	Ö	0
3729:	Ō	Ö	Ō	Ō	Ō	Ö	Ö	Ö
3737:	0	0	Ö	Ö	Ö	Ō	0	0
3745:	0	0	0	0	0	0	0	1
3753:	0	0	0	0	0	0	0	0
3761:	0	0	0	0	0	0	0	0
3769:	0	0	0	0	0	0	0	0
3777: 3785:	0 0	0	0	0	0	0	2	0
3703;	U	0	0	0	0	0	0	0

3793:	0	0	0	0	0	0	. 0	0
3801:	Ö	0	1	0	0	1	0	0
3809:	0	1	0	0	1	1	0	1
3817:	0	0	0				0	
3825:	0			0	0	0		0
		0	1	3	0	0	0	0
3833:	0	0	0	0	0	0	0	0
3841:	0	0	0	0	0	0	0	0
3849:	0	0	0	0	0	0	0	0
3857:	0	0	0	0	0	0	0	0
3865:	0	0	0	0	1	0	0	0
3873:	0	1	0	0	. 0	0	0	0
3881:	0	0	0	0	0	0	1	0
3889:	0	0	0	0	0	0	0	0
3897:	0	0	0	0	0	1	0	1
3905:	0	0	0	0	0	1	0	0
3913:	0	0	0	0	0	0	0	0
3921:	0	0	0	0	0	0	0	0
3929:	0	0	0	0	0	0	0	0
3937:	0	1	0	0	0	0	0	0
3945:	0	0	0	0	0	1	0	0
3953:	0	0	0	0	0	0	0	0
3961:	0	1	0	0	0	0	0	0
3969:	0	0	0	0	0	1	1	0
3977:	0	0	0	Ō	0	0	. 0	Ö
3985:	0	0	0	Ō	Ō	Ō	Ö	Ö
3993:	0	0	0	Ō	Ō	Ö	Ö	Ŏ
4001:	0	0	Ō	Ö	Ö	Ö	Ö	Ö
4009:	0	1	Ō	Ö	Ö	Ö	Ö	Ö
4017:	0	0	Ö	Ö	Ö	Ö	Ö	Ö
4025:	0	Ō	Ö	Ö	Ö	Ö	Ö	Ö
4033:	0	Ō	Ö	Ö	Ö	Ö	0	0
4041:	0	Ö	1	Ö	Ŏ	ő	Ö	0
4049:	0	Ö	0	Ö	Ö	Ö	Ö	0
4057:	0	Ö	Ö	Ö	ő	Ö	0	0
4065:	0	Ö	Ö	3	ő	Ö	0	0
4073:	Ö	1	Ö	0	0	0	1	0
4081:	Ö	0	Ö	0	0	0		
4089:	Ö	0	3	0	0	0	0 0	0 0
- •		J	J	J	U	J	U	U

Acquisition date : 22-FEB-2012 11:34:55 Sample ID : 1201163-07

VAX/VMS Peak Search Report Generated 22-FEB-2012 12:36:26.19

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116307_GE3_GAS1102_176248.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF V2.2 Client ID : JM-77-31-120128 Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 11:34:55

Sample ID : 1201163-07 Sample Quantity : 5.54630E+02 gram Sample Geometry : 0

Sample type : SOLID
Detector name : GE3

Detector Geometry: GAS-1102

Elapsed live time: 0 01:00:00.00 Elapsed real time: 0 01:01:16.61 2.1%

Start channel : 5 Sensitivity : 2

End channel : 4096 Gaussian : 15.00000 : 2.40000

Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
0	16.74	910	10147	1.51	17.02	14	6	35.8		NB-93M
0	26.34*	342	5233	3.59	26.62	25	4	61.1		
0	31.25	206	5258	1.20	31.53	31	41	100.3		
0	46.48*	4370	9084	1.19	46.76	44	5	7.2		PB-210
0	52.79	1627	13276	1.79	53.07	50	6	22.9		
0	63.25*	8474	18675	1.71	63.53	61	6	5.5		TH-234
0	75.61	22711	48582	3.58	75.89	71	13	4.2		AM-243
1	87.79	3867	11560	1.38	88.07	86	12	8.4	3.46E+02	NP-237
										SN-126
										CD-109
1	92.84*	12402	9656	1.39	93.13	86	12			
0	98.49	909	7375	1.45	98.77	98		27.7		
8	109.73	696	5063	1.76	110.02	108			8.15E+00	
8	112.78*	1121	10297	1.93	113.07	108		29.5		
0	143.82	1604	9995	1.34	144.11	141		20.3		U-235
0	154.30	781	9903	1.93	154.59	153		41.0		
0	163.12	500	7611	1.62	163.41	162		53.2		U-235
0	186.08*	12556	12175	1.76	186.37	182	9	3.6		RA-226
0	204.86	241	5816	1.05	205.15	204		96.2		U-235
2	235.96	798	3761	1.40	236.25	233			1.02E+02	
2	239.01*	1047	4541	1.75	239.30	233		20.4		PB-212
2	242.00	8596	4266	1.64	242.29	233	14	3.1		RA-224
0	257.80	1130	6593	4.06	258.09	254		26.6		
7	270.28	1585	6107	2.84	270.57	265			7.42E+00	
7	274.60	404	3301	1.50	274.90	265		44.2		
0	295.30*	17607	4641	1.79	295.59	292	7	2.0		PB-214
0	315.53	160	2535	3.00	315.83	314		95.6		
0 0	323.27	273	3427	1.59	323.57	321		72.1		RA-223
0	329.49	207	2471	1.15	329.79	328		73.3		
8	338.04*	169	2487	1.73	338.34	337		89.9		AC-228
8	349.76 352.00*	290	1857	2.01	350.06	348			2.35E+01	DD 01.6
0	387.83	30399	1787	1.46	352.30	348	11	1.2		PB-214
1	401.85	418 331	3548	1.65	388.13	384		52.2	1 ECT.00	D17 010
1	401.85		1940	1.61	402.15	398			1.76E+00	KN-219
0	427.37	282 163	2376	1.91	405.75	398		56.3		
U	IL/.J/	102	2534	1.78	427.68	425	7.1	.03.8		

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	454.51	170	1416	1.73	454.81	453	5 68.1		
0	462.14	182	1862	2.05	462.44	459	7 80.1		
0	469.77	92	1243	2.08	470.08	468	5116.6		
0	479.96	252	1763	1.22	480.27	477	7 56.7		
0	487.25*	218	1403	1.86	487.56	485	6 56.3		
0	510.67*	379	1906	2.98	510.98	507	9 43.2		
0	582.21	428	1994	4.45	582.52	577	11 41.6		TL-208
0	590.98	95	1027	1.21	591.29	589	6108.6		
0	609.41*	21257	1976	1.76	609.72	605	10 1.6		BI-214
0	656.41	97	848	3.49	656.73	654	7101.6		
6	661.90	108	602	1.78	662.22	660		1.45E+00	CS-137
6	665.56	683	614	1.71	665.88	660	11 13.3		
0	702.81	270	1250	2.03	703.13	698	10 50.5		
0	719.83	94	877	1.38	720.15	717	7106.8		
0	743.04	227	1129	2.47	743.37	739	9 55.1		
0	768.16*	2117	1263	1.99	768.48	763	11 7.8		
0	786.06	566	1086	1.84	786.39	782	10 23.4		
0	806.30	336	1018	2.00	806.63	803	8 34.7		
0	829.69	125	1171	7.42	830.02	825	10103.9		
0	839.06	206	988	1.72	839.39		8 54.9		3.C. 000
0	911.48*	112	934	1.99			8 96.6		AC-228
0	933.88	1123	1207	2.05	934.21	928	12 13.7		70 000
0	969.09*	130	633	2.47			7 66.7		AC-228
0 0	1001.13* 1051.92	463	759		1001.47	997	8 22.7		PA-234M
0	1104.36	74 79	556 405		1052.27	1050	7108.5		
4	1120.33	4283	495 414		1104.71 1120.67	1102	7 96.3	2.41E+00	DT_21/
4	1124.72	93	414		1120.67	$1114 \\ 1114$	15 3.4	2.416+00	D1-214
Ō	1133.88	73	566		1134.22	1131	8115.9		
Ö	1155.30	477	722		1155.65	1151	10 23.0		
Ö	1179.99*	88	586		1180.34	1178	9100.9		
Ö	1207.85	116	365		1208.20		6 55.3		
Ō	1218.83	44	276		1219.18	1218	5117.1		
Õ	1229.80	75			1230.16		7 88.7		
0	1238.16*	1558	617		1238.52	1234	11 8.0		
0	1255.34	140	611		1255.69	1249	12 72.7		
0	1281.28	400	640		1281.64	1277	11 26.5		
0	1344.53	47	231		1344.89	1343	5103.4		
0	1377.74	1128	401		1378.10	1374	8 8.6		
0	1385.47	259	401		1385.83	1383	9 30.4		
3	1401.52	390	331	2.27	1401.88	1397	20 18.5	1.03E+00	
3	1408.02	601	298	2.14	1408.38	1397	20 12.2		
0	1424.65	75	381	2.99	1425.02	1422	8 93.1		
0	1460.75*	685	556	2.27	1461.11	1455	13 16.1		K-40
0	1499.72	48	239	1.09	1500.09	1498	5100.9		
0	1509.26	539	462		1509.63	1505	10 17.2		
0	1525.35	37	223		1525.72	1524	5124.8		
0	1537.17	137	572		1537.54	1530	12 71.9		
0	1543.58	118	325		1543.95	1542	8 56.4		
0	1561.90	45	224		1562.27		7114.6		
0	1582.95	127	294	2.38	1583.32	1580	8 49.7		

It	Energy	Area	Bkgnd	FWHM Cha	nnel Left	Pw %Err	Fit	Nuclides
0	1599.74	48	243	1.62 160	0.11 1597	7112.1		
0	1661.45	227	190	2.52 166		8 25.0		
0	1683.47	56	144	5.32 168		9 82.6		
0	1692.80	101	148	8.19 169		11 50.8		
0	1729.70	760	147	2.38 173		11 9.5		
0	1764.61*	3406	179	2.32 176		12 3.8		BI-214
0	1838.40	80	114	1.69 183		9 53.3		
0	1847.38	496	117	2.31 184		11 12.3		
0	1873.87	73	101	1.37 187		9 54.8		
2	1890.30	34	100	2.56 189			6.98E-01	
2	1896.09	30	96	2.70 189		16118.9		
0	2012.12	16	39	2.45 201		5126.9		
0	2055.83	37	76	7.21 205		15110.3		
0	2118.55	229	48	2.91 211	8.96 2114	10 17.3		
0	2204.26	896	65	2.43 220		14 7.7		BI-214
0	2293.57	60	22	2.22 229		13 41.9		
0	2351.71	10	9	1.18 235		12132.8		
0	2436.57	8	0	2.15 243		6 70.7		
0	2447.58	245	7	2.43 244		13 13.5		
0	2580.92	5	2	1.25 258	1.35 2577	7133.8		
0	2614.90*	71	5	2.55 261		10 27.2		TL-208
0	2770.39	6	0	1.98 277		7 81.6		

Summary of Nuclide Activity Page: 4 Sample ID : 1201163-07 Acquisition date : 22-FEB-2012 11:34:55

Total number of lines in spectrum 107 Number of unidentified lines 59

Number of lines tentatively identified by NID 48 44.86%

Nuclide Type : NATURAL

			7.71	7 30	7 - <i>-</i>				
			Wt	d Mean	Wtd Me				
			Unc	orrected	Decay C	orr	Decay Corr	2-Sigma	
Nuclide	Hli		у рС	i/gram	pCi/gr	am 2	2-Sigma Erroi	%Error	Flags
K-40	1.28E+0	9Y 1.0	0 2.	332E+01	2.332E	+01	0.444E+01	19.04	
TL-208	1.41E+1	.OY 1.0	0 1.	148E+00	1.148E	+00	0.294E+00	25.61	
PB-210	22.2	26Y 1.0	0 5.	853E+01	5.866E	+01	0.667E+01	11.37	
PB-212	1.41E+1	.0Y 1.0	0 1.	803E+00	1.803E	+00	0.685E+00	37.96	
BI-214	1602.0	00Y 1.0	0 8.	378E+01	8.378E	+01	0.474E+01	5.65	
PB-214	1602.0	00Y 1.0	0 8.	456E+01	8.456E	+01	1.972E+01	23.32	
RN-219	3.28E+0	1.0	0 5.	952E+00	5.952E	+00	2.564E+00	43.07	
RA-223	3.28E+0	1.0	0 6.	856E+00	6.856E	+00	5.548E+00	80.92	
RA-224	1.41E+1	.0Y 1.0	0 1.	684E+02	1.684E	+02	0.557E+02	33.07	
RA-226	1602.0	00Y 1.0	0 2.	498E+02	2.498E	+02	4.586E+02	183.57	
AC-228	1.41E+1	.0Y 1.0	0 1.	372E+00	1.372E	+00	0.691E+00	50.35	
PA-234M	4.47E+0	9Y 1.0	0 1.	341E+02	1.341E	+02	0.341E+02	25.44	
TH-234	4.47E+0	9Y 1.0	0 1.	131E+02	1.131E	+02	0.114E+02	10.11	
U-235	7.04E+0	98Y 1.0	0 6.	952E+00	6.952E	+00	1.740E+00	25.03	
	Total	Activity	: 9.	398E+02	9.399E	+02			

Nuclide Type : FISSION

Nualida	111146.	, D =	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error	Flags
NB-93M	14.60Y	1.00	1.880E+01	1.886E+01	0.846E+01	44.85	_
CD-109	464.00D	1.04	5.169E+01	5.370E+01	0.809E+01	15.07	
SN-126	1.00E+05Y	1.00	5.195E+00	5.195E+00	0.717E+00	13.81	
CS-137	30.17Y	1.00	2.330E-01	2.333E-01	1.682E-01	72.10	
NP-237	2.14E+06Y	1.00	1.524E+01	1.524E+01	0.209E+01	13.71	
	Total Act:	ivity :	9.116E+01	9.323E+01			

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
	7 ! @		Uncorrected	Decay Corr	-	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error	Flaqs
NB-95M	3.61D	134.	2.431E+00	3.254E+02	1.244E+02	38.22	•
AM-243	7380.00Y	1.00	1.707E+01	1.707E+01	0.178E+01	10.41	
					•		
	Total Activity :		1.950E+01	3.425E+02			

Grand Total Activity : 1.050E+03 1.376E+03

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 5
Acquisition date: 22-FEB-2012 11:34:55

Nuclide	Type: NATU	RAL		
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff	Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 2.332E+01 19.04 OK
	Final Mean	for 1	Valid Peaks	= 2.332E+01+/- 4.440E+00 (19.04%)
TL-208	860.37	4.48	5.812E-01	2.312E+00 2.312E+00 43.07 OK Line Not Found Absent 1.037E+00 1.037E+00 29.68 OK
	Final Mean	for 2	Valid Peaks	= 1.148E+00+/- 2.941E-01 (25.61%)
PB-210	46.50	4.25*	2.378E+00	5.853E+01 5.866E+01 11.37 OK
	Final Mean	for 1	Valid Peaks	= 5.866E+01+/- 6.672E+00 (11.37%)
PB-212	238.63 300.09	44.60* 3.41	1.761E+00 1.480E+00	1.803E+00 1.803E+00 37.96 OK Line Not Found Absent
	Final Mean	for 1	Valid Peaks	= 1.803E+00+/- 6.845E-01 (37.96%)
BI-214	1764.49	15.10 15.80	4.615E-01 3.245E-01	7.809E+01 7.809E+01 10.88 OK 8.319E+01 8.320E+01 10.76 OK 8.992E+01 8.992E+01 10.69 OK 8.642E+01 8.642E+01 13.42 OK
	Final Mean	for 4	Valid Peaks	= 8.378E+01+/- 4.735E+00 (5.65%)
PB-214	295.21 351.92	19.19 37.19*	1.499E+00 1.298E+00	8.283E+01 8.283E+01 45.02 OK 8.523E+01 8.523E+01 27.25 OK
	Final Mean	for 2	Valid Peaks	= 8.456E+01+/- 1.972E+01 (23.32%)
RN-219	401.80	6.50*	1.158E+00	5.952E+00 5.952E+00 43.07 OK
	Final Mean	for 1	Valid Peaks	= 5.952E+00+/- 2.564E+00 (43.07%)
RA-223	323.87	3.88*	1.391E+00	6.856E+00 6.856E+00 80.92 OK
	Final Mean	for 1	Valid Peaks	= 6.856E+00+/- 5.548E+00 (80.92%)
RA-224	240.98	3.95*	1.749E+00	1.684E+02 1.684E+02 33.07 OK
	Final Mean	for 1	Valid Peaks	= 1.684E+02+/- 5.570E+01 (33.07%)
RA-226	186.21	3.28*	2.074E+00	2.498E+02 2.498E+02 183.57 OK
	Final Mean	for 1	Valid Peaks	= 2.498E+02+/- 4.586E+02 (183.57%)
AC-228	338.32 911.07	11.40 27.70*	1.342E+00 5.523E-01	1.493E+00 1.493E+00 95.41 OK 9.922E-01 9.922E-01 97.33 OK

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma Nuclide %Eff Energy %Abn pCi/gram pCi/gram %Error Status 969.11 16.60 5.230E-01 2.028E+00 2.028E+00 67.73 Final Mean for 3 Valid Peaks = 1.372E+00+/-6.909E-01 (50.35%) PA-234M 1001.03 0.92* 5.083E-01 1.341E+02 1.341E+02 25.44 OK Final Mean for 1 Valid Peaks = 1.341E+02+/-3.411E+01 (25.44%) 63.29 3.80* 2.668E+00 1.131E+02 1.131E+02 10.11 TH-234 OK Final Mean for 1 Valid Peaks = 1.131E+02+/-1.143E+01 (10.11%) Ų-235 143.76 10.50* 2.377E+00 8.699E+00 8.699E+00 27.40 OK 163.35 4.70 2.233E+00 6.449E+00 6.449E+00 56.71 OK 205.31 4.70 1.952E+00 3.554E+00 3.554E+00 99.80 OK Final Mean for 3 Valid Peaks = 6.952E+00+/-1.740E+00 (25.03%)

Nuclide Type: FISSION

Nuclide NB-93M	Energy 16.57	%Abn 9.43*	%Eff	Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 1.880E+01 1.886E+01 44.85 OK
	Final Mean	for 1	Valid Peaks	= 1.886E+01+/- 8.460E+00 (44.85%)
CD-109	88.03	3.72*	2.722E+00	5.169E+01 5.370E+01 15.07 OK
	Final Mean	for 1	Valid Peaks	= 5.370E+01+/- 8.090E+00 (15.07%)
SN-126	87.57	37.00*	2.723E+00	5.195E+00 5.195E+00 13.81 OK
	Final Mean	for 1	Valid Peaks	= 5.195E+00+/- 7.175E-01 (13.81%)
CS-137	661.65	85.12*	7.379E-01	2.330E-01 2.333E-01 72.10 OK
	Final Mean	for 1	Valid Peaks	= 2.333E-01+/- 1.682E-01 (72.10%)
NP-237	86.50	12.60*	2.726E+00	1.524E+01 1.524E+01 13.71 OK
	Final Mean	for 1	Valid Peaks	= 1.524E+01+/- 2.089E+00 (13.71%)

Nuclide Line Activity Report (continued) Page: 7
Sample ID: 1201163-07 Acquisition date: 22-FEB-2012 11:34:55

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status NB-95M 235.69 25.00* 1.777E+00 2.431E+00 3.254E+02 38.22 OK

Final Mean for 1 Valid Peaks = 3.254E+02+/-1.244E+02 (38.22%)

AM-243 74.67 66.00* 2.729E+00 1.707E+01 1.707E+01 10.41 OK

Final Mean for 1 Valid Peaks = 1.707E+01+/-1.777E+00 (10.41%)

Flag: "*" = Keyline

Combined Activity-MDA Report Sample ID: 1201163-07

Page: 8
Acquisition date: 22-FEB-2012 11:34:55

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
	(F -=, 5=,		(F == / J=/		
K-40	2.332E+01	4.440E+00	2.795E+00	2.589E-01	8.346
NB-93M	1.886E+01	8.460E+00	7.069E+00	1.894E+00	2.668
NB-95M	3.254E+02	1.244E+02	1.168E+02	3.584E+01	2.785
CD-109	5.370E+01	8.090E+00	7.593E+00	9.005E-01	7.072
SN-126	5.195E+00	7.175E-01	7.343E-01	7.504E-02	7.074
CS-137	2.333E-01	1.682E-01	2.513E-01	2.351E-02	0.928
TL-208	1.148E+00	2.941E-01	7.903E-01	8.095E-02	1.453
PB-210	5.866E+01	6.672E+00	5.385E+00	4.216E-01	10.892
PB-212	1.803E+00	6.845E-01	4.940E-01	1.570E-01	3.650
BI-214	8.378E+01	4.735E+00	5.285E-01	5.282E-02	158.525
PB-214	8.456E+01	1.972E+01	5.961E-01	1.606E-01	141.847
RN-219	5.952E+00	2.564E+00	3.725E+00	3.914E-01	1.598
RA-223	6.856E+00	5.548E+00	5.653E+00	2.068E+00	1.213
RA-224	1.684E+02	5.570E+01	5.622E+00	1.837E+00	29.960
RA-226	2.498E+02	4.586E+02	6.995E+00	1.283E+01	35.720
AC-228	1.372E+00	6.909E-01	1.107E+00	1.278E-01	1.239
PA-234M	1.341E+02	3.411E+01	3.220E+01	3.482E+00	4.163
TH-234	1.131E+02	1.143E+01	6.777E+00	5.041E-01	16.692
U-235	6.952E+00	1.740E+00	2.092E+00	3.747E-01	3.324
NP-237	1.524E+01	2.089E+00	2.349E+00	2.368E-01	6.489
AM-243	1.707E+01	1.777E+00	4.170E-01	3.605E-02	40.934

Nuclide	Key-Line Activity K.L. (pCi/gram) Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
BE-7	1.800E+00	2.112E+00	3.128E+00	3.348E-01	0.576
NA-22	1.364E-01	1.971E-01	3.052E-01	2.673E-02	0.447
AL-26	-1.270E-02	1.090E-01	1.826E-01	1.669E-02	-0.070
TI-44	1.656E-01	1.995E-01	2.788E-01	2.203E-02	0.594
SC-46	-7.995E-02	2.218E-01	3.739E-01	4.319E-02	-0.214
V-48	-3.533E-01	5.152E-01	8.543E-01	9.379E-02	-0.414
CR-51	6.124E-01	3.217E+00	4.191E+00	1.587E+00	0.146
MN-54	7.691E-02	2.458E-01	3.047E-01	3.371E-02	0.252
CO-56	-3.643E-02	2.323E-01	3.543E-01	3.959E-02	-0.103
CO-57	8.265E-02	1.518E-01	2.535E-01	2.519E-02	0.326
CO-58	-5.955E-02	2.268E-01	3.456E-01	3.752E-02	-0.172
FE-59	-3.950E-01	5.165E-01	7.515E-01	7.740E-02	-0.526
CO-60	7.769E-02	2.016E-01	3.087E-01	2.650E-02	0.252
ZN-65	6.564E-01	4.456E-01	7.035E-01	6.653E-02	0.933
GA-67	3.932E+03 +	1.380E+04	2.190E+02	7.686E+02	17.955
SE-75	-3.036E-01	3.493E-01	4.174E-01	1.765E-01	-0.727
RB-82	2.885E+00	3.126E+00	4.018E+00	4.224E-01	0.718
RB-83	-1.563E-01	3.625E-01	5.987E-01	1.007E-01	-0.261
KR-85	4.384E+01	3.381E+01	5.441E+01	5.789E+00	0.806
SR-85	2.506E-01	1.933E-01	3.110E-01	3.309E-02	0.806
Y-88	3.487E-01	1.861E-01	3.148E-01	2.871E-02	1.108
NB-94	2.625E-02	1.676E-01	2.871E-01	3.271E-02	0.091

	Key-Line			· .		- /25-7
	Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram)	Ided		(pCi/gram)		
0-	4 000- 00				E 406E 00	E 015
NB-95	4.209E+00		5.842E-01	7.114E-01	7.406E-02	5.917
ZR-95	-3.707E-02		3.648E-01	5.979E-01	6.612E-02	-0.062
RU-103	-9.532E-02		2.471E-01	3.860E-01	5.984E-02	-0.247
RU-106	-3.812E-01		1.379E+00	2.377E+00	3.373E-01	-0.160
AG-108M	-1.131E-01		1.848E-01	2.800E-01	2.795E-02	-0.404
AG-110M	2.039E-01	+	2.082E-01	2.683E-01	2.520E-02	0.760
SN-113	~7.127E-02		2.905E-01	4.237E-01	4.523E-02	-0.168
TE123M	-5.028E-02		2.310E-01	3.097E-01	2.796E-02	-0.162
SB-124	-1.100E-01		2.184E-01	3.362E-01	3.383E-02	-0.327
I-125	6.939E-01		2.870E+00	4.606E+00	4.351E-01	0.151
SB-125	6.989E-01	+	7.302E-01	8.794E-01	9.461E-02	0.795
SB-126	1.437E+00	+	1.542E+00	2.028E+00	2.019E-01	0.708
SB-127	1.004E+01		3.881E+01	6.745E+01	6.467E+00	0.149
I-129	2.946E-01	+	2.976E-01	4.423E-01	4.951E-02	0.666
I-131	4.636E-01		1.484E+00	2.384E+00	5.265E-01	0.194
TE-132	2.945E+01		3.880E+01	5.766E+01	1.609E+01	0.511
BA-133	1.008E+00		3.767E-01	4.053E-01	1.106E-01	2.487
CS-134	2.698E-02		1.700E-01	2.666E-01	2.682E-02	0.101
CS-135	4.502E+00		2.171E+00	1.530E+00	6.704E-01	2.943
CS-136	5.987E-01		9.225E-01	1.432E+00	1.507E-01	0.418
LA-138	-1.847E-01		2.835E-01	4.592E-01	4.132E-02	-0.402
CE-139	9.928E-02		2.079E-01	3.182E-01	2.811E-02	0.312
BA-140	-1.244E-01		2.145E+00	3.734E+00	1.258E+00	-0.033
LA-140	3.548E-01		9.108E-01	1.371E+00	1.255E-01	0.259
CE-141	2.071E+00		7.243E-01	8.502E-01	1.977E-01	2.436
CE-144	-1.391E+00		1.266E+00	2.068E+00	1.999E-01	-0.672
PM-144	-1.565E-02		1.592E-01	2.467E-01	2.397E-02	-0.063
PM-145	-9.912E-02		6.311E-01	1.002E+00	6.531E-01	-0.099
PM-146	5.601E-01	+	3.866E-01	6.154E-01	6.577E-02	0.910
ND-147	-1.788E+00		5.064E+00	8.770E+00	9.276E-01	-0.204
EU-152	1.427E+01	+	2.427E+00	3.420E+00	3.824E-01	4.174
GD-153	-6.892E-03		6.072E-01	9.421E-01	9.478E-02	-0.007
EU-154	3.789E-01		5.477E-01	8.481E-01	7.427E-02	0.447
EU-155	6.275E+00	+	8.603E-01	9.514E-01	9.590E-02	6.596
EU-156	-2.103E+00		5.441E+00	8.223E+00	1.955E+00	-0.256
HO-166M HF-172	-1.484E-01		3.709E-01	4.486E-01	4.425E-02	-0.331
LU-172	-8.257E-01		1.125E+00	1.853E+00	1.824E-01	-0.446
	1.537E+00		3.804E+00	6.512E+00	6.345E-01	0.236
LU-173	4.073E+00		1.991E+00	1.230E+00	5.596E-01	3.312
HF-175	2.300E-02		2.751E-01	3.565E-01	1.071E-01	0.065
LU-176 TA-182	-3.490E-02		1.444E-01	2.307E-01	9.613E-02	-0.151
IR-182 IR-192	4.204E+01	+	4.516E+00	3.159E+00	2.959E-01	13.307
HG-203	2.334E-01		4.693E-01	6.064E-01	6.489E-02	0.385
BI-207	-1.565E-01 4.824E-02		2.915E-01	4.155E-01	2.025E-01	-0.377
BI-207 BI-210M			1.400E-01	2.451E-01	2.536E-02	0.197
PB-211	4.651E-01		4.105E-01	4.896E-01	2.015E-01	0.950
BI-212	1.142E+01 1.173E+00	+	6.554E+00	9.046E+00	9.521E-01	1.263
<u></u>	T.T/3E+00		1.373E+00	2.179E+00	2.183E-01	0.538

Combined Activity-MDA Report (continued) Page: 10 Sample ID: 1201163-07 Acquisition date: 22-FEB-2012 11:34:55

Nuclide	Key-Line Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
RA-225	-5.821E-01		1.406E+00	2.232E+00	1.920E-01	-0.261
TH-227	5.289E+00	+	2.026E+00	2.169E+00	6.679E-01	2.438
TH-230	3.443E+01		5.077E+01	7.094E+01	5.590E+00	0.485
PA-231	-3.750E+00		6.350E+00	9.809E+00	4.199E+00	-0.382
TH-231	2.257E+00	+	1.415E+00	2.122E+00	2.834E-01	1.064
PA-233	-7.457E-02		7.275E-01	1.077E+00	4.868E-01	-0.069
PA-234	4.541E-01		6.197E-01	1.033E+00	1.004E-01	0.440
AM-241	1.791E+00		4.476E-01	6.897E-01	4.884E-02	2.597
CM-243	-2.308E-01		1.065E+00	1.574E+00	7.552E-01	-0.147

Summary of Nuclide Activity Page: 11

Acquisition date : 22-FEB-2012 11:34:55 Sample ID : 1201163-07

Total number of lines in spectrum 107 Number of unidentified lines 59 Number of lines tentatively identified by NID 48

44.86%

Nuclide Type : NATURAL

	-71-		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.332E+01	2.332E+01	0.444E+01	19.04
TL-208	1.41E+10Y	1.00	1.148E+00	1.148E+00	0.294E+00	25.61
PB-210	22.26Y	1.00	5.853E+01	5.866E+01	0.667E+01	11.37
PB-212	1.41E+10Y	1.00	1.803E+00	1.803E+00	0.685E+00	37.96
BI-214	1602.00Y	1.00	8.378E+01	8.378E+01	0.474E+01	5.65
PB-214	1602.00Y	1.00	8.456E+01	8.456E+01	1.972E+01	23.32
RN-219	3.28E+04Y	1.00	5.952E+00	5.952E+00	2.564E+00	43.07
RA-223	3.28E+04Y	1.00	6.856E+00	6.856E+00	5.548E+00	80.92
RA-224	1.41E+10Y	1.00	1.684E+02	1.684E+02	0.557E+02	33.07
RA-226	1602.00Y	1.00	2.498E+02	2.498E+02	4.586E+02	183.57
AC-228	1.41E+10Y	1.00	1.372E+00	1.372E+00	0.691E+00	50.35
PA-234M	4.47E+09Y	1.00	1.341E+02	1.341E+02	0.341E+02	25.44
TH-234	4.47E+09Y	1.00	1.131E+02	1.131E+02	0.114E+02	10.11
U-235	7.04E+08Y	1.00	6.952E+00	6.952E+00	1.740E+00	25.03
	Total Acti	vity :	9.398E+02	9.399E+02		
	7.04E+08Y	1.00	6.952E+00	6.952E+00		

Nuclide Type : FISSION

HUCTIUC	- 1 PC 1 D	DION					
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error	Flags
NB-93M	14.60Y	1.00	1.880E+01	1.886E+01	0.846E+01	44.85	
CD-109	464.00D	1.04	5.169E+01	5.370E+01	0.809E+01	15.07	
SN-126	1.00E+05Y	1.00	5.195E+00	5.195E+00	0.717E+00	13.81	
CS-137	30.17Y	1.00	2.330E-01	2.333E-01	1.682E-01	72.10	
NP-237	2.14E+06Y	1.00	1.524E+01	1.524E+01	0.209E+01	13.71	
	Total Act	ivity :	9.116E+01	9.323E+01			

Nuclide Type : ACTIVATION

			Wtd Mean	_Wtd Mean	_ ~	o a '	
377-5-7-	**7 ' C	_	Uncorrected	Decay Corr	Decay Corr	-	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error	Flags
NB-95M	3.61D	134.	2.431E+00	3.254E+02	1.244E+02	38.22	
AM-243	7380.00Y	1.00	1.707E+01	1.707E+01	0.178E+01	10.41	
	Total Activity:		1.950E+01	3.425E+02		•	

Grand Total Activity: 1.050E+03 1.376E+03

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116307_GE3_GAS1102_176248.CNF; 1

Title

Sample Title: JM-77-31-120128

Start Time: 22-FEB-2012 11:34 Sample Time: 28-JAN-2012 00:00 Energy Offset: -2.78447E-01 Real Time : 0 01:01:16.61

Sample ID : 1201163-07 Energy Slope : 9,99940E-01
Sample Type: SOLID Energy Quad : 0.00000E+00 Live Time : 0 01:00:00.00 Sample Type: SOLID

Channel

								_
1:	0	0	0	0	0	0	0	0
9:	212	1458	1604	1625	2074	1586	1744	2436
17:	2054	1566	1671	1516	1282	1359	1298	1312
25:	1351	1488	1380	1386	1203	1259	1325	1508
33:	1360	1271	1384	1404	1442	1359	1390	1495
41:	1462	1595	1689	1772	1783	2782	5283	1889
49:	1889	2286	2238	2111	2946	3050	2272	2346
57:	2391	2647	2773	3027	3101	3264	6483	8169
65:	3121	3060	3262	3952	3275	3336	3478	3440
73:	3540	4231	10733	5594	13167	10220	3339	3709
81:	3648	3313	2881	5122	3555	2634	5122	5446
89:	2765	4019	2821	4643	11293	3860	3079	2195
97:	1882	2249	2460	1829	1746	1710	1791	1669
105:	1763	1785	1669	1677	1921	1890	1943	1944
113:	2300	1982	1803	1743	1744	1669	1665	1633
121:	1727	1659	1730	1616	1627	1652	1712	1658
129:	1666	1750	1714	1711	1637	1626	1693	1671
137:	1747	1700	1739	1668	1682	1680	1767	2779
145:	2081	1610	1708	1659	1691	1785	1758	1692
153:	1703	2001	2046	1690	1613	1631	1607	1533
161:	1562	1595	1734	1829	1463	1490	1483	1457
169:	1509	1453	1450	1469	1375	1348	1396	1410
177:	1462	1311	1362	1425	1466	1406	1461	1424
185:	2029	8367	5943	1443	1360	1340	1224	1297
193:	1248	1244	1297	1318	1268	1217	1244	1202
201:	1221	1217	1249	1225	1239	1423	1098	1072
209:	1162	1091	1125	1046	972	1002	998	1014
217:	1040	968	967	975	988	973	994	898
225:	905	994	969	928	934	973	896	945
233:	991	887	975	1410	1209	995	1437	995
241:	1183	5501	4002	828	823	839	757	849
249:	724	801	780	754	771	732	816	952
257:	961	778	1102	892	737	753	682	719
265:	679	662	736	680	861	1237	1017	1000
273:	704	799	885	735	623	685	645	653
281:	655	686	632	724	644	702	670	644
289:	648	631	673	643	697	886	7759	10459
297:	1163	649	687	718	716	539	621	565
305:	588	531	554	537	509	510	503	525
313:	528	532	569	553	553	488	496	500
321:	490	540	518	644	565	483	460	511
329:	501	648	527	491	509	541	533	470
337:	479	577	608	493	503	522	516	497
345:	508	480	486	447	551	566	2477	18353
353:	10540	757	542	522	438	439	402	389
361:	380	397	411	397	379	357	378	363
369:	375	427	380	396	398	389	419	349
377:	387	382	413	383	424	399	391	399
385:	404	436	480	433	568	483	381	382
393:	405	380	396	436	388	367	426	375
401:	451	577	498	402	511	526	426	407
409:	396	405	411	390	396	429	440	396
417:	412	408	383	384	412	380	407	387
425:	383	388	420	436	350	377	343	348
		-		, -	-	- · ·	-	

433:	299	325	301	343	287	273	312	309
			303	305	302	323	321	305
441:	308	299					385	313
449:	259	295	307	296	283	337		
457:	268	290	291	278	289	346	302	291
465:	247	249	264	253	269	295	288	230
473:	254	250	283	241	256	277	286	283
481:	385	269	259	250	256	230	347	331
489:	240	219	222	244	227	234	212	233
497:	213	202	225	202	215	216	210	230
505:	188	230	207	227	274	308	360	315
513:	238	228	199	214	213	184	225	204
							204	203
521:	207	206	192	222	203	219		
529:	193	197	212	208	204	262	226	210
537:	220	209	222	176	198	199	201	225
545:	187	197	193	181	184	191	199	198
553:	182	167	191	201	204	187	202	179
561:	217	208	178	181	188	186	173	190
569:	213	211	172	188	228	208	175	196
577:	184	194	179	245	287	214	274	296
585:	185	177	187	161	179	181	190	230
593:	170	172	172	166	179	193	185	202
	171					175	177	708
601:		172	175	209	184			
609:	7401	11892	2028	226	232	220	177	163
617:	168	156	140	132	144	137	134	154
625:	123	131	123	142	129	136	148	131
633:	149	113	149	151	137	157	137	159
641:	146	147	116	135	149	142	117	132
649:	125	144	141	120	121	119	143	124
657:	161	160	125	113	131	172	162	143
665:	291	504	213	142	139	129	124	126
673:	137	116	121	138	121	138	101	152
681:	129	130	135	163	136	121	137	133
	130							116
689:		133	132	129	111	134	131	
697:	122	107	130	128	144	142	208	244
705:	161	132	124	145	133	132	124	130
713:	131	112	122	122	123	120	138	185
721:	145	143	117	138	127	124	154	153
729:	125	123	113	109	128	130	127	118
737:	119	144	127	138	134	175	212	179
745:	144	135	112	123	113	119	108	112
753:	130	132	113	130	112	128	108	113
761:	129	120	120	134	126	216	282	739
769:	1054	372	135	105	101	119	121	136
777:	120	110	125	119	111	119	134	116
785:	173	361	261	121	139	122	106	101
793:	122	115	125	116	134	116	132	114
801:	135	134	134	104	136	302	296	158
809:	112	112	132	117	103	120	110	114
817:	127	114	119	119	142	162	117	131
825:	107	141	152	129	115	122	116	151
833:	154	109	122	140	99	153	248	191
841:	124	122	117	119	106	113	126	128
849:	125	122	127	112	132	115	110	108
857:	134	115	120	117	150	112	104	110
865:	118	115	93	128	117	118	114	116
873:	104	133	104	128	127	127	106	114
881:	120							
		124	135	130	128	136	110	132
889:	130	124	122	124	131	132	117	135
897:	132	128	131	135	106	127	138	120
905:	123	122	129	118	115	130	172	161

013.	110	105	7.00	114	126	104	115	115
913:	118	125	109	114	136		87	100
921:	104	110	122	93	124	114		179
929:	108	104	112	126	191	578	506	
937:	117	88	121	94	77	101	116	93
945:	107	130	104	99	92	114	85	122
953:	104	92	103	122	92	94	86	94
961:	107	115	115	124	146	103	86	128
969:	144	124	94	108	81	94	82	99
977:	86	94	108	89	101	104	85	85
985:	68	88	88	97	87	96	98	101
993:	101	98	92	113	106	110	95	133
1001:	306	280	117	78	86	91	79	95
1009:	94	200 97	102	93	99	77	92	87
1017:	87	98	74	93 87	101	86	73	92
						91	75 89	92
1025:	88	92	82	88	91			
1033:	101	93	80	97 	91	76	78	76
1041:	97	86	63	76	92	88	91	87
1049:	87	76	84	126	115	80	74	75
1057:	81	80	83	70	62	72	71	76
1065:	77	76	75	90	96	89	96	86
1073:	75	82	85	74	70	82	84	71
1081:	69	72	79	83	71	80	58	76
1089:	56	72	77	56	62	92	91	71
1097:	79	81	67	74	67	61	86	86
1105:	93	97	81	70	82	86	85	64
1113:	73	63	76	87	87	94	309	1533
1121:	2098	589	114	96	83	95	70	66
1129:	74	74	71	72	90	107	88	67
1137:	68	7 4 76	63		77	76	83	76
	92			66			78	75
1145:		56	50	86	76	78 76		
1153:	80	106	275	246	110	76	87	66
1161:	69	69	62	72	71	57 .	82	75
1169:	71	68	64	77	83	65	78	69
1177:	51	57	81	75	86	82	93	69
1185:	65	68	80	58	61	63	67	67
1193:	64	77	68	66	83	74	61	71
1201:	45	58	66	64	56	58	88	120
1209:	100	59	64	73	67	58	69	72
1217:	52	59	63	93	66	39	71	64
1225:	64	54	58	61	71	69	71	68
1233:	51	52	58	69	189	660	666	225
1241:	76	64	70	48	71	51	76	65
1249:	40	46	51	60	82	91	80	63
1257:	67	64	63	44	55	5 - 5 9	55	54
1265:	60	57	54	61	38	58	45	63
1273:	50	55	62	68	54	63	68	112
1281:	222	179	80	67	73	7 4	48	64
1289:	60	50				7 4 50	43	57
1207:	50		44	63	72			
		53	43	60	50	52	59	59
1305:	68	62	55	46	60	51	55	54
1313:	49	47	55	50	69	54	56	61
1321:	57	47	58	51	55	62	64	56
1329:	44	63	56	48	60	55	52	61
1337:	56	44	44	64	52	55	57	59
1345:	61	66	35	46	44	46	59	50
1353:	59	49	53	46	63	49	65	55
1361:	55	59	53	50	33	48	54	41
1369:	53	47	42	59	62	58	59	84
1377:	284	567	355	81	41	41	42	63
1385:	116	151	90	56	48	54	40	53
				_				

1393:	46	58	45	52	40	50	49	78
1401:	132	224	126	50	51	57	131	294
1409:	261	104	57	61	63	56	52	47
1417:	57	49	51	66	41	47	50	64
1425:	71	66	56	53	49	52	45	64
							45	51
1433:	48	47	47	53	54	42		
1441:	52	56	50	51	48	60	48	51
1449:	43	37	59	43	53	37	48	51
1457:	48	55	56	162	311	241	79	55
1465:	46	51	43	43	58	36	51	52
1473:	52	41	48	63	53	48	59	61
1481:	48	44	47	45	48	56	53	52
1489:	37	55	51	54	47	60	70	45
1497:	46	55	56	56	79	41	51	43
1505:	45	53	41	103	207	266	136	51
1513:	52	47	49	66	57	63	48	55
1521:	48	42	49	45	57	66	56	36
1529:	50	51	42	61	51	73	46	56
1537:	47	86	79	79	38	52	85	79
1545:	60	47	39	41	40	36	34	33
1553:	40	39	43	32	50	46	32	28
1561:	47	45	43	36	41	29	38	33
1569:	42	34	33	34	40	37	42	37
1577:	33	34	30	34	28	5 <i>2</i>	88	91
1585:	57	39	32	49	45	34	33	51
1593:	41	39	5 <u>4</u>	49	31	37	56	68
1601:	34	40	25	37	36	39	30	48
1609:	32	35	34	3 <i>7</i> 35	24	29	33	37
1617:	42	31			21	31	25	29
1625:	16		35	26			31	26
1633:	21	26	38	32	20	25	32	
1641:		19	21	24	20	32		22
	23	20	20	23	28	20	21	20
1649:	28	16	26	17	17	23	21	25
1657:	32	25	26	39	100	114	70	32
1665:	11	29	19	20	19	16	12	18
1673:	17	19	17	16	27	23	14	23
1681:	25	20	25	26	30	24	13	15
1689:	24	18	21	30	28	32	28	13
1697:	23	17	9	16	15	24	16	17
1705:	13	20	21	13	18	14	17	14
1713:	13	12	19	14	19	18	17	15
1721:	11	11	19	12	16	19	20	53
1729:	178	315	205	54	26	9	13	14
1737:	16	20	19	20	19	9	22	14
1745:	19	13	19	12	22	21	13	11
1753:	12	15	18	19	18	19	24	14
1761:	19	36	217	836	1419	794	173	30
1769:	18	22	9	15	12	14	10	17
1777:	11	20	13	19	14	17	13	20
1785:	8	17	13 8 13	15	10	12	14	14
1793:	12	9	13	14	12	11	9	9
1801:	19	9	14	10	9	7	13	11
1809:	13	8	9	15	12	15	8	13
1817:	13	12	12	10	11	15	16	11
1825:	10	9	10	12	5	9	13	14
1833:	18	15	16	24	19	25	44	25
1841:	17	9	10	11	23	46	143	207
1849:	105	33	12	11	12	11	10	13
1857:	15	14	11	10	18	17	18	13
1865:	13	12	13	12	13	12	14	16
		=				— 		

1873: 23 45 17 26 8 12 10 1881: 12 7 14 10 17 9 14 1889: 13 24 28 17 13 12 13 1897: 21 16 11 14 13 10 11 1905: 10 12 8 16 7 8 6 1913: 14 14 12 13 14 9 11 1921: 10 20 14 15 8 12 17 1929: 7 6 18 18 11 8 20 1937: 21 14 12 20 8 18 12 17 1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969:	24 10 25 10 14 15 19 23 8 11 13 9 7 10 9 11 9
1889: 13 24 28 17 13 12 13 1897: 21 16 11 14 13 10 11 1905: 10 12 8 16 7 8 6 1913: 14 14 12 13 14 9 11 1921: 10 20 14 15 8 12 17 1929: 7 6 18 18 11 8 20 1937: 21 14 12 20 8 18 12 1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	25 10 14 15 19 23 8 11 13 9 7 10 9 11 9 7
1897: 21 16 11 14 13 10 11 1905: 10 12 8 16 7 8 6 1913: 14 14 12 13 14 9 11 1921: 10 20 14 15 8 12 17 1929: 7 6 18 18 11 8 20 1937: 21 14 12 20 8 18 12 1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	10 14 15 19 23 8 11 13 9 7 10 9 11 9 7
1905: 10 12 8 16 7 8 6 1913: 14 14 12 13 14 9 11 1921: 10 20 14 15 8 12 17 1929: 7 6 18 18 11 8 20 1937: 21 14 12 20 8 18 12 1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	14 15 19 23 8 11 13 9 7 10 9 11 9 7
1913: 14 14 12 13 14 9 11 1921: 10 20 14 15 8 12 17 1929: 7 6 18 18 11 8 20 1937: 21 14 12 20 8 18 12 1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	15 19 23 8 11 13 9 7 10 9 11 9 7
1921: 10 20 14 15 8 12 17 1929: 7 6 18 18 11 8 20 1937: 21 14 12 20 8 18 12 1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	19 23 8 11 13 9 7 10 9 11 9 7
1929: 7 6 18 18 11 8 20 1937: 21 14 12 20 8 18 12 1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	23 8 11 13 9 7 10 9 11 9 7
1945: 14 14 10 15 13 12 16 1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	11 13 9 7 10 9 11 9 9 7
1953: 18 24 11 14 9 14 14 1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	13 9 7 10 9 11 9 7
1961: 15 10 9 7 10 14 10 1969: 21 10 14 10 14 8 6	9 7 10 9 11 9 7
1969: 21 10 14 10 14 8 6	7 10 9 11 9 7 7
	10 9 11 9 9 7 7
	9 11 9 9 7 7
1985: 6 11 14 8 18 9 11	9 9 7 7
1993: 11 12 11 8 3 5 10	9 7 7
2001: 8 11 6 11 7 7 11 2009: 10 8 13 14 15 5 9	7 7
2009: 10 8 13 14 15 5 9 2017: 12 12 13 8 12 7 12	7
2025: 8 9 9 10 11 7	
2033: 10 9 4 7 3 7 6	4
2041: 8 9 8 5 7 8 5	8 6
2049: 3 9 8 9 11 12 7 2057: 6 12 10 6 5 1 7	6
2057: 6 12 10 6 5 1 7 2065: 3 7 9 7 6 6 9	6
2073: 6 10 7 4 6 6 9	10 1
2081: 6 5 5 8 4 8 6	7
2089: 6 8 8 6 5 9 4	8
2097: 5 9 6 4 3 7 6 2105: 8 8 7 5 8 7 15	11
, , , , , , , , , , , , , , , , , , , ,	8
	68 4
-	4 6
2137: 4 3 1 7 3 2 5	6 2
	3
2153: 3 3 5 4 7 4 4 2161: 3 5 4 5 7 2 4	9
2160	7
2169: 4 4 4 5 1 3 4 2177: 9 4 10 9 2 7 2	4
2185: 4 5 7 4 4 3 4	5 6
2193: 8 8 12 4 7 5 7	5 7
2201: 9 25 119 261 334 135 34 2209: 10 7 3 4 3 5 5	
	3 3
	3 6
2233: 3 3 4 1 3 1 1	4
2241: 3 4 3 0 1 2 2	3
2249: 3 2 4 4 3 2 3 2257: 2 3 4 1 0 5 4	3 2
2257: 2 3 4 1 0 5 4 2265: 2 6 4 3 3 5 5	2
2265: 2 6 4 3 3 5 5 2273: 2 5 3 1 1 6 4	4 6
2281: 5 3 1 7 3 1 2	2
2289: 3 3 1 8 20 25 9	3
2297: 1 1 3 3 0 1 4 2305: 0 4 3 3 1 2 2	2
2305: 0 4 3 3 1 2 2 2313: 4 3 3 5 2 1 4	1
2313: 4 3 3 5 2 1 4 2321: 2 2 1 5 2 3 2	4 2
2321: 2 2 1 5 2 3 2 2329: 0 4 2 3 3 2 1	3
2337: 2 3 0 4 0 2 4	2
2345: 0 1 0 3 1 6 2	2

2353:	1	2	1	0	1	2	3	0
2361:	2	1	2	1	1	2	3	1
2369:	3	3	2	2	4	1	7	0
2377:	3	0	1	0	2	3	1	1
2385:	3	3	1	1	1	3	0	3
2393:	0	1	0	0	1	1	2	0
2401:	2	1	2	2	2	0	0	2
2409:	2	0	2	2	1	1	0	1
2417:	1	2	0	0	1	5	0	1
2425:	0	3	1	1	0	1	1	4
2433:	1	0	0	3	3	1	1	0
2441:	0	0	1	3	6	12	45	91
2449:	72	17	2	1	1	1	1	2
2457:	1	0	1	2	0	1	0	0
2465:	1	3	2	1	1	1	1	0
2473:	1	1	1	2	0	0	1	0
2481:	0	0	3	0	1	1	0	0
2489:	2	1	1	1	1	0	1	0
2497: 2505:	0 1	0	0	2	0	0 1	0 0	0
2505: 2513:	4	3 0	0 0	1 0	0 0	1	2	1
2521:	2	1	3	0	0	2	0	1
2529:	0	i	1	1	1	1	ŏ	0
2537:	ő	ī	Ō	1	Ō	3	ŏ	Ö
2545:	Ō	ĩ	2	1	ĺ	ī	Ö	1
2553:	0	0	0	1	Ō	0	1	0
2561:	0	0	1	1	0	0	0	1
2569:	0	1	0	0	0	1	0	0
2577:	0	0	0	1	4	1	0	1
2585:	0	0	0	2	0	0	0	0
2593:	0	0	1	1	2	0	1	2
2601:	0	1	2	0	1	2	1	0
2609:	0	1	0	2	6	11	24	24
2617:	9	2	1	0	1	0	0	0
2625:	0	0	0	0	0	0	2	1
2633: 2641:	0	0	0	0	0	0	0	, T
2649:	2 0	0	0 0	0	0 2	0 0	1 2	0 0
2657:	1	0 1	0	0 1	0	0	0	0
2665:	1	0	0	0	0	1	1	0
2673:	Ō	Ö	Ö	Ö	0	Ō	Ō	2
2681:	1	Ö	Ö	ĺ	ĺ	Ö	Ö	Õ
2689:	1	ĺ	Ö	ī	Ō	1	1	1
2697:	1	2	0	1	1	0	0	0
2705:	0	0	0	0	0	0	3	0
2713:	1	0	0	0	0	1	0	1
2721:	0	0	0	1	1	0	1	0
2729:	2	0	1	0	0	0	0	1
2737:	0	0	0	1	0	0	0	0
2745:	1	1	1	1	0	0	0	1
2753:	2	1	1	0	1	0	2	0
2761: 2769:	1 0	T	0	1	0	0	0	0
27 09: 2777:	0	1 2 1	3 0	1 0	0	0 0	1 1	0
2777:	0	0	0	0	0 0	0	0	1 0
2793:	0	0	0	0	0	1	0	0
2801:	ĭ	Ö	0	0	0	Ō	ĭ	0
2809:	0	Ö	Ö	ő	Ö	ő	ī	Ö
2817:	0	Ö	1	ĺ	Ö	Ō	ō	Ö
2825:	0	1	1	1	1	0	0	0

							_	_
2833:	1	0	0	1	0	1 2	0 0	1 0
2841: 2849:	1 0	0 0	0 0	1 0	0 0	1	0	0
2857:	Ö	0	Ö	Ö	ő	0	Ö	Ö
2865:	Ö	2	1	Ö	Ö	Ö	1	0
2873:	Õ	Õ	0	Ö	Ö	ĺ	0	0
2881:	ĺ	Ö	Ö	ĺ	Ö	1	0	0
2889:	1	Ö	1	Ō	0	0	1	0
2897:	0	0	0	0	0	0	0	1
2905:	0	0	1	1	0	1	0	1
2913:	0	0	0	0	0	0	2	1
2921:	0	2	1	1	1	0	0	0
2929:	0	0	0	1	0	0	0 0	0
2937: 2945:	1 0	0	0	0	0 1	0	0	0 0
2945: 2953:	0	1 0	0 1	0 0	0	0	0	0
2961:	0	0	0	0	0	Ö	Ö	0
2969:	ĭ	Ö	ő	Ö	Ö	ĺ	Ö	0
2977:	0	Ö	ĺ	ĺ	Ō	0	0	0
2985:	0	. 0	0	0	0	0	0	0
2993:	0	0	0	0	0	0	1	0
3001:	1	0	0	0	0	0	0	0
3009:	0	1	0	0	0	0	0	0
3017:	0	0	0	0	0	0	0	0
3025: 3033:	0 0	0 0	0 0	0	0	1 0	0	1 0
3041:	0	0	0	0 0	1 0	0	0	0
3049:	Ö	1	0	0	Ö	ĺ	Ö	2
3057:	1	Ō	Ö	ő	Ö	_ 1	Ō	1
3065:	1	0	0	0	0	1	0	0
3073:	1	0	1	0	2	0	0	0
3081:	0	0	0	1	1	0	0	0
3089:	0	0	0	0	0	1	0	0
3097:	0	0	0	0	1	0	0	0
3105: 3113:	0 0	2	0	0	1	0	0	0
3121:	0	0	0 0	0	0	0	0	0
3129:	ĭ	ő	Ö	0	Ö	ő	ŏ	Ö
3137:	1	Ŏ	ŏ	ő	Ö	Ö	1	Ō
3145:	0	0	0	1	0	1	0	0
3153:	1	0	0	. 0	1	0	0	Ó
3161:	1	0	0	0	1	0	0	0
3169:	1	0	0	0	0	0	0	0
3177: 3185:	1 0	0	0	2	0	0	0	1
3183:	1	0 0	0 0	0 0	0 0	1 4	0 0	0 1
3201:	0	0	0	0	0	0	0	0
3209:	ŏ	ŏ	ő	ő	Ö	ŏ	ő	ĺ
3217:	0	0	1	Ō	Ō	Ö	0	1
3225:	0	0	0	0	0	1	1	1
3233:	1	0	0	1	0	0	0	0
3241:	0	0	0	0	0	0	0	1
3249: 3257:	0 0	1	0	0	0	0	1	0
3257: 3265:	0	0 0	0 0	0 0	0 0	0 0	1 1	0 0
3273:	2	0	0	0	0	0	0	0
3281:	Õ	ő	Ö	Ö	Ö	Ö	ő	0
3289:	0	0	1	Ö	Ö	Ö	1	Ö
3297:	0	0	0	0	0	0	0	1
3305:	0	0	0	0	2	1	0	0

3313: 3321: 3329: 3337: 3345: 3353: 3361: 3369: 3377: 3385: 3393: 3401: 3409: 3417: 3425: 3433: 3441: 3449: 3457: 3465: 3473: 3481:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100000000000000000000000000000000000000	101000000100000100000
3433: 3441: 3449: 3457: 3465: 3473:	0 0 0 1 0	0 0 0 1 0	0 0 0 0 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 1 0 0 0

3793:	0	0	0	0	1	0	0	0
3801:	0	0	0	0	0	0	0	0
3809:	0	0	0	0	0	0	0	0
3817:	0	0	0	0	0	0	0	1
3825:	0	0	0	0	0	0	0	1
3833:	0	0	0	0	0	0	1	0
3841:	0	0	0	1	1	0	0	0
3849:	0	0	0	0	0	0	0	0
3857:	0	0	0	0	0	0	0	0
3865:	0	0	0	0	0	0	0	0
3873:	0	0	0	0	0	0	0	0
3881:	0	0	0	0	0	0	1	0
3889:	0	0	1	1	0	0	0	1
3897:	1	0	0	0	0	0	0	1
3905:	0	0	0	0	0	0	0	0
3913:	0	0	0	0	0	0	0	0
3921:	0	0	0	0	1	0	0	1
3929:	0	0	0	0	0	1	0	0
3937:	0	0	0	Ō	0	0	0	0
3945:	0	0	0	Ō	0	0	0	0
3953:	0	0	1	0	1	Ö	0	Ö
3961:	0	0	1	Ō	0	1	Ō	0
3969:	0	0	0	Ō	Ō	0	0	1
3977:	0	0	Ö	Ö	Ō	Ö	0	0
3985:	0	Ō	Ö	Ö	Ö	Ö	Ö	Ö
3993:	0	0	Ö	Ö	Ō	Ō	Ö	Ö
4001:	0	Ō	Ö	Ö	Ö	Ö	Ö	Ŏ
4009:	1	Ō	Ö	Ö	Ö	Ö	Ŏ	Ö
4017:	0	0	Ö	Ö	Ö	Ö	Ö	Ö
4025:	Ō	Ö	Ö	Ö	ő	í	ő	Ö
4033:	Ö	Ö	Ö	ŏ	Ö	Õ	Ö	Ö
4041:	Ö	Ö	ĺ	ő	Ö	ő	Ö	1
4049:	Ō	Ö	Ō	Ö	ő	ő	Ö	Ō
4057:	ĺ	Ö	Ö	ŏ	Ö	ő	Ö	1
4065:	ī	Ö	Ö	ő	Ö	ő	ő	0
4073:	ō	Ö	ĺ	Ö	Ö	Ö	ő	0
4081:	Ö	Ö	Ō	Ö	Ö	Ö	0	0
4089:	Ö	Ö	Ö	Ö	Ö	Ö	1	0
	•	•	U	U	0	J	_	J

Page: 1

Sample ID : 1201163-08 Acquisition date : 22-FEB-2012 12:09:49

VAX/VMS Peak Search Report Generated 22-FEB-2012 13:10:50.08

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116308_GE2_GAS1102_176253.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{\text{V2.2}}$ Client ID : JM-65-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 12:09:49

Sample ID : 1201163-08 Sample Quantity : 4.42260E+02 gram Sample Geometry : 0

Sample 1D : 120116
Sample type : SOLID
Detector name : GE2

Detector Geometry: GAS-1102

Elapsed live time: 0 01:00:00.00 Elapsed real time: 0 01:00:45.74 1.3%

Start channel : 5 Sensitivity : 2.40000 End channel : 4096 Gaussian : 15.00000

Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
0	26.80	825	14540	2.99	26.74	25	5	44.5		TH-231
0	32.03	1313	14546	1.42	31.98	30		28.1		
0	46.19*	6676	27865	1.58	46.13	44	5	7.4		PB-210
0	53.64*	3060	25587	1.31	53.59	51	5	16.1		
0	63.30*	12013	35472	1.59	63.26	61	5	5.0		TH-234
1	68.17	2253	14997	1.44	68.13	67	16	13.7	4.07E+03	
1	75.17*		28438	1.45	75.13	67	16	1.6		AM-243
4	84.04	5029	20500	1.06	84.00	82	15	7.6	1.90E+03	TH-231
4	87.40	15558	23378	1.20	87.36	82	15	3.2		NP-237
										SN-126
										CD-109
4	90.03	6296	21553	1.35	90.00	82		7.5		
0	98.02	1498	23851	1.80	97.99	97		33.1		
0	112.71	1198	19951	1.31	112.68	111		35.9		
0	143.88*	2670	29083	1.26	143.87	141		21.5		U-235
0	154.34	1551	25084	1.49	154.33	152		32.7		
0	163.29*	569	18510	1.70	163.28	162		72.4		U-235
0	186.06*	25700	27362	1.38	186.06	182	8			RA-226
0	196.41	570	15458	1.48	196.41	195		66.0		
0	205.37	618	16770	1.64	205.38	203		67.0		U-235
1	235.98	2399	11119	1.55	236.00	231			6.33E+00	NB-95M
1	241.94*	26852	8307	1.39	241.97	231	16			RA-224
1	256.13*	1247	9249	1.72	256.16	253			8.87E+00	
1	258.93	2075	9148	1.72	258.96	253		14.8		
6	269.83	3783	14081	2.79	269.86	264			1.68E+01	
6	274.49	1267	8684	1.63	274.53	264		23.1		
0	285.40	574	10015	3.28	285.44	283		55.9		
0	295.13*	58613	12769	1.42	295.18	291		1.1	V.	PB-214
0	299.67	291	6115	0.95	299.71	299		76.9		
0 0	304.11	293	7020	2.06	304.16	303		87.0		
	314.08	397	7956	1.95	314.12	312		71.9		
0	323.62	548	7816	1.38	323.67	322		51.7		RA-223
0	329.39 338.15*	393	6668	1.34	329.44	328		63.1		
0 0	338.15* 351.78*	273	5334	1.37	338.21	337		76.8		
0	351.78*	101347	11920	1.45	351.84	347		0.7		PB-214
J	3/1.33	238	5143	2.76	371.62	370	5	91.2		

Page :

2

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
3	1384.61	794	974	2.38	1385.07	1372	18 14.8		
0	1392.24	116	990		1392.69	1390	7 91.4		
0	1400.50	930	1553	2.10	1400.95	1397	9 16.6		
0	1407.42	2182	1133	2.28	1407.88	1405	8 6.8		
0	1424.62	113	1032	1.57	1425.08	1422	7 96.2	3	
0	1460.23*				1460.71				K-40
0	1508.50	1834			1509.00				
3	1537.51				1538.02			3.43E+00	
3	1542.92				1543.43				
0	1582.56				1583.08		9 24.0		
3	1593.85	214	852		1594.38	1590		8.55E-01	
3	1598.61		746		1599.14				
0	1648.32	43	290		1648.87		5122.6		
0	1660.78	943	703	2.60	1661.34	1656		1 000 00	
1	1682.84 1692.32		363	2.39	1683.40	1680		1.23E+00	
1 0	1728.79	276 2784	503	3.39	1692.89	1680			
4	1758.37	2/0 4 65	536	2.58	1729.37 1758.96	1722 1757		1 425.00	
4	1763.68*	65 12667 63	190 334	2.50	1764.28	1757 1757	15 /2.3	1.43E+00	BI-214
0	1780.31	12007	229	2.54	1780.91	1770	7 84.6		D1-214
1	1837.20	244	291		1837.82			1.99E+00	
1	1846.58	244 1722 193 220	268		1847.20		22 5.9	1.5555	
ō	1872.46	193	394		1873.09		11 42.4		
Ö	1894.28	220	706		1894.92				
0	1935.37	172	412		1936.02				
0	1961.49	87	415		1962.16		13 98.3		
0	1994.32	49	243		1995.00		9118.2		
0	2008.76	92	217		2009.45		9 61.1		
0	2016.04	70	189		2016.73		7 69.2		
0	2099.78	22	51		2100.50				
3	2108.69	59	118		2109.41			9.99E-01	
3	2117.42*		97	2.87	2118.15	2104	20 7.9		
0	2168.12	26	56	2.11	2168.86	2166	6102.0		
0	2174.88	35	46	3.46	2175.63	2173	6 69.5		
0	2187.40	120			2188.15	2179	19 53.4		
0	2202.94	3336	178		2203.69	2198	14 3.8		BI-214
0	2292.42	246	75		2293.21	2287	14 19.8		
0	2446.42	1011	43		2447.27	2439	15 6.9		
0	2613.44*	51	5		2614.35	2609	11 35.3		
0	2692.24	14	2		2693.18	2689	8 63.6		
0	2698.48	7	0		2699.43	2697	6 75.6		
0	2716.30	9	2		2717.25	2712	10 96.2		
0 0	2729.51 2768.18	10	6		2730.47	2725	10120.2		
0	2977.15	20 10	0		2769.15	2764	10 44.7		
0	3052.09	18	0		2978.20	2974	8 63.2		
0	3080.06	7	0		3053.17 3081.14	3048 3077	11 47.1 7 75.6		
•	5000.00	,	J	2.10	2001.14	3011	1 13.6		

Summary of Nuclide Activity

Page: 4

Sample ID : 1201163-08 Acquisition date : 22-FEB-2012 12:09:49

Total number of lines in spectrum 132
Number of unidentified lines 81
Number of lines tentatively identified by NID 51 38.64%

Nuclide Type : NATURAL

	71	- 	Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.896E+01	2.896E+01	0.668E+01	23.07
PB-210	22.26Y	1.00	1.210E+02	1.212E+02	0.144E+02	11.86
PB-211	3.28E+04Y	1.00	3.232E+01	3.232E+01	0.897E+01	27.76
BI-214	1602.00Y	1.00	3.172E+02	3.172E+02	0.165E+02	5.19
PB-214	1602.00Y	1.00	3.319E+02	3.319E+02	0.222E+02	6.70
RN-219	3.28E+04Y	1.00	1.999E+01	1.999E+01	0.582E+01	29.10
RA-223	3.28E+04Y	1.00	1.630E+01	1.630E+01	0.857E+01	52.55
RA-224	1.41E+10Y	1.00	6.391E+02	6.391E+02	0.593E+02	9.28
RA-226	1602.00Y	1.00	6.336E+02	6.336E+02	11.61E+02	183.17
PA-234M	4.47E+09Y	1.00	2.509E+02	2.509E+02	0.567E+02	22.62
TH-234	4.47E+09Y	1.00	2.133E+02	2.133E+02	0.225E+02	10.53
U-235	7.04E+08Y	1.00	1.422E+01	1.422E+01	0.363E+01	25.53
	Total Acti	ivity :	2.619E+03	2.619E+03		

Nuclide Type : ACTIVATION

	-7F		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide NB-95M AM-243	Hlife 3.61D 7380.00Y	134.	pCi/gram 8.895E+00 3.736E+01	pCi/gram 1.196E+03 3.736E+01	2-Sigma Error 0.197E+03 0.440E+01	_	Flags

Total Activity: 4.625E+01 1.234E+03

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
CD-109	464.00D	1.04	2.712E+02	2.818E+02	0.458E+02	16.26
SN-126	1.00E+05Y	1.00	2.726E+01	2.726E+01	0.410E+01	15.03
TH-231	7.04E+08Y	1.00	7.592E+00	7.592E+00	3.568E+00	47.00
NP-237	2.14E+06Y	1.00	8.005E+01	8.005E+01	1.183E+01	14.78

Total Activity: 3.861E+02 3.967E+02

Grand Total Activity: 3.051E+03 4.249E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Nuclide Line Activity Report
Sample ID: 1201163-08

Acquisition date: 22-FEB-2012 12:09:49

Nuclide Type: NATURAL Uncorrected Decay Corr 2-Sigma
Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status K-40 1460.81 10.67* 4.582E-01 2.896E+01 2.896E+01 23.07 OK Final Mean for 1 Valid Peaks = 2.896E+01+/-6.681E+00 (23.07%) PB-210 46.50 4.25* 2.204E+00 1.210E+02 1.212E+02 11.86 OK Final Mean for 1 Valid Peaks = 1.212E+02+/-1.437E+01 (11.86%) 404.84 2.90* 1.241E+00 4.250E+01 4.250E+01 31.04 831.96 2.90 6.924E-01 2.355E+01 2.355E+01 51.95 PB-211 OK OK Final Mean for 2 Valid Peaks = 3.232E+01+/-8.971E+00 (27.76%) BI-214 609.31 46.30* 8.915E-01 3.046E+02 3.046E+02 9.86 OK 1120.29 15.10 5.508E-01 3.217E+02 3.217E+02 10.30 OK 3.333E+02 3.333E+02 10.21 1764.49 15.80 4.084E-01 OK 2204.22 4.98 3.644E-01 3.120E+02 3.121E+02 11.25 OK Final Mean for 4 Valid Peaks = 3.172E+02+/-1.645E+01 (5.19%) PB-214 295.21 19.19 1.574E+00 3.295E+02 3.295E+02 9.31 OK 351.92 37.19* 1.383E+00 3.345E+02 3.345E+02 9.66 OK Final Mean for 2 Valid Peaks = 3.319E+02+/-2.225E+01 (6.70%) RN-219 401.80 6.50* 1.248E+00 1.999E+01 1.999E+01 29.10 OK Final Mean for 1 Valid Peaks = 1.999E+01+/-5.818E+00 (29.10%) RA-223 323.87 3.88* 1.472E+00 1.630E+01 1.630E+01 52.55 OK Final Mean for 1 Valid Peaks = 1.630E+01+/-8.566E+00 (52.55%) RA-224 240.98 3.95* 1.806E+00 6.391E+02 6.391E+02 9.28 Final Mean for 1 Valid Peaks = 6.391E+02+/-5.931E+01 (9.28%) RA-226 186.21 3.28* 2.099E+00 6.336E+02 6.336E+02 183.17 OK Final Mean for 1 Valid Peaks = 6.336E+02+/-1.161E+03 (183.17%) PA-234M 1001.03 0.92* 5.993E-01 2.509E+02 2.509E+02 22.62 OK Final Mean for 1 Valid Peaks = 2.509E+02+/-5.674E+01 (22.62%) 63.29 3.80* 2.516E+00 2.133E+02 2.133E+02 10.53 OK TH-234

Final Mean for 1 Valid Peaks = 2.133E+02+/-2.245E+01 (10.53%)

Nuclide Line Activity Report (continued) Page: 6
Sample ID: 1201163-08 Acquisition date: 22-FEB-2012 12:09:49

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma Nuclide %Eff Energy %Abn pCi/gram pCi/gram %Error Status 2.361E+00 1.828E+01 2.238E+00 9.181E+00 U-235 143.76 10.50* 1.828E+01 27.93 OK 163.35 4.70 9.181E+00 74.89 OK 205.31 4.70 1.990E+00 1.121E+01 1.121E+01 69.73 OK

Final Mean for 3 Valid Peaks = 1.422E+01+/-3.631E+00 (25.53%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status

NB-95M 235.69 25.00* 1.831E+00 8.895E+00 1.196E+03 16.44 OK

Final Mean for 1 Valid Peaks = 1.196E+03+/- 1.967E+02 (16.44%)

Final Mean for 1 Valid Peaks = 3.736E+01+/- 4.400E+00 (11.78%)

AM-243 74.67 66.00* 2.598E+00 3.736E+01 3.736E+01 11.78

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma %Abn %Eff Nuclide Energy pCi/gram pCi/gram %Error Status CD-109 3.72* 88.03 2.618E+00 2.712E+02 2.818E+02 16.26 Final Mean for 1 Valid Peaks = 2.818E+02+/-4.581E+01 (16.26%) SN-126 87.57 37.00* 2.618E+00 2.726E+01 2.726E+01 15.03 OK Final Mean for 1 Valid Peaks = 2.726E+01+/-4.099E+00 (15.03%) TH-231 25.64 14.70* 1.255E+00 7.592E+00 7.592E+00 47.00 84.21 6.40 2.618E+00 5.094E+01 5.094E+01 15.83 << WM N-Sigma Final Mean for 1 Valid Peaks = 7.592E+00+/-3.568E+00 (47.00%) NP-237 86.50 12.60* 2.619E+00 8.005E+01 8.005E+01 14.78 OK

Final Mean for 1 Valid Peaks = 8.005E+01+/-1.183E+01 (14.78%)

Flag: "*" = Keyline

OK

Page : 7
Acquisition date : 22-FEB-2012 12:09:49

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40	2.896E+01	6.681E+00	5.257E+00	5.390E-01	5.509
NB-95 M	1.196E+03	1.967E+02	2.344E+02	1.927E+01	5.104
CD-109	2.818E+02	4.581E+01	1.333E+01	2.056E+00	21.140
SN-126	2.726E+01	4.099E+00	1.289E+00	1.822E-01	21.147
PB-210	1.212E+02	1.437E+01	1.093E+01	9.162E-01	11.092
PB-211	3.232E+01	8.971E+00	1.647E+01	1.485E+00	1.963
BI-214	3.172E+02	1.645E+01	9.800E-01	8.795E-02	323.629
PB-214	3.319E+02	2.225E+01	1.174E+00	1.028E-01	282.607
RN-219	1.999E+01	5.818E+00	7.298E+00	6.570E-01	2.739
RA-223	1.630E+01	8.566E+00	1.125E+01	9.639E-01	1.450
RA-224	6.391E+02	5.931E+01	1.121E+01	9.223E-01	57.021
RA-226	6.336E+02	1.161E+03	1.419E+01	2.598E+01	44.663
TH-231	7.592E+00	3.568E+00	4.390E+00	6.466E-01	1.729
PA-234M	2.509E+02	5.674E+01	5.814E+01	5.338E+00	4.315
TH-234	2.133E+02	2.245E+01	1.351E+01	1.125E+00	15.790
U-235	1.422E+01	3.631E+00	4.272E+00	7.396E-01	3.329
NP-237	8.005E+01	1.183E+01	3.783E+00	5.243E-01	21.161
AM-243	3.736E+01	4.400E+00	7.666E-01	8.402E-02	48.729

Key-Line Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
5.214E+00		3.890E+00	6.054E+00	5.598E-01	0.861
		3.701E-01	5.468E-01	5.389E-02	0.495
		1.890E-01	3.202E-01	2.895E-02	-0.359
1.585E+00	+	2.706E-01	5.776E-01	5.415E-02	2.744
9.156E-02		4.191E-01	6.977E-01	6.255E-02	0.131
6.033E-01		9.815E-01	1.636E+00	1.497E-01	0.369
-2.725E-02		6.559E+00	8.280E+00	7.457E-01	-0.003
8.489E-01		3.803E-01	5.788E-01	5.196E-02	1.467
7.003E-02		4.272E-01	6.388E-01	5.736E-02	0.110
-7.090E-02		3.115E-01	5.074E-01	4.303E-02	-0.140
2.751E-02		4.304E-01	6.442E-01	5.787E-02	0.043
8.991E-01		1.179E+00	1.398E+00	1.388E-01	0.643
3.068E-01		3.764E-01	5.592E-01	5.186E-02	0.549
1.313E+01		1.651E+00	1.788E+00	1.661E-01	7.344
5.251E+03		1.845E+04	3.754E+02	1.319E+03	13.987
-7.098E-01		6.606E-01	8.264E-01	6.848E-02	-0.859
4.566E+00		6.083E+00	7.386E+00	6.592E-01	0.618
-1.063E-01		6.591E-01	1.123E+00	1.796E-01	-0.095
1.513E+02		6.565E+01	1.017E+02	9.420E+00	1.487
8.650E-01		3.754E-01	5.817E-01	5.386E-02	1.487
	+	3.545E-01	5.538E-01	4.944E-02	2.224
		9.933E+00	1.689E+01	5.085E+00	0.183
		3.246E-01	5.375E-01	4.825E-02	-0.142
		2.263E+00	1.557E+00	1.387E-01	14.024
-7.050E-03		9.350E-01	1.112E+00	1.084E-01	-0.006
	Activity (pCi/gram) 5.214E+00 2.705E-01 -1.150E-01 1.585E+00 9.156E-02 6.033E-01 -2.725E-02 8.489E-01 7.003E-02 -7.090E-02 2.751E-02 8.991E-01 3.068E-01 1.313E+01 5.251E+03 -7.098E-01 4.566E+00 -1.063E-01 1.513E+02	Activity K.L. (pCi/gram) Ided 5.214E+00 2.705E-01 -1.150E-01 1.585E+00 + 9.156E-02 6.033E-01 -2.725E-02 8.489E-01 7.003E-02 -7.090E-02 2.751E-02 8.991E-01 3.068E-01 1.313E+01 5.251E+03 -7.098E-01 4.566E+00 -1.063E-01 1.513E+02 8.650E-01 1.232E+00 + 3.095E+00 -7.617E-02 2.183E+01	Activity K.L. Act error (pCi/gram) Ided 5.214E+00	Activity K.L. Act error (pCi/gram) 5.214E+00	Activity (PCi/gram) K.L. Act error (PCi/gram) MDA (PCi/gram) 5.214E+00 3.890E+00 6.054E+00 5.598E-01 2.705E-01 3.701E-01 5.468E-01 5.389E-02 -1.150E-01 1.890E-01 3.202E-01 2.895E-02 1.585E+00 + 2.706E-01 5.776E-01 5.415E-02 9.156E-02 4.191E-01 6.977E-01 6.255E-02 6.033E-01 9.815E-01 1.636E+00 1.497E-01 -2.725E-02 6.559E+00 8.280E+00 7.457E-01 8.489E-01 3.803E-01 5.788E-01 5.196E-02 7.003E-02 4.272E-01 6.388E-01 5.736E-02 -7.090E-02 3.115E-01 5.074E-01 4.303E-02 2.751E-02 4.304E-01 6.442E-01 5.787E-02 8.991E-01 1.179E+00 1.398E+00 1.388E-01 3.068E-01 3.764E-01 5.592E-01 5.186E-02 1.313E+01 1.651E+00 1.788E+00 1.661E-01 5.251E+03 1.845E+04 3.754E+02 1.319E+03 -7.098E-01 6.606E-01 8.264E-01 6.848E-02 4.566E+00 6.083E+00 7.386E+00 6.592E-01 -1.063E-01 6.591E-01 1.123E+00 1.796E-01 1.513E+02 6.565E+01 1.017E+02 9.420E+00 8.650E-01 3.754E-01 5.386E-02 1.232E+00 + 3.545E-01 5.538E-01 4.944E-02 3.095E+00 9.933E+00 1.689E+01 5.085E+00 -7.617E-02 3.246E-01 5.375E-01 4.825E-02 2.183E+01 2.263E+00 1.557E+00 1.387E-01

Combined Activity-MDA Report (continued) Page: 8
Sample ID: 1201163-08 Acquisition date: 22-FEB-2012 12:09:49

	77 T					
	Key-Line	72 T	7	MDA	MDA arrow	7 at /MD7
Maria I da	-	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram)	Ided		(pCi/gram)		
RU-103	1 4155 01		4 3505 01	7 474D 01	1 0000 01	0 100
	1.415E-01		4.359E-01	7.474E-01	1.088E-01	0.189
RU-106	1.970E+00		3.582E+00	4.396E+00	5.953E-01	0.448
AG-108M	5.018E-01		3.356E-01	5.158E-01	4.548E-02	0.973
AG-110M	1.802E-01		3.550E-01	4.978E-01	4.307E-02	0.362
SN-113	-6.551E-02		5.353E-01	8.317E-01	7.656E-02	-0.079
TE123M	2.268E-01		4.851E-01	6.377E-01	5.130E-02	0.356
SB-124	1.829E-01		4.171E-01	6.389E-01	5.757E-02	0.286
I-125	-5.156E+00		6.327E+00	9.800E+00	1.005E+00	-0.526
SB-125	2.042E+00	+	1.242E+00	1.707E+00	1.584E-01	1.196
SB-126	9.010E+00	+	3.188E+00	3.879E+00	3.418E-01	2.323
SB-127	9.047E-02		8.318E+01	1.257E+02	1.094E+01	0.001
I-129	6.762E-01		6.919E-01	9.654E-01	1.183E-01	0.700
I-131	2.182E-02		2.872E+00	4.759E+00	4.201E-01	0.005
TE-132	4.327E+01		7.827E+01	1.154E+02	9.472E+00	0.375
BA-133	4.706E-01		4.920E-01	7.102E-01	9.452E-02	0.663
CS-134	3.607E+00		5.048E-01	6.220E-01	5.610E-02	5.799
CS-135	1.617E+01		2.440E+00	3.058E+00	2.514E-01	5.287
CS-136	7.624E-01		1.774E+00	2.632E+00	2.494E-01	0.290
CS-137	9.439E-01		3.632E-01	5.596E-01	4.833E-02	1.687
LA-138	-1.399E-01		5.100E-01	8.186E-01	8.252E-02	-0.171
CE-139	4.915E-01		4.274E-01	6.385E-01	5.083E-02	0.770
BA-140	-1.843E-01		5.793E+00	7.066E+00	2.353E+00	-0.026
LA-140	5.937E+00		1.613E+00	2.617E+00	2.554E-01	2.269
CE-141	4.686E+00		1.549E+00	1.700E+00	3.877E-01	2.756
CE-144	-2.573E-02		2.572E+00	4.182E+00	3.486E-01	-0.006
PM-144	-1.909E-01		3.207E-01	4.777E-01	4.180E-02	-0.400
PM-145	-1.341E+00		1.651E+00	2.171E+00	1.417E+00	-0.618
PM-146	2.252E+00	+	1.038E+00	1.173E+00	1.079E-01	1.920
ND-147	2.215E+01	•	1.100E+01	1.705E+01	1.576E+00	1.299
EU-152	5.302E+01	+	7.679E+00	6.419E+00	7.786E-01	8.260
GD-153	-8.700E-01	•	1.243E+00	1.869E+00	2.178E-01	-0.466
EU-154	7.377E-01		1.028E+00	1.518E+00	1.496E-01	0.486
EU-155	3.296E+01	+	4.871E+00	1.968E+00	2.727E-01	16.752
EU-156	7.479E-01	•	1.022E+01	1.500E+00	3.514E+00	0.049
HO-166M	-4.366E-01		7.219E-01	8.450E-01	7.424E-02	-0.517
HF-172	3.528E-01		2.298E+00	3.747E+00	3.157E-01	0.094
LU-172	-2.286E+00		8.129E+00	1.182E+01	1.096E+00	-0.193
LU-173	1.456E+01		2.040E+00	2.457E+00	2.018E-01	5.927
HF-175	-2.462E-01		5.613E-01	6.997E-01	6.091E-02	-0.352
LU-176	2.660E-01		3.095E-01	4.514E-01	3.809E-02	0.589
TA-182	1.626E+02		1.675E+01	6.253E+00	5.803E-02	25.999
IR-192	8.679E-01	+			1.099E-01	0.729
HG-203	-3.489E-01		7.646E-01	1.191E+00	7.005E-02	-0.421
BI-207	2.420E-01		6.569E-01	8.286E-01		
TL-208	2.420E-01 9.983E-01		3.004E-01	4.635E-01	4.241E-02	0.522
BI-210M	-4.991E-02		9.843E-01	1.519E+00	1.382E-01	0.657
BI-210M BI-212	-4.670E-01		7.519E-01	9.593E-01	7.894E-02	-0.052
PB-212	6.437E+00		2.557E+00	3.837E+00	3.387E-01	-0.122
. U ~ 1 ~	0.43/6+00		8.862E-01	1.126E+00	9.265E-02	5.716

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-08 Acquisition date: 22-FEB-2012 12:09:49

Nuclide	Key-Line Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
RA-225	-7.244E-01		3.125E+00	4.866E+00	4.516E-01	-0.149
TH-227	1.935E+01	+	3.183E+00	4.250E+00	3.495E-01	4.553
AC-228	2.749E-01		1.247E+00	2.074E+00	1.865E-01	0.133
TH-230	4.042E+02	+	6.893E+01	1.471E+02	1.373E+01	2.747
PA-231	1.399E+01	+	1.224E+01	1.932E+01	1.624E+00	0.724
PA-233	1.474E+00		1.509E+00	2.154E+00	4.825E-01	0.684
PA-234	-5.471E-01		1.269E+00	2.059E+00	1.722E-01	-0.266
AM-241	5.656E+00		1.016E+00	1.429E+00	1.069E-01	3.957
CM-243	-8.170E-02		2.162E+00	3.144E+00	2.578E-01	-0.026

Summary of Nuclide Activity Page: 10

Wtd Mean

38.64%

Sample ID : 1201163-08 Acquisition date : 22-FEB-2012 12:09:49

Total number of lines in spectrum 132
Number of unidentified lines 81
Number of lines tentatively identified by NID 51

Wtd Mean

Nuclide Type : NATURAL

			wed Mean	wca Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.896E+01	2.896E+01	0.668E+01	23.07
PB-210	22.26Y	1.00	1.210E+02	1.212E+02	0.144E+02	11.86
PB-211	3.28E+04Y	1.00	3.232E+01	3.232E+01	0.897E+01	27.76
BI-214	1602.00Y	1.00	3.172E+02	3.172E+02	0.165E+02	5.19
PB-214	1602.00Y	1.00	3.319E+02	3.319E+02	0.222E+02	6.70
RN-219	3.28E+04Y	1.00	1.999E+01	1.999E+01	0.582E+01	29.10
RA-223	3.28E+04Y	1.00	1.630E+01	1.630E+01	0.857E+01	52.55
RA-224	1.41E+10Y	1.00	6.391E+02	6.391E+02	0.593E+02	9.28
RA-226	1602.00Y	1.00	6.336E+02	6.336E+02	11.61E+02	183.17
PA-234M	4.47E+09Y	1.00	2.509E+02	2.509E+02	0.567E+02	22.62
TH-234	4.47E+09Y	1.00	2.133E+02	2.133E+02	0.225E+02	10.53
U-235	7.04E+08Y	1.00	1.422E+01	1.422E+01	0.363E+01	25.53
	Total Acti	vity:	2.619E+03	2.619E+03		
RA-226 PA-234M TH-234	1602.00Y 4.47E+09Y 4.47E+09Y 7.04E+08Y	1.00 1.00 1.00 1.00	6.336E+02 2.509E+02 2.133E+02 1.422E+01	6.336E+02 2.509E+02 2.133E+02 1.422E+01	11.61E+02 0.567E+02 0.225E+02	183.17 22.62 10.53

Nuclide Type : ACTIVATION

1.00	-160						
			Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error	Flags
NB-95 M	3.61D	134.	8.895E+00	1.196E+03	0.197E+03	16.44	•
AM-243	7380.00Y	1.00	3.736E+01	3.736E+01	0.440E+01	11.78	

Total Activity: 4.625E+01 1.234E+03

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
CD-109	464.00D	$1.0\overline{4}$	2.712E+02	2.818E+02	0.458E+02	16.26
SN-126	1.00E+05Y	1.00	2.726E+01	2.726E+01	0.410E+01	15.03
TH-231	7.04E+08Y	1.00	7.592E+00	7.592E+00	3.568E+00	47.00
NP-237	2.14E+06Y	1.00	8.005E+01	8.005E+01	1.183E+01	14.78
	m-4-1 3-4'					

Total Activity: 3.861E+02 3.967E+02

Grand Total Activity: 3.051E+03 4.249E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116308_GE2_GAS1102_176253.CNF; 1

Title :

Sample Title: JM-65-31-120128

Start Time: 22-FEB-2012 12:09 Sample Time: 28-JAN-2012 00:00 Energy Offset: 6.87229E-02

Channel

1:	0	0	0	0	0	1	1	1944
9:	3373	4016	4991	4440	4981	5335	4547	5077
17:	4074	3355	3431	3352	2940	2942	2849	2865
25:	3057	3130	3197		2871	2876	3142	3759
				3110				
33:	3177	2905	2961	3280	3430	3298	3355	3478
41:	3715	3789	3897	4093	4456	9911	11940	4204
49:	4364	5524	4792	4950	7706	6208	4998	5180
57:	5461	5820	6447	6908	7279	7574	14471	11137
65:	7060	7130	8002	8818	7491	7476	7690	7902
73:	8203	13387						
			29324	13920	43142	19545	8285	7886
81:	8240	6116	6777	11145	6306	6390	15417	11253
89:	6463	9673	5796	10548	14636	6322	5973	4172
97:	4086	4995	4805	3899	3749	3815	3933	3712
105:	3921	3847	3910	3967	4147	4154	4208	4304
113:	4765	4034	3838	3898	3842	3893	3802	3739
121:	3851	4039	3860	3831	3928	3976	3845	4080
129:	3801	3907	4033	3855	4001	3996	3955	4093
137:	4014	4116	4080	4177	4241	4218	4618	5981
145:	4449	4187	4070	4159	4203	4339	4318	4196
153:	4403	5115	4561	4186	4174	4080	4066	3892
161:	3842	3843	4093	3919	3569	3667	3557	3507
169:	3538	3540	3439	3434	3347	3528	3433	3432
177:	3484							
		3525	3486	3465	3575	3552	3526	3595
185:	7150	19930	8722	3368	3299	3290	3277	3288
193:	3247	3134	3226	3406	3200	3158	3038	3031
201:	3057	3136	2897	2921	3253	3006	2703	2608
209:	2680	2774	2577	2609	2563	2568	2602	2532
217:	2473	2466	2437	2398	2473	2414	2442	2476
225:	2333	2408	2405	2378	2329	2398	2216	2341
233:	2348	2320						
			2629	3712	2600	2299	2377	2112
241:	6851	20250	5870	2016	1951	1894	2015	1986
249:	1953	1991	1936	1897	1871	1869	2056	2554
257:	2207	2356	2985	1970	1867	1754	1836	1743
265:	1728	1738	1739	1829	2973	2803	2761	2184
273:	1831	2283	2326	1735	1727	1721	1636	1692
281:	1780	1705	1769	1874	1651	1902	1746	1647
289:	1597	1660						
			1717	1605	1682	7159	39152	16836
297:	1760	1475	1529	1862	1473	1542	1547	1589
305:	1496	1373	1308	1327	1363	1354	1314	1387
313:	1398	1492	1419	1312	1345	1273	1358	1349
321:	1292	1302	1447	1683	1354	1281	1297	1316
329:	1452	1642	1345	1306	1397	1488	1417	1304
337:	1348	1514	1406	1341	1335	1355	1383	1276
345:	1264	1336						
			1358	1378	1554	2184	26950	63865
353:	12660	1187	1055	1091	1010	1031	1040	1030
361:	1041	967	1066	1116	1062	1020	981	1114
369:	1012	1062	1095	1122	1104	998	1048	1103
377:	1036	1062	983	1030	1034	1063	1022	1107
385:	1027	1309	1434	1337	1665	1111	1041	1005
393:	1039	1053	1047	1129	1136	1032	1083	1005
401:	1344	1546						
401:			1193	1226	1538	1319	1108	1124
	1100	1071	1044	1110	1098	1167	1123	1125
417:	1102	1159	1069	1135	1070	1121	1055	1100
425:	1057	1125	1165	1013	994	940	889	873

433:	891	867	858	793	772	820	889	863
441:	775	738	828	804	839	805	760	736
449:	700	725	710	749	758	925	1013	762
457:	725	729	722	729	854	950	737	699
465:	729	668	703	713	780	878	672	682
473:	621	784	711	622	700	654	705	991
481:	885	666	621	641	628	861	1032	758
489:	617	607	601	576	612	624	607	556
497:	603	603	582	582	582	540	547	579
505:	571	512	542	598	671	872	869	764
513:	619	542	494	543	581	528	545	519
521:	545	561	478	581	498	522	528	564
529:	506	511	559	557	693	744	539	597
537:	568	576	532	503	539	533	620	635
545:	514	471	537	507	52 4	471	517	514
553:	508	484	551	479	500	530	515	487
561:	507	525	477	508	497	492	498	522
569:	489	504	552	543	551	471	482	501
577:	488	455	593	808	617	462	527	492
585:	484	492	498	461	448	480	496	440
593:	482	479	493	469	490	447	468	443
601:	462	467	534	502	538	546	785	10337
609:	40850	22457	1793	386	361	384	411	439
617:	398	397	399	358	346	334	401	356
625:	396	354	345	344	365	355	337	365
633:	381	352	341	370	373	361	382	349
641:	341	372	321	370	373	355	377	348
649:	406	3 <i>72</i> 367	338	329	347	340	363	378
657:	356	365	358	343	347	379	366	563
665:	1449	1141	413	318	280	353	362	326
673:	351	350	334	331	338	311	344	334
681:	346	359	433	384	336	363	344	352
689:	379	368	366	337	380	360	329	322
697:	367	406	360	382	357	537	709	521
705:	413	356	343	395	336	359	361	346
713:	358	349	290	343	315	287	516	555
721:	389	355	338	310	337	346	331	322
729:	311	332	315	323	35 <i>7</i> 358	369	295	321
737:	343	306	335	345	373		496	
745:	325	318	337	320	341	337	321	365
753:	382	338	344	315	299	321	336	340
761:	330	300	329	312	450	616	1366	
769:	2476	541	339	312	348	313	333	339
777:	343	328	318	295	319	309	310	350
785:	817	1152	586	375	317	325	340	326
793:	319	275	281	323	301	329		360
801:	341	311	335	343	616	1168	701	358
809:	320	306	328	342	334	309	320	330
817:	325	303	333	353	423	403	330	328
825:	370	432	385	333		326	359	
833:	393	330	304	320		561	765	487
841:	345	315	299	319			311	305
849:	330	327	314	315		328	316	
857:	299	349	315	333		309	360	
865:	331	334	343	303		314	321	366
873:	369	340	341	345		327	344	
881:	354	330	366	378			355	
889:	350	338	368	352		370	329	
897:	360	345		375		353	356	
905:	376	332	372	342		350	380	
			- -		<u> </u>	-	-	

913:	322	319	339	318	333	291	304	283
921:	289	294	261	291	326	313	288	306
929:	342	304	342	390	1148	2101	1023	381
937:	292	335	277	284	312	290	293	277
	330	282		298	293	283	287	271
945:	273		305		293 294	285	269	282
953:		280	291	284		289	275	299
961:	284	272	363	510	385		273	275
969:	282	288	296	243	280	224	252	273
977:	277	263	238	252	263 272	258 270	252 275	253
985:	274	278	259	256			275	480
993:	252	278	244	256	249	273	254	249
1001:	621	426	258	235	261	245	254	249
1009:	220	253	240	257	257	254	252	231
1017:	227	264	260	236	245	233	240	279
1025:	223	239	239	225	247	238	236	202
1033:	277	213	219	210	237	228 245	219	202
1041:	242	227	267	228	240	245		225
1049:	205	265	312	372	302	214	215 209	223
1057:	235	223	224	200	200	210		
1065:	225	217	231	230	322	340	263	218
1073:	229	225	212	191	221	203	217	217
1081:	238	216	232	218	213	199	199	224
1089:	200	236	194	169	209	197	228	238
1097:	257	219	193	205	188	209	252	275
1105:	223	213	206	204	195	205	228	218 7494
1113:	208	223	228	225	221	538	3106	224
1121:	4734	963	231	203	215	206	201 217	223
1129: 1137:	209 225	214	207	218	327	306	190	212
	225 187	207	206	191	212	193	211	212
1145: 1153:	275	178	181	219	224	213 174	189	179
1155:	160	580	985 105	676	248	209	199	187
1161:	180	189 213	195 212	199	180 200	209	205	193
1177:	221	205	184	210	239	223 270	233	187
1185:	182	184	196	195 184	185	199	178	174
1193:	193	197	167	182	179	178	176	172
1201:	158	175	178	175	201	226	310	340
1201:	214	176	162	176	173	163	167	179
1217:	189	182	183	146	176	154	152	154
1225:	153	170	197	167	174	170	163	145
1233:	173	164	167	399	1600	2744	1494	352
1241:	174	163	172	155	155	164	160	155
1249:	162	172	197	247	268	245	227	168
1257:	155	175	182	158	158	146	153	150
1265:	157	156	165	158	166	146	145	152
1273:	172	174	186	160	169	168	236	
1281:	722	421	223	166	154	140	183	145
1289:	154	156	127		169	178	125	163
1297:	127	147	142	148	138	146		181
1305:	140	152	158	160	147	137		161
1313:	155	154	153	197		158	150	152
1321:	146	175	142	157		160		146
1329:	153	172	158	146	153	171	135	
1337:	148	150	136	146		174		143
1345:	162	158	135	147		138		141
1353:	150	146	156	142	161	135	139	158
1361:	148	152	162	156	148		137	
1369:	152	154	140	146	151	139		659
1377:	1655	1613	698	193		149		306
1385:	464	342	159	145	130	147	170	162

1393:	168	143	164	152	135	131	167	314
1401:	661	548	264	145	118	277	763	1059
1409:	578	208	172	140	156	165	177	153
1417:	139	131	160	165	147	153	152	166
1425:	203	169	155	147	144	139	154	152
1433:	139	152	137	134	132	150	144	133
1441:	144	119	160	147	155	150	159	163
1449:	164	147	157	142	144	157	143	166
1457:	149	155	219	470	452	247	187	175
1465:	146	157	145	165	134	166	160	168
1473:	154	157	154		149	161	166	157
1473:	176	166		174		177	170	138
1481:	158		155	138	152 175	162	143	170
1409:	180	168	164	153			175	153
		173	141	156	173	167		
1505:	163	174	258	573 153	920	626	258	168
1513:	118	186	175	153	164	164	190	152
1521:	161	161	175	184	162	172	175	186
1529:	166	147	150	156	176	155	153	200
1537:	203	290	249	175	162	217	263	286
1545:	144	152	130	141	118	114	141	104
1553:	125	132	118	131	116	128	95	106
1561:	106	118	128	119	109	115	103	129
1569:	126	95	131	111	107	126	126	120
1577:	133	120	106	118	121	231	336	254
1585:	140	116	99	123	110	103	99	114
1593:	129	184	169	134	132	147	205	162
1601:	119	95	118	95	106	109	121	101
1609:	128	89	86	94	108	95	90	70
1617:	92	89	75	76	93	69	67	77
1625:	82	73	79	90	103	72	84	80
1633:	85	82	82	78	71	70	80	72
1641:	76	71	65	60	74	61	58	80
1649:	62	81	52	62	64	62	80	62
1657:	75	70	109	263	395	299	112	84
1665:	65	60	52	46	64	61	54	36
1673:	56	48	54	56	61	52	57	48
1681:	51	68	125	115	79	49	68	47
1689:	57	66	78	113	121	116	68	51
1697:		57	48	44	45	46	42	55
1705:	45	45	45	66	57	44	53	41
1713:	56	42	47	33	41	61	55	34
1721:	43	48	45	56	46	50	125	477
	1008	950	394	85	36	51	52	51
1737:	57 40	47	394 44 46	45	54	50	53	35
1745:	40	60	46	44	45	41	39	54
1753:	41	47	36	37	39	56	42	59
1761:	98 43	553	2396		3841	1354	229	53
1769:	43	39	41	51	43	35	44	46
1777:	37	35	38	56	50	47	37	29
1785:	37 32	40	40	34	33	47	49	47
1793:	30	34	33	43	31	39	47	28
1801:	36	25	42	36	34	25	36	36
1809:	36	34	34	35	31	48	39	37
1817:	38	27	52	45	39	33	33	32
1825:	29	37	36	28	47	28	47	40
1833:	54	50	51	52	88	128	93	46
1841:	34	41	34	53	115	368	675	487
1849:	189	73	28	34	38	36	38	35
1857:	34	53	45	40	34	26	31	38
1865:	33	32	40	29	43	35	41	89

1873:	95	84	61	40	36	34	40	44
1881:	42	34	39	42	49	38	34	49
1889:	52	85					5 9	69
			60	39	49	54		
1897:	66	64	52	37	47	42	30	41
1905:	33	36	34	40	30	35	40	34
1913:	37	36	33	47	45	42	37	31
1921:	32	42	48	36	39	38	50	34
1929:	28	38	38	32	38	52	61	70
1937:	83	56	40	39	37	34	36	50
1945:	37	30	43	33	43	32	45	28
1953:	34	43	41	35	26	35	43	33
1961:	47	43	41	56	39	31	38	30
1969:	31	35	31	33	30	31	31	30
1977:	36	30	39	28	34	33	27	25
1985:	39							
		27	22	33	31	22	24	30
1993:	25	40	41	33	33	34	32	29
2001:	32	25	24	27	19	30	37	36
2009:	41	43	48	27	28	22	30	50
2017:	61	38	39	19	38	31	34	24
2025:	21	25	23	18	23	23	26	22
2033:	25	27	30	18	25	22	20	20
2041:	19	23	19	26	15	19	18	27
2049:	22	26	23	25	30	27	27	24
2057:	18	14	29	16	19	23	23	14
2065:	12	21	12	18	14	25	16	25
2073:	18	14	14	17	17	17	17	17
2081:	15	13	15	19	26	23	17	17
2089:	24	24	17	14		11	13	
2007:	14				14			15
2105:	15	6	9	19	19	16	10	14
		17	12	26	30	30	22	17
2113:	10	15	30	65	195	289	261	87
2121:	29	12	9	11	15	14	11	14
2129:	12	11	6	8	5	12	18	9
2137:	15	9	17	11	10	11	12	18
2145:	18	17	16	15	12	15	12	13
2153:	8	13	10	6	12	14	11	7
2161:	13	7	10	19	11	12	10	19
2169:	21	13	7	9	8	17	15	20
2177:	15	6	8	20	13	17	17	8
2185:	12	9	8	13	22	19	12	23
2193:	23	14	18	12	9	10	10	18
2201:	99	385	968	1093	642	206	38	13
2209:	12	9	11	19	11	10	9	11
2217:	8	9	9				8	1 T
2225:	12	9 3 9 7	9	4	14	7		7
2233:		3	8	9	9	8	4	3 8 8 12
2233:	9	9	9	6	3	6	5	8
	8		1	9	6	15	7	8
2249:	8	7	10	7	8	6	4	12
2257:	6	4	7	8	7	10	6	6
2265:	9	11	5	6	6	5	9	6
2273:	10	5	7	2	7	6	4	6 6 6
2281:	9	11	3	5	7	8	5	7
2289:	7	7	29	59	88	57	24	14
2297:	6	6	7	5	4	5	3	4
2305:	5	4	5	4	3	5	8	3
2313:	4	9	3	4	5	3	1	2
2321:	1	6	5	6	6	4	4	5
2329:	3	8	4	ĭ	7	3	1	<i>∆</i>
2337:	7	8 3	4			2	1	4 3 2 5 4 6
2345:	2	3 7	2	3 2	5 2	2	1 4	3
	2		4	4	2	2	4	3

2353:	5	4	1	5	3	2	3	6
2361:	4	ĺ	1	1	2	5	Ō	4
2369:	2	1	4	2	4	3	5	2
2377:	7	2	2			3	2	3
2385:				1	3			
	4	4	2	3	2	2	6	1
2393:	3	2	1	1	2	1	3	1
2401:	1	0	3	0	2	3	2	4
2409:	1	3	0	2	1	3	4	2
2417:	2	4	2	0	3	1	2	3
2425:	5	1	1	4	2	4	1	2
2433:	1	1	3	4	3	4	4	2
2441:	3	2	8	18	75	198	321	263
2449:	108	45	5	1	1	2	1	5
2457:	3	3	4	1	2	0	0	4
2465:	1	1	2	3	0	5	1	0
2473:	1	2	0	0	0	2	2	4
2481:	4	1	1	4	0	2	0	3
2489:	1	0	0	1	1	1	1	1
2497:	3	3	0	1	1	4	2	4
2505:	3	1	3	1	2	2	0	2
2513:	0	2	1	1	0	1	0	1
2521:	1	1	1	1	0	3	1	1
2529:	2	0	1	1	1	1	0	1
2537:	3	0	1	0	5	1	0	0
2545:	0	2	3	1	2	0	1	1
2553:	0	1	1	0	2	0	1	1
2561:	0	2	1	1	1	1	1	2
2569:	1	0	1	0	0	0	1	1
2577:	1	1	0	0	2	2	0	0
2585:	1	1	2	0	1	1	0	2
2593:	0	0	0	0	0	1	1	1
2601:	0	1	1	0	0	1	1	2
2609:	0	2	0	5	14	19	14	8
2617:	1	1	0	0	1	0	2	0
2625:	1	1	1	0	0	1	1	0
2633:	0	2	1	2	1	2	0	1
2641:	2	0	1	3	1	0	2	0
2649:	1	0	2	0	2	1	0	2
2657:	0	1	0	0	2	1	0	1
2665:	0	0	1	2	1	0	1	2
2673:	0	1	1	0	1	0	1	0
2681:	0	1	1	2	0	1	1	1
2689:	0	2	1	1	5	7	0	0
2697:	0	1	3 2	2	1	0	Ö	Ō
2705:	0	2	2	1	1	0	0	0
2713:	0	1 2 2	0	ī	3	3 1	0	1
2721:	1	0	1	2	1	1	1	4
2729:	2	3	1	2	1	0	0	1
2737:	0	3 1	0	0	0	0	1	1
2745:	0	0	0	Ō	1	0	0	0
2753:	0		Ö	2	ī	ĺ	1	Ö
2761:	0	2	0	o ·	1	1 1	ī	2
2769:	4	9	1	ĺ	0	0	0	0
2777:	1	0	Ō	ō	Ö	Ö	1	Ö
2785:	2	1	Ö	ĺ	Ö	Ö	Ō	Ö
2793:	0	0	Ö	ō	2	Ö	2	1
2801:	3	1	Ō	Ö	2	ĺ	ō	0
2809:	0	1	Ö	1	ī	ō	Ö	0
2817:	0	0 2 9 0 1 0 1 1 1	Ō	ī	ō	Ö	Ö	Ö
2825:	0	3	Ō	ō	Ö	Ö	Ö	Ö
			_	-	-	-	-	_

. 20	333:	0	٦	-	1	0	^	^	^
		0	1	1	1	0	0	0	0
	341:	0	0	0	1	1	0	1	1
28	349:	1	1	0	0	1	0	0	0
28	357:	0	1	1	1,	0	0	0	0
	365:	1	0	0	ō	ĺ	Ō	2	Ō
	373:	0	Ö			0		1	Ö
	381:			0	0		2		
		0	0	1	0	0	0	0	1
	389:	0	0	1	3	1	1	1	0
	397:	2	0	0	0	0	0	0	1
	905:	2	0	0	1	0	0	1	0
29	913:	0	0	0	0	1	2	0	0
29	921:	2	1	0	0	0	0	1	0
29	929:	1	0	0	0	0	0	0	3
	937:	1	Ö	Ö	Ŏ	2	Ö	Ö	0
	945:	0	0	1	0	2		0	0
	953:						1	_	
		0	0	0	0	0	0	1	0
	961:	0 .	0	0	0	0	0	1	1
	969:	0	1	0	1	0	0	0	1
	977:	3	1	3	2	0	0	1	2
	985:	0	1	0	1	0	0	0	0
29	993:	0	1.	0	0	0	1	1	0
3 (001:	1	0	0	0	0	0	0	0
	009:	0	1	0	Ö	Ō	Ö	1	0
	17:	0	0	0	Ö	Ö	Ŏ	0	Ö
	25:	Ŏ	0	Ö	0	1	1	0	-
	033:	2	1					-	0
	041:	0	_	2	0	0	1	0	1
			0	0	0	0	2	0	0
	049:	1	1	2	3	2	4	3	1
)57:	1	0	0	0	0	0	0	0
	065:	0	0	0	0	0	1	1	0
	73:	0	0	0	0	0	0	0	2
	081:	2	3	0	0	0	0	0	1
30	89:	0	0	0	0	2	0	0	0
30	97:	0	0	1	0	1	0	0	0
31	L05:	0	2	0	Ō	0	0	Ō	Ö
	13:	0	0	n	0	0	0	0	Ô
	21:	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö
	29:	Ö	Ö						
	137:	Ö		1	0	1	0	0	0
	45:	1	0	0	0	0	0	1	0
			0	0	0	0	0	0	0
	.53:	0	0	0	0	0	0	0	0
	.61:	0	0	0	0	0	0	0	0
	.69:	0	0	0	0	0	0	1	0
	.77:	0	0	0	1	0	1	0	0
	.85:	1	0	0	0 .	0	0	0	2
	.93:	0	0	1	0	1	0	0	0
	201:	0	0	0	0	0	. O	Ō	Ō
32	209:	0	0	1	0	1	0	Ō	ĺ
32	217:	0	1	0	0	Ō	Ō	Ō	ō
	225:	1	1	Ö	Ö	ő	ĺ	Ö	3
	233:	Ō	Ō	0	0	0	0	0	0
	241:	1	0	0					
	249:	1	0		0	0	1	0	0
	157:			0	0	0	0	0	0
		0	1	0	0	0	0	0	0
	165:	0	0	0	0	0	0	0	1
	273:	0	0	0	0	0	0	0	0
	81:	0	1	1	0	1	0	0	0
	89:	0	0	0	0	1	0	0	0
	97:	0	0	1	0	0	1	0	1
33	05:	0	0	0	1	0	0	3	0

3313:	1	0	0	0	0	1	0	0
3321:	0	0	0	1	0	0	1	0
3329:	0	0	0	0	0	1	0	0
3337:	1	1	1	0	0	0	0	0
3345:	0	0	0	0	0	0	0	0
3353:	0	0	0	0	0	0	1	0
3361:	0	0	0	0	0	0	0	0
3369:	1	0	0	0	0	0	0	0
3377:	0	0	0	0	0	0	1	0
3385:	0	0	0	1	1	0	. 0	1
3393: 3401:	0 0	0	0	1	0 0	0 0	0 0	0 0
3401:	0	0	0 0	0	0	0	1	0
3417:	0	0	0	0 0	1	0	Ō	0
3425:	ő	1	Ö	0	Ō	Ö	Ö	Ö
3433:	Ö	0	Ö	í	Ö	ő	Ö	Ö
3441:	Ö	Ö	Ö	Ō	ĺ	Ö	Ö	Ö
3449:	0	0	Ö	Ö	0	0	0	0
3457:	0	0	0	1	0	0	0	1
3465:	0	1	1	1	0	1	0	2
3473:	0	0	0	0	1	0	0	0
3481:	0	0	0	0	1	0	0	0
3489:	1	0	0	0	0	0	0	1
3497:	0	1	0	0	1	0	1	0
3505:	0	0	0	0	1	0	0	0
3513:	1	0	0	0	0	0	0	0
3521:	0	0	0	1	0	0	0	0
3529:	0	0	0	0	0	0	0	0
3537: 3545:	0 0	0	0	0	0	0	0	0 0
3553:	1	1 0	0 0	1	1 1	0 0	0 0	0
3561:	0	0	0	1 0	0	0	0	0
3569:	Ö	Ö	0	0	0	0	Ö	0
3577:	Ö	ő	ĭ	Ö	Ö	Ö	Ö	1
3585:	Ō	Ö	ĩ	Ö	Ö	Ö	Ö	0
3593:	0	Ö	0	Ö	ĺ	Ō	1	0
3601:	0	0	0	0	0	0	0	1
3609:	0	0	0	0	0	1	0	0
3617:	0	0	0	0	0	0	1	0
3625:	0	0	0	0	0	0	0	0
3633:	0	0	0	0	0	0	0	0
3641:	0	0	0	0	0	0	2	. 0
3649:	0	0	1	0	0	0	0	0
3657: 3665:	0 0	1	0	0	0	0	0	0
3673:	0	0 0	1 0	0	0	1 0	1 0	0 0
3681:	Ö	0	1	0 0	1 0	0	0	0
3689:	ő	1	0	0	0	0	0	0
3697:	Ö	Ō	Ö	Ö	1	Ö	2	Ö
3705:	1	0	Ö	Ö	Ō	Ö	ī	Ö
3713:	0	ĺ	Ö	ĺ	Ö	Ö	ō	Ö
3721:	0	0	Ō	ō	ĺ	O ·	0	0
3729:	0	0	0	0	0	0	1	0
3737:	0	0	0	0	1	0	0	0
3745:	0	1	0	0	0	0	O.	0
3753:	0	0	0	1	0	0	0	0
3761:	0	0	1	0	0	0	1	0
3769: 3777:	0 0	0	1	0	1	0	1	0
3785:	1	0 0	0 0	1 0	0	0 0	1 0	0 0
5,05.	T	U	U	U	U	U	U	U

3793: 3801: 3809: 3817: 3825: 3833: 3841: 3849: 3857: 3865: 3873: 3897: 3913: 3921: 3929: 3945: 3953: 3969: 3977: 3969: 3977: 3985: 3977: 3985: 3977: 3985: 3977: 3985: 3977: 3985: 3977: 3985: 3977: 3985: 3977: 3985: 3977: 3985: 3977: 3985:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000012100000000000010000000	000000012001101000000100000	001000001000000000000000110	010000000000000000000000000000000000000	101000000000000000000000000000000000000	100001000100011000000000000000000000000	000100000000000000000000000000000000000
	•		=				-	
			=					
			0	0	0		0	
4023:	0	0	0	0	1	0	0	1
4041:	0	0	0	1	0	0	ĺ	0
4049:	Ö	Ö	Ö	Ō	Ö	Ö	Ō	Ö
4057:	0	0	0	0	0	0	0	0
4065:	0	0	0	0	0	1	0	0
4073:	0	0	0	0	0	0	0	0
4081:	0	0	0	0	0	0	0	0
4089:	0	0	0	0	1	0	0	. 0

Page: Sample ID : 1201163-09 Acquisition date : 22-FEB-2012 12:32:42

VAX/VMS Peak Search Report Generated 22-FEB-2012 13:33:25.22

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116309_GE1_GAS1102_176256.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{\text{V2}}$.2 Client ID : JM-66-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 12:32:42

Sample ID Sample Quantity : 5.87930E+02 gram Sample Geometry : 0 : 1201163-09

Sample type : SOLID
Detector name : GE1 Detector Geometry: GAS-1102

Elapsed real time: 0 01:00:30.59 0.8% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 01:00:00.00

Start channel : 5 Sensitivity : 2.40000

Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
0	46.70*	6508	11110	1.81	46.33	44	5	5.5		PB-210
0	53.39	1571	16081	1.29	53.01	50	6	26.0		
0	63.10*	2212	23117	1.30	62.73	61	6	22.1		TH-234
1	68.51	1112	18973	1.54	68.14	66	17	37.5	1.64E+03	
1	75.51*	18358	18548	1.56	75.14	66	17	3.1		AM-243
0	88.89	1191	22486	1.09	88.52	85	5	37.7		SN-126
										CD-109
0	94.09*	2858	17380	1.47	93.72	91	6	15.4		GA-67
0	112.91	355	13401	1.22	112.55	111		L03.6		
0	144.57*	1002	13758	1.41	144.21	142	6	37.6		CE-141
0	154.76	907	16331	1.60	154.41	151		47.3		
0	186.54*	11044	17545	1.55	186.20	182		4.7		RA-226
1	236.33	1098	5151	1.46	236.00	233			3.42E+00	
1	239.49*	716	6322	1.76	239.16	233		36.3		PB-212
1	242.40	13115	4908	1.46	242.07	233	14			RA-224
1	230.13	575	5290	1.51	256.10	254			6.10E+00	
1	259.18	969	5234	1.78	258.85	254		23.7		
7	270.67	2249	8854	3.16	270.35	265			5.67E+00	LU-173
7	275.10	658	4805	1.52	274.77	265		33.5		
4	295.64*	29045	4473	1.53	295.31	290			1.09E+01	
4	299.56	1035	6062	2.21	299.24	290	13	32.8		PB-212
_										GA-67
0	304.77	292	3837	4.26	304.45	303		65.1		
0	324.23	220	3625	1.16	323.91	322		83.2		RA-223
0	329.71	361	4316	1.59	329.39	327		58.6		LA-140
0	338.90	345	3542	1.70	338.59	337		53.0		
2	352.34*	50244	3038	1.58	352.03	346			2.52E+01	PB-214
2	355.96	1350	3260	2.04	355.65	346		21.4		
0	388.15	790	4396	3.22	387.84	384		29.9		
2	402.22	385	3487	2.08	401.92	396			1.13E+00	RN-219
2	405.63	293	2952	1.77	405.33	396		56.8		
0	446.08	246	2778	4.19	445.79	443		72.1		
0	455.47	266	1830	1.35	455.18	453		49.8		
0	462.38	381	2526	2.43	462.09	459		45.0		
0 0	469.81 480.90	149	1842	1.27	469.52	467		88.1		
U	400.30	269	2427	1.72	480.61	478	./	62.0		

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	487.43	322	2338	1.84	487.15	484	7 51.1		LA-140
0	511.03*	487	2409	3.69	510.75	507	8 36.3		
0	570.62*	164	1852	3.34	570.35	568	7 88.3		
6	580.67	228	1374	1.67	580.41	577	9 50.4	1.49E+00	
0	594.29	94	1161	1.07	594.03	592	5111.2		
4	609.75*	36706	1139	1.74	609.49	603		1.85E+01	BI-214
4	613.40	1092	1645	2.71	613.14	603	16 36.9		
0	665.60	1082	1824	2.11	665.36	659	10 16.0		
0	703.77	274	1392	1.37	703.54	700	7 46.7		
0	720.95	216	1480	1.67	720.72	717	8 63.0		DT 010
0	727.11	96	1224	2.72	726.88	725	7123.1		BI-212
0	742.93	160	1207	2.13	742.71	739	7 73.7		
0	768.75*	3479	2046	2.02	768.53	763	12 6.2		
O O	786.42 806.67	765 928	1534 1548	1.82 2.07	786.19 806.46	782 802	9 19.8 10 17.2		
Ô	825.97	74	857	1.57	825.76	824	5121.6		
0	839.89	347	1450	1.90	839.68	836	8 39.6		
Ö	934.56	1692	1624			930	10 10.1		
Ö	964.42	190	1128			961	7 60.3		
Ō	1001.30*	184			1001.12	997	9 70.2		PA-234M
0	1032.18	122			1032.01	1029	8 88.4		
0	1052.66	121			1052.50	1049	7 86.2		
0	1069.84	224	1102		1069.68	1065	10 57.1		
0	1104.63	124	734		1104.48	1101	7 74.6		
0	1120.88	8112	1394	2.12	1120.73	1115	12 2.9		BI-214
0	1134.54	190	976		1134.39	1130	9 61.1		
0	1155.83	959	948		1155.69	1151	9 13.3		
0	1207.74	230	834		1207.61	1203	9 47.2		
0	1238.77	3144	1157		1238.64	1232	14 5.8		
0	1253.69	169	821		1253.56	1250	9 63.0		
0	1281.49	697	862		1281.38	1277	10 17.5		
0 0	1303.83 1335.71	68 56	468		1303.72		6104.0		
	1372.32	46	365 227		1335.60 1372.22	1334 1371	5105.9	3.12E+00	
1	1378.22	2044	465		1372.22		22 00.0	3.12E+00	
1	1385.88	338	530		1375.13		22 25.2		
2	1402.09	708	544		1401.99			2.05E+00	
2	1408.63	1125	512		1408.54		17 8.9	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0	1461.64*	824	867		1461.56		11 15.6		K-40
0	1509.88	1031	936		1509.81		12 13.4		
2	1538.68	223	652		1538.62	1534		1.86E+00	
2	1543.49	171	456	2.01	1543.43	1534	13 43.6		
0	1583.53	290	601	1.75	1583.47	1578	10 33.7		
2	1595.58	109	451		1595.53	1591		1.71E+00	LA-140
2	1600.27	152	425		1600.22	1591	14 51.1		
0	1661.75	521	386		1661.71	1656	12 17.5		
0	1683.85	145	268		1683.82	1679	11 46.6		
0 0	1693.52 1730.27	170	211		1693.49	1689	9 34.4		
0	1744.34	1467 37	328 136		1730.24	1724	13 7.3		
0	1765.14*	6588	373		1744.32 1765.13	1741 1758	7109.2 14 2.8		BI-214
J	1,00.14°	0300	3/3	2.30	1/03.13	T/30	14 ∠.8		DT-714

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
4	1838.97	142	113	2.44 1838.97	1833	12 30.3	1.95E+00	
4	1841.88	31	88	1.93 1841.88	1833	12119.5		
0	1848.04	946	170	2.33 1848.04	1844	11 8.4		
0	1873.26	110	198	2.96 1873.27	1869	11 53.1		
0	1896.91	65	151	1.98 1896.92	1895	7 67.6		
0	1937.29	128	176	4.41 1937.31	1932	12 44.8		
0	1957.59	37	128	1.12 1957.62	1954	7107.2		
0	2054.24	75	125	7.01 2054.29	2048	14 67.7		
0	2089.42	36	72	4.70 2089.47	2084	10 95.2		
0	2109.78	37	68	6.66 2109.83	2104	10 88.5		
0	2119.06	468	68	2.47 2119.11	2114	11 11.5		
0	2155.06	17	22	1.65 2155.12	2153	6101.0		
0	2192.73	45	62	3.14 2192.80	2187	10 72.2		
0	2204.69	1788	81	2.49 2204.77	2198	14 5.2		BI-214
0	2265.32	17	28	4.83 2265.40	2261	11129.2		
3	2286.43	19	20	3.29 2286.52	2283	18 92.1	1.39E+00	
3	2294.07	109	28	3.29 2294.16	2283	18 26.9		
0	2409.02	12	4	2.55 2409.14	2405	8 79.2		
0	2448.17	543	12	2.62 2448.30	2441	15 9.0		
0	2481.72	15	9	6.24 2481.85	2476	12 98.1		
0	2614.76*	58	10	2.29 2614.92	2609	13 35.6		
Q	2695.82	7	4	1.62 2696.00	2691	7123.6		
0	2770.45	7	2	2.27 2770.64	2767	7 94.0		
0	2922.28	8	0	1.66 2922.50	2919	7 70.7		

Summary of Nuclide Activity Page: 4
Sample ID: 1201163-09 Acquisition date: 22-FEB-2012 12:32:42

Total number of lines in spectrum 109
Number of unidentified lines 66
Number of lines tentatively identified by NTD 43

Number of lines tentatively identified by NID 43 39.45%

Nuclide Type : NATURAL

				1100 1100		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.962E+01	1.962E+01	0.356E+01	18.16
PB-210	22.26Y	1.00	7.484E+01	7.500E+01	0.770E+01	10.26
BI-212	1.41E+10Y	1.00	1.208E+00	1.208E+00	1.492E+00	123.47
PB-212	1.41E+10Y	1.00	1.025E+00	1.025E+00	0.383E+00	37.38
BI-214	1602.00Y	1.00	1.123E+02	1.123E+02	0.056E+02	5.00
PB-214	1602.00Y	1.00	1.120E+02	1.121E+02	0.073E+02	6.52
RN-219	3.28E+04Y	1.00	5.469E+00	5.469E+00	2.761E+00	50.48
RA-223	3.28E+04Y	1.00	4.454E+00	4.454E+00	3.728E+00	83.69
RA-224	1.41E+10Y	1.00	2.133E+02	2.133E+02	0.201E+02	9.40
RA-226	1602.00Y	1.00	1.863E+02	1.863E+02	3.413E+02	183.21
PA-234M	4.47E+09Y	1.00	3.836E+01	3.836E+01	2.714E+01	70.75
TH-234	4.47E+09Y	1.00	2.577E+01	2.577E+01	0.610E+01	23.67
	Total Nati	373 +37 .	7 0475,00	7 0/05:02		

Wtd Mean Wtd Mean

Total Activity : 7.947E+02 7.949E+02

Nuclide Type : ACTIVATION

	11		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	
GA-67	3.26D	228.	3.508E+00	7.998E+02	28.14E+02	351.84
NB-95M	3.61D	135.	2.782E+00	3.753E+02	0.801E+02	21.34
LA-140	12.79D	3.99	4.625E-01	1.846E+00	0.741E+00	40.13
LU-173	1.37Y	1.04	7.378E+00	7.644E+00	1.386E+00	18.13
AM-243	7380.00Y	1.00	1.208E+01	1.208E+01	0.120E+01	9.89

Total Activity : 2.621E+01 1.197E+03

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
CD-109	464.00D	1.04	1.395E+01	1.449E+01	0.574E+01	39.60
SN-126	1.00E+05Y	1.00	1.402E+00	1.402E+00	0.549E+00	39.15
CE-141	32.50D	1.72	1.021E+00	1.761E+00	0.779E+00	44.26
	•					

Total Activity: 1.637E+01 1.765E+01

Grand Total Activity: 8.373E+02 2.009E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Acquisition date : 22-FEB-2012 12:32:42

Page: 5

Nuclide Type: NATURAL Uncorrected Decay Corr 2-Sigma %Abn %Eff Energy Nuclide pCi/gram pCi/gram %Error Status 1460.81 K - 4010.67* 5.027E-01 1.962E+01 1.962E+01 18.16 OK Final Mean for 1 Valid Peaks = 1.962E+01+/-3.563E+00 (18.16%) PB-210 46.50 4.25* 2.613E+00 7.484E+01 7.500E+01 10.26 OK Final Mean for 1 Valid Peaks = 7.500E+01+/-7.697E+00 (10.26%) BI-212 727.17 11.80* 8.597E-01 1.208E+00 1.208E+00 123.47 OK 1620.62 2.75 4.684E-01 ---- Line Not Found ---- Absent Final Mean for 1 Valid Peaks = 1.208E+00+/-1.492E+00 (123.47%) PB-212 238.63 44.60* 2.000E+00 1.025E+00 1.025E+00 37.38 300.09 3.41 1.716E+00 2.257E+01 2.257E+01 34.03 <<WM Interf Final Mean for 1 Valid Peaks = 1.025E+00+/-3.832E-01 (37.38%) BI-214 609.31 46.30* 9.927E-01 1.020E+02 1.020E+02 10.18 OK 1120.29 15.10 6.104E-01 1.124E+02 1.124E+02 9.56 OK 1764.49 15.80 4.432E-01 1.201E+02 1.201E+02 9.40 OK 2204.22 4.98 3.885E-01 1.180E+02 1.180E+02 11.00 OK Final Mean for 4 Valid Peaks = 1.123E+02+/-5.615E+00 (5.00%) PB-214 295.21 19.19 1.736E+00 1.113E+02 1.113E+02 9.20 OK 351.92 37.19* 1.529E+00 1.128E+02 1.128E+02 9.24 OK Final Mean for 2 Valid Peaks = 1.121E+02+/-7.302E+00 (6.52%) RN-219 401.80 6.50* 1.383E+00 5.469E+00 5.469E+00 50.48 OK Final Mean for 1 Valid Peaks = 5.469E+00+/-2.761E+00 (50.48%) RA-223 323.87 3.88* 1.626E+00 4.454E+00 4.454E+00 83.69 OK Final Mean for 1 Valid Peaks = 4.454E+00+/-3.728E+00 (83.69%) RA-224 240.98 3.95* 1.987E+00 2.133E+02 2.133E+02 9.40 OK Final Mean for 1 Valid Peaks = 2.133E+02+/-2.006E+01 (9.40%) RA-226 186.21 3.28* 2.308E+00 1.863E+02 1.863E+02 183.21 OK Final Mean for 1 Valid Peaks = 1.863E+02+/-3.413E+02 (183.21%) PA-234M 1001.03 0.92* 6.658E-01 3.836E+01 3.836E+01 70.75 OK Final Mean for 1 Valid Peaks = 3.836E+01+/-2.714E+01 (70.75%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma
Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status
TH-234 63.29 3.80* 2.884E+00 2.577E+01 2.577E+01 23.67 OK

Final Mean for 1 Valid Peaks = 2.577E+01+/-6.100E+00 (23.67%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma Nuclide Energy pCi/gram pCi/gram %Error %Abn %Eff Status GA-67 93.31 35.70* 7.998E+02 351.84 2.914E+00 3.508E+00 OK 208.95 2.24 2.166E+00 ---- Line Not Found -----Absent 300.22 16.00 1.716E+00 4.812E+00 1.097E+03 353.13 <<WM Interf

Final Mean for 1 Valid Peaks = 7.998E+02+/-2.814E+03 (351.84%)

NB-95M 235.69 25.00* 2.015E+00 2.782E+00 3.753E+02 21.34 OK

Final Mean for 1 Valid Peaks = 3.753E+02+/-8.010E+01 (21.34%)

LA-140 328.77 20.50 1.608E+00 1.397E+00 5.579E+00 59.29 OK 487.03 45.50 1.189E+00 7.597E-01 3.033E+00 51.99 OK 7.833E-01 ---- Line Not Found ----815.85 23.50 Absent 1596.49 95.49* 4.731E-01 3.081E-01 1.230E+00 70.56 OK

Final Mean for 3 Valid Peaks = 1.846E+00+/-7.410E-01 (40.13%)

LU-173 100.72 5.24 2.881E+00 ---- Line Not Found ---- Absent 272.11 21.20* 1.836E+00 7.378E+00 7.644E+00 18:13 OK

Final Mean for 1 Valid Peaks = 7.644E+00+/-1.386E+00 (18.13%)

AM-243 74.67 66.00* 2.939E+00 1.208E+01 1.208E+01 9.89 OK

Final Mean for 1 Valid Peaks = 1.208E+01+/-1.195E+00 (9.89%)

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma
Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status
CD-109 88.03 3.72* 2.931E+00 1.395E+01 1.449E+01 39.60 OK

Final Mean for 1 Valid Peaks = 1.449E+01+/-5.738E+00 (39.60%)

SN-126 87.57 37.00* 2.932E+00 1.402E+00 1.402E+00 39.15 OK

Final Mean for 1 Valid Peaks = 1.402E+00+/-5.487E-01 (39.15%)

CE-141 145.44 48.40* 2.589E+00 1.021E+00 1.761E+00 44.26 OK

Final Mean for 1 Valid Peaks = 1.761E+00+/-7.793E-01 (44.26%)

Nuclide Line Activity Report (continued) Page: 7
Sample ID: 1201163-09 Acquisition date: 22-FEB-2012 12:32:42

Flag: "*" = Keyline

Page: 8 Acquisition date: 22-FEB-2012 12:32:42

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40 GA-67 NB-95M CD-109 SN-126 LA-140 CE-141 LU-173 PB-210 BI-212 PB-212 BI-214 PB-214 RN-219 RA-223 RA-224 RA-226 PA-234M	1.962E+01 7.998E+02 3.753E+02 1.449E+01 1.402E+00 1.846E+00 1.761E+00 7.644E+00 7.500E+01 1.208E+00 1.025E+00 1.123E+02 1.121E+02 5.469E+00 4.454E+00 2.133E+02 1.863E+02 3.836E+01	3.563E+00 2.814E+03 8.010E+01 5.738E+00 5.487E-01 7.410E-01 7.793E-01 1.386E+00 7.697E+00 1.492E+00 3.832E-01 5.615E+00 7.302E+00 2.761E+00 3.728E+00 2.761E+01 3.413E+02 2.714E+01	2.545E+00 1.533E+02 1.227E+02 7.359E+00 7.790E-01 1.081E+00 8.429E-01 1.108E+00 5.062E+00 1.931E+00 5.144E-01 4.751E-01 5.968E-01 3.654E+00 5.747E+00 5.747E+00 7.433E+00 2.878E+01	2.158E-01 5.387E+02 1.005E+01 8.546E-01 7.743E-02 8.870E-02 1.942E-01 9.005E-02 3.907E-01 1.765E-01 4.212E-02 4.419E-02 4.936E-02 3.030E-01 4.789E-01 1.361E+01 2.333E+00	7.710 5.219 3.058 1.969 1.799 1.708 2.089 6.898 14.817 0.626 1.993 236.382 187.751 1.496 0.775 36.483 25.062 1.333
TH-234 AM-243	2.577E+01 1.208E+01	6.100E+00 1.195E+00	6.800E+00 4.190E-01	5.038E-01 3.566E-02	3.789 28.839

Nuclide	<pre>Key-Line Activity K.L. (pCi/gram) Ided</pre>	Act error	MDA (pCi/gram)	MDA error	Act/MDA
BE-7 NA-22 AL-26 TI-44 SC-46 V-48 CR-51 MN-54 CO-56	1.189E-01 -3.060E-02 -3.150E-02 5.164E-01 + -2.783E-02 1.105E-01 -2.166E-01 1.738E-02 3.316E-02 -2.455E-02	1.920E+00 1.875E-01 1.040E-01 1.991E-01 1.958E-01 4.718E-01 2.965E+00 1.811E-01 2.138E-01 1.654E-01	2.967E+00 2.745E-01 1.690E-01 2.839E-01 3.273E-01 7.929E-01 4.260E+00 2.734E-01 3.230E-01 2.661E-01	2.616E-01 2.246E-02 1.350E-02 2.224E-02 2.619E-02 6.408E-02 3.714E-01 2.320E-02 2.710E-02 2.569E-02	0.040 -0.111 -0.186 1.819 -0.085 0.139 -0.051 0.064 0.103 -0.092
CO-58 FE-59 CO-60 ZN-65 SE-75 RB-82 RB-83 KR-85 SR-85 Y-88 NB-93M NB-94 NB-95	8.262E-03 -1.144E-01 1.144E-01 1.255E-01 -1.384E-01 -4.934E-01 1.330E-01 6.608E+01 3.779E-01 2.217E-01 -4.316E+01 1.036E-01 3.937E+00	2.071E-01 4.566E-01 1.607E-01 3.873E-01 3.473E-01 2.620E+00 3.498E-01 3.345E+01 1.913E-01 1.463E-01 9.887E+00 1.573E-01 4.879E-01	3.130E-01 6.723E-01 2.716E-01 5.808E-01 4.362E-01 3.598E+00 5.753E-01 5.261E+01 3.009E-01 2.486E-01 2.059E-01 2.673E-01 6.005E-01	2.719E-02 5.995E-02 2.220E-02 4.760E-02 3.582E-02 3.198E-01 9.128E-02 4.738E+00 2.710E-02 1.975E-02 4.581E-02 2.185E-02 5.378E-02	0.026 -0.170 0.421 0.216 -0.317 -0.137 0.231 1.256 1.256 0.892 -209.658 0.388 6.556

	Vo. Time					
	Key-Line Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide		Ided	ACC GIIOI	(pCi/gram)	INDA CITOI	1100/11011
1.001100	(201) 314)	raca		(po1, g1a,		
ZR-95	3.090E-02		3.251E-01	5.508E-01	5.420E-02	0.056
RU-103	-1.942E-01		2.210E-01	3.705E-01	5.317E-02	-0.524
RU-106	-1.063E+00		1.459E+00	2.177E+00	3.008E-01	-0.488
AG-108M	3.062E-01		2.176E-01	2.747E-01	2.516E-02	1.115
AG-110M	1.334E-02		1.556E-01	2.382E-01	2.224E-02	0.056
SN-113	2.728E-01		3.391E-01	4.286E-01	3.637E-02	0.636
TE123M	1.392E-01		2.249E-01	3.326E-01	2.754E-02	0.418
SB-124	1.890E-01		2.059E-01	3.201E-01	2.974E-02	0.590
I-125	-2.552E+00		2.770E+00	4.523E+00	4.104E-01	-0.564
SB-125	4.430E-01		4.944E-01	8.557E-01	7.411E-02	0.518
SB-126	2.473E+00	+	1.578E+00	1.940E+00	1.778E-01	1.275
SB-127	2.586E+01		3.620E+01	6.217E+01	5.772E+00	0.416
I-129	-4.889E-01		2.680E-01	4.277E-01	4.490E-02	-1.143
I-131	-5.689E-01		1.525E+00	2.362E+00	1.952E-01	-0.241
TE-132	-1.798E+00	_	3.844E+01	6.078E+01	4.975E+00	-0.030
BA-133	1.903E+00	+	4.831E-01	5.991E-01	7.774E-02	3.177
CS-134 CS-135	2.635E-01		1.671E-01	2.608E-01	2.429E-02	1.010
CS-135	4.933E+00 3.699E-01		1.038E+00 8.689E-01	1.559E+00	1.269E-01 1.104E-01	3.165 0.282
CS-136 CS-137	1.430E-01			1.311E+00 2.562E-01	2.396E-02	0.558
LA-138	-1.035E-01		1.485E-01 2.505E-01	4.063E-01	3.338E-02	-0.255
CE-139	4.942E-02		2.305E-01 2.105E-01	3.367E-01	2.691E-02	0.147
BA-140	2.129E+00		2.105E-01 2.200E+00	3.612E+00	1.202E+00	0.590
CE-144	-4.108E-01		1.368E+00	2.192E+00	2.026E-01	-0.187
PM-144	1.569E-01		1.548E-01	2.407E-01	2.229E-02	0.652
PM-145	-1.050E+00		9.167E-01	9.921E-01	6.461E-01	-1.058
PM-146	3.975E-01		4.533E-01	5.723E-01	4.963E-02	0.695
ND-147	-3.128E+00		4.968E+00	8.395E+00	7.623E-01	-0.373
EU-152	1.871E+01	+	2.692E+00	3.121E+00	3.305E-01	5.994
GD-153	-6.644E-01	•	6.122E-01	9.754E-01	9.544E-02	-0.681
EU-154	-9.030E-02		5.208E-01	7.621E-01	6.237E-02	-0.118
EU-155	2.487E+00		7.692E-01	9.780E-01	9.599E-02	2.543
EU-156	-1.151E+00		4.895E+00	7.327E+00	1.675E+00	-0.157
HO-166M	4.791E-02		2.777E-01	4.238E-01	3.900E-02	0.113
HF-172	9.378E-02		1.226E+00	1.973E+00	1.877E-01	0.048
LU-172	7.011E-02		3.490E+00	5.814E+00	4.756E-01	0.012
HF-175	1.141E-01		2.795E-01	3.527E-01	2.917E-02	0.323
LU-176	1.327E-01		1.619E-01	2.358E-01	1.935E-02	0.563
TA-182	5.680E+01	+	5.428E+00	3.060E+00	2.505E-01	18.564
IR-192	7.006E-01		4.573E-01	5.849E-01	5.124E-02	1.198
HG-203	-1.638E-01		2.983E-01	4.272E-01	3.571E-02	-0.383
BI-207	2.050E-01	+	1.823E-01	2.342E-01	2.158E-02	0.875
TL-208	1.390E+00		5.164E-01	8.071E-01	7.464E-02	1.722
BI-210M	5.796E-01		3.992E-01	5.144E-01	4.196E-02	1.127
PB-211	9.386E+00	+	5.405E+00	8.904E+00	7.403E-01	1.054
RA-225	-1.093E+00		1.499E+00	2.266E+00	1.896E-01	-0.483
TH-227	6.053E+00	+	1.292E+00	2.209E+00	1.808E-01	2.741
AC-228	6.535E-01		6.003E-01	1.023E+00	8.130E-02	0.639

Combined Activity-MDA Report (continued) Page: 10 Sample ID: 1201163-09 Acquisition date: 22-FEB-2012 12:32:42

Nuclide	Key-Line Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
TH-230	1.317E+02	+	5.078E+01	7.234E+01	5.653E+00	1.821
PA-231	8.368E+00		8.025E+00	1.026E+01	8.406E-01	0.816
TH-231	1.798E+00		1.217E+00	2.010E+00	2.457E-01	0.894
PA-233	4.406E-01		7.688E-01	1.108E+00	2.471E-01	0.398
PA-234	2.804E-01		6.748E-01	1.087E+00	1.014E-01	0.258
U-235	4.686E+00	+	1.954E+00	2.334E+00	4.115E-01	2.008
NP-237	6.041E+00		1.868E+00	2.375E+00	2.331E-01	2.543
AM-241	1.113E+00		5.163E-01	6.915E-01	4.897E-02	1.610
CM-243	1.209E+00		1.138E+00	1.663E+00	1.348E-01	0.727

Summary of Nuclide Activity Page: 11

Acquisition date : 22-FEB-2012 12:32:42 Sample ID : 1201163-09

Total number of lines in spectrum 109 Number of unidentified lines 66

Number of lines tentatively identified by NID 43 39.45%

Nuclide Type : NATURAL

	4 +						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error F	lags
K-40	1.28E+09Y	1.00	1.962E+01	1.962E+01	0.356E+01	18.16	_
PB-210	22.26Y	1.00	7.484E+01	7.500E+01	0.770E+01	10.26	
BI-212	1.41E+10Y	1.00	1.208E+00	1.208E+00	1.492E+00	123.47	
PB-212	1.41E+10Y	1.00	1.025E+00	1.025E+00	0.383E+00	37.38	
BI-214	1602.00Y	1.00	1.123E+02	1.123E+02	0.056E+02	5.00	
PB-214	1602.00Y	1.00	1.120E+02	1.121E+02	0.073E+02	6.52	
RN-219	3.28E+04Y	1.00	5.469E+00	5.469E+00	2.761E+00	50.48	
RA-223	3.28E+04Y	1.00	4.454E+00	4.454E+00	3.728E+00	83.69	
RA-224	1.41E+10Y	1.00	2.133E+02	2.133E+02	0.201E+02	9.40	
RA-226	1602.00Y	1.00	1.863E+02	1.863E+02	3.413E+02	183.21	
PA-234M	4.47E+09Y	1.00	3.836E+01	3.836E+01	2.714E+01	70.75	
TH-234	4.47E+09Y	1.00	2.577E+01	2.577E+01	0.610E+01	23.67	
	Total Nat		7 0477.00	E 040E.00			

Total Activity: 7.947E+02 7.949E+02

Nuclide Type : ACTIVATION

11401140	-150 . 11013	C A 1-1 T O 14				
			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
GA-67	3.26D	228.	3.508E+00	7.998E+02	28.14E+02	351.84
NB-95M	3.61D	135.	2.782E+00	3.753E+02	0.801E+02	21.34
LA-140	12.79D	3.99	4.625E-01	1.846E+00	0.741E+00	40.13
LU-173	1.37Y	1.04	7.378E+00	7.644E+00	1.386E+00	18.13
AM-243	7380.00Y	1.00	1.208E+01	1.208E+01	0.120E+01	9.89

Total Activity : 2.621E+01 1.197E+03

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error		ıs
CD-109	464.00D	1.04	1.395E+01	1.449E+01	0.574E+01	39.60	•
SN-126	1.00E+05Y	1.00	1.402E+00	1.402E+00	0.549E+00	39.15	
CE-141	32.50D	1.72	1.021E+00	1.761E+00	0.779E+00	44.26	
	Total Nati		1 (277.01	1 5655 01			

Total Activity : 1.637E+01 1.765E+01

Grand Total Activity: 8.373E+02 2.009E+03

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116309_GE1_GAS1102_176256.CNF; 1

Title :

Sample Title: JM-66-31-120128

Start Time: 22-FEB-2012 12:32 Sample Time: 28-JAN-2012 00:00 Energy Offset: 3.84457E-01 Real Time: 0 01:00:30.59 Sample ID : 1201163-09 Energy Slope: 9.99792E-01

Live Time : 0 01:00:00.00 Sample Type: SOLID Energy Quad : 0.00000E+00

Channel

1:	0	0	0	0	0	0	0	0
9:	0	0	0	0	0	0	0	0
17:	0	9	1325	1656	1564	1784	2012	1798
25:	1619	1542	1709	1593	1445	1510	1598	1778
33:	1637	1599	1569	1687	1764	1652	1757	1900
41:	1886	1934	2114	2171	2491	5851	5000	2151
49:	2412	2892	2418		3854	3100	2642	2760
				2746				4441
57:	2862	3069	3424	3548	3731	4006	5609	
65:	3849	3788	4217	4412	3895	4085	4116	4060
73:	4623	8210	13840	8355	20756	8721	4751	4206
81:	4542	3340	3866	5430	3305	3662	7666	5492
89:	3552	4729	3070	4003	4784	3186	3076	2255
97:	2298	2502	2293	2212	2133	2138	2194	2093
105:	2148	2202	2138	2182	2298	2252	2301	2324
113:	2481	2233	2232	2185	2222	1991	2188	2165
121:	2103	2252	2183	2180	2225	2305	2146	2242
129:	2294	2184	2328	2136	2223	2231	2203	2148
137:	2309	2301	2168	2298	2329	2284	2377	2977
145:	2576	2285	2275	2292	2399	2369	2435	2327
153:	2434	2805	2554	2331	2352	2211	2224	2143
161:	2107	2148	2182	2119	2088	2002	2066	1949
169:	1991	1969	1965	1872	2047	1894	1840	1888
177:	1894	1979	1902	1916	1980	2020	1999	2113
185:	3034	8437	5076	2080	1964	1924	1892	1850
193:	1719						1665	1718
		1744	1763	1806	1797	1751		
201:	1741	1666	1724	1630	1721	1641	1637	1510
209:	1567	1450	1628	1551	1418	1498	1435	1407
217:	1428	1450	1372	1440	1374	1362	1295	1476
225:	1372	1380	1320	1386	1328	1348	1336	1314
233:	1302	1311	1442	1988	1507	1391	1626	1392
241:	3131	9704	3911	1298	1231	1214	1141	1117
249:	1120	1089	1080	1052	1108	1038	1196	1385
257:	1256	1214	1580	1223	1004	1016	1038	1039
265:	990	1004	1007	1046	1499	1651	1456	1419
273:	1061	1177	1340	1019	930	964	925	950
281:	957	966	983	1014	1003	1006	986	940
289:	942	917	915	989	1135	3075	16909	11148
297:	1419	1103	1170	1240	877	833	889	859
305:	879	825	677	744	761	759	760	731
313:	781	847	773	722	711	765	735	722
321:	710	734	736	898	760	717	737	773
329:	794	912	787	674	75 4	822	785	738
337:	707	912	849	701	718	681	722	722
345:	700	710	705	769	970	1334	9242	31344
353:	10577	1253	1061	1145	766	584	545	525
361:	550	559	515	545	573	535	533	538
369:	539	603					565	
377:			550 553	582	615	560 530		546
3//: 385:	530 570	586 633	553	553	559	539	542	513
	578 573	622	768	722	819	610	554	581
393:	573 670	581	577	555	572	572	600	587
401:	670	778	654	610	749	703	589	553
409:	642	536	575	564	593	560	576	561
417:	551	593	575	595	548	613	592	540
425:	566	594	591	540	557	510	501	503

433:	471	420	446	435	397	444	444	439
441:	454	407	401	443	466	463	436	429
449:	386	397	403	398	353	402	565	430
457:	346	373	385	388	448	503	440	386
							382	359
465:	357	338	393	355	396	465		
473:	375	405	402	371	352	364	358	437
481:	495	366	334	342	335	387	498	424
489:	345	329	333	324	343	331	314	315
497:	305	321	299	334	322	331	339	318
505:	343	310	289	307	400	458	465	419
513:	355	291	314	279	296	276	302	331
521:	297	301	315	321	291	265	297	297
529:	270	320	311	267	346	418	317	302
537:	327	298	322	276	284	251	299	341
545:						287	264	293
	296	276	301	309	255			
553:	278	264	245	290	281	278	297	286
561:	267	282	264	250	260	303	250	274
569:	295	313	306	290	278	263	270	286
577:	275	274	270	400	351	289	356	303
585:	254	281	257	256	220	260	221	240
593:	253	245	292	225	242	222	280	258
601:	283	267	242	292	296	292	508	2500
609:	16181	16185	2455	554	559	506	282	234
617:	238	211	189	207	215	192	166	194
625:	206	196		207 176	197	209	185	199
			218					
633:	231	205	185	172	175	197	218	195
641:	190	185	190	184	177	195	204	180
649:	218	207	175	179	191	176	175	183
657:	182	172	187	187	202	195	191	244
665:	583	635	299	183	188	216	159	194
673:	160	186	169	154	174	177	194	188
681:	170	189	215	216	182	190	185	189
689:	196	170	192	170	181	211	192	179
697:	207	210	195	191	200	208	354	264
705:	238	211	196	211	200	197	214	171
713:	185	194					191	320
			164	190	171	167		
721:	262	218	188	179	198	193	209	
729:	190	164	157	174		202	158	159
737:	160	174	162	162	183	256	233	
745:	165	187	157	186			189	
	202	190	188	159	163	187	165	144
	164	157	170	192	173	259	377	1384
769:	1706	505	217	193	175	181	172	180
777:	151	174	170	181	172	181	176	174
785:	292	559	382	200	165	170	161	172
793:	157	190	184	173	164	158	180	
801:	164	149	189	173	220	511	526	216
809:	174	172	146	161	157	170	178	
817:	160	169						
			173	162	230	196	171	178
825:	188	214	186	165	174	169	186	242
833:	184	147	199	172	166	226	365	305
841:	186	194	183	173	193	184	156	188
849:	176	178	168	174	162	169	157	159
857:	176	166	205	176	183	196	152	203
865:	174	148	162	168	178	158	190	198
873:	191	193	153	220	175	170	191	186
881:	176	196	195	190	151	160	182	160
889:	182	166	175	176	189	153	169	176
897:	165	175	181	218	183	175	178	211
905:	178	185	188	181		187	205	222
	±,/0	100	100	101	TOT	10/	200	~ ~ ~

913:	163	169	155	164	159	153	154	145
921:	167	151	141	135	175	165	167	162
929:	147	175	173	157	353	892	817	254
937:	135	179	181	146	162	151	158	149
945:	151	161	141	153	160	139	149	161
953:	143	155	148	161	160	140	152	158
961:	153	155	186	257	246	165	156	175
969:	188	158		148	154	153	142	162
909: 977:			140			133	150	146
985:	135	142	139	135	133		150	158
	138	140	144	144	116	149		178
993:	138	135	138	143	129	141	148	
1001:	195	201	149	143	127	145	148	124
1009:	132	142	133	124	127	165	138	150
1017:	162	142	145	127	121	143	131	115
1025:	132	128	137	114	120	142	129	143
1033:	156	114	125	115	113	118	137	129
1041:	117	115	140	118	128	137	130	141
1049:	146	117	150	200	192	134	116	136
1057:	124	118	139	121	119	121	107	122
1065:	110	115	141	139	130	191	175	122
1073:	105	98	113	113	120	111	134	110
1081:	125	116	100	129	139	120	113	131
1089:	81	112	112	119	105	133	112	97
1097:	109	139	112	100	97	102	112	171
1105:	142	128	106	114	128	117	120	116
1113:	122	108	104	108	126	171	626	2815
1121:	3608	1210	233	190	173	142	109	123
1129:	120	117	119	124	156	158	139	124
1137:	125	104	97	108	103	126	105	111
1145:	113	110	120	110	112	112	107	113
1153:	109	185	435	484	238	141	95	108
1161:	107	97	95	113	84	91	106	84
1169:	96	111	103	98	111	130	92	115
1177:	96	101	114	105	102	128	110	117
1185:	110	105	109	100	122	105	95	82
1193:	96	96	111	98	111	108	110	95
1201:	105	86	94	107	94	99	141	188
1209:	139	114	88	102	91	92	94	102
1217:	98	94	108	87	87	112	82	97
1225:	98	100	103	99	102	98	91	79
1233:	110	107	110	119	353	1136	1286	430
1241:	138	133	116	96	88	73	77	95
1249:	94	79	97 95	96 101	147	165	133	88
1257:	85	95	95	83	95	98	85	100
1265:	90	72	87	93	92	97	94	95
1273:	90	95	103	101	77	103	102	175
1281:	369	328	146	90	95	74	94	101
1289:	95	89	89	83	76	76	83	97
1297:	95 82	95	88	78	81	84	93	107
1305:	99	72	82	78	98	78	73	93
1313:	78	90	83	85	91	101	84	82
1321:	80	77	66	63	73	95	73	78
1329:	77	93	79	86	62	81	85	89
1337:	102	64	84	88	83	77	92	74
1345:	91	64	82	83	63	95	86	70
1353:	90	77	87	78	83	90	80	78
1361:	96	72	6 <i>9</i>	67	89	72	80	79
1369:	77	81	77	99	70	7 <u>9</u>	68	146
1377:	487	995	633	178	92	100	99	91
1385:	167	223	114	77	92	71	67	65
		-	-	• •		• -	- *	

1393:	85	68	76	83	72	59	75	108
1401:							204	459
	235	345	219	124	83	99		
1409:	482	193	106	92	76	63	91	90
1417:	80	69	75	77	83	91	83	80
1425:	91	98	93	77	85	88	68	88
1433:	76	83	71	70	71	79	84	81
1441:	88	70	66	89	78	87	100	67
1449:	75	81	69	77	74	73	82	86
1457:	83	71	94	195	417	358	142	88
1465:	89	93	69	80	76	57	86	76
1473:	88	76	79	88	84	103	102	92
1481:	89				94		86	92
1481:		104	84	70		82		
	85	82	102	76	85	75	91	106
1497:	78	87	83	89	75	80	86	71
1505:	89	81	91	144	400	497	223	108
1513:	92	95	76	79	101	97	88	95
1521:	75	75	85	104	86	96	83	95
1529:	78	88	89	101	98	78	90	94
1537:	90	152	164	103	89	92	142	143
1545:	100	60	84	83	56	66	59	60
1553:	73	55	70	61	63	56	52	69
1561:	69	51	61	59	71	62	61	53
1569:	55	44	57	59	58	47	49	41
1577:	63	46	66	56	82	84	129	197
1585:	106	57	68	63	73	60	58	61
1593:	70	68	89	96	73 72	64	82	115
1601:	70 70	70	66	50	51	47	61	52
1609:	46	63		50	54	46	49	55
			51 52					
1617:	53	50	52	50	42	53	36	49
1625:	47	44	38	31	59	37	44	49
1633:	44	41	43	48	33	31	45	41
1641:	25	41	32	45	43	37	30	32
1649:	30	37	31	34	41	42	32	35
1657:	40	42	41	71	160	247	120	50
1665:	37	30	34	28	34	33	35	38
1673:	34	39	28	32	32	18	29	26
1681:	30	39	51	54	60	41	34	31
1689:	18	32	31	60	58	81	49	29
1697:	23	22	23	27	25	24	28	22
1705:	3.6	30	27	30	39	27	29	16
1713:		28	25	21	31	31	26	27
1721:	25	25	37	22	31	35	37	85
1729:	326	572	436	116	44	41	29	21
1737:	22	33	25	15	20	17	31	23
1745:	32	30	20	22	24	21	25	22
1753:	17	33	26	21	17	25 25	25 27	29
1761:	24			1402	2672			
1769:		70	320	1403	2673	1653	453	97
	87	70	33	32	18	24	16	24
1777:	11	17	20	20	19	27	24	23
1785:	20	11	22	18	19	28	20	21
1793:	19	17	16	12	29	16	20	15
1801:	13	17	24	22	18	28	19	13
1809:	24	14	18	27	18	24	24	23
1817:	20	21	19	26	19	18	22	14
1825:	30	18	21	21	19	19	27	25
1833:	11	17	20	16	27	50	73	49
1841:	29	34	13	10	18	66	244	396
1849:	224	63	26	25	27	17	19	15
1857:	23	22	18	17	8	17	24	29
1865:	18	23	16	14	26	23	20	32

1873:	48	4.0	2.5	2.5	0.1	10	10	2.2
		49	35	25	21	19		23
1881:	16	24	21	16	26	21	20	29
1889:	25	27	46	34	21	22	17	45
1897:	53	31	24	23	23	23	26	22
1905:	13	19	16	32	24	16	24	15
1913:	12	18	13	20	16	20	18	19
1921:	25	18	25	20	15	21	19	23
1929:	9	24	12	13	20	18	24	38
1937:	34	39	37	19	26	23	13	20
1945:	20	22	18	11	23	16	23	22
1953:	13	22						
			17	24	23	23	38	18
1961:	20	28	32	12	22	26	23	21
1969:	16	24	23	27	14	14	20	22
1977:	13	17	12	13	16	17	12	14
1985:	18	18	19	20	16	19	14	21
1993:	8	17	13	18	16	16	16	16
2001:	19	9	12	10	8	19	10	18
2009:	21	13	17	31	12	18	25	17
2017:	22	26	21	15	7	24	18	11
2025:	15	8	8	15	, 9	17	10	14
2033:	19	6	14	16	9	17	15	14
2041:	18	12	10	12	18	13	9	10
2041:	12							
		14	16	20	24	15	17	15
2057:	9	18	10	14	6	11	10	8
2065:	14	9	9	13	10	10	14	8 9
2073:	14	16	10	8	7	7	11	9
2081:	6	7	10	5	12	7	15	11
2089:	17	14	16	5 5	6	8	8	11
2097:	6	11	10	8	9	10	8	5
2105:	10	14	10	5	10	16	17	13
2113:	5	9	7	14	30	108	181	111
2121:	50	9	12	5	6	10	7	8
2129:	6	7	8	7	8	6	4	11
2137:		6	5	8	4	9	7	10
2145:	3 4	5	5	0	3			
2153:	5	7		8	3	4	9	3
	~	,	12	7	5	3	4	11
2161:	7	10	7	8	6 6	9	7	7
2169:	13	3	6	5	6	4	4	14
2177:	9	7	5	3	7	7	1	8
2185:	8	10	5	7	10	11	11	16
2193:	18	15	7	7	3	7	10	7
2201:	13	38	180	517	644	309	68	34
2209:	20	17	5	8	7	7	5	
2217:	1	5	8	6	3 2	4	7	4
2225:	3	4	3	6	2	8	3	3
2233:	1	5	3	5	1	4	5	3
2241:	6	5 2	2	7	1 5 1 3 3	5	6	6
2249:	5	4	4	7	1	8		7
2257:	1	4	7		, T		3 2	,
2265:	3	4		1	3	6	2	3
		9	4	5	3	4	3	3
2273:	4	2	5	4		3	6	9 4 3 6 7 3 6 5 16
2281:	2	5	0	4	3	10	3	5
2289:	4	3	5	15	24	40	28	
2297:	6	5	2	1	5		1	4
2305:	7	3	1	1	3	3	4	4
2313:	6	3	5	2	5 3 2	3 3 3	5	1
2321:	2	2	Ō	3	$\frac{-}{4}$		5	2
2329:	3	4	5	5	ī	5	Ö	1 2 1
2337:	3	9 2 5 3 5 3 2 4 2 2	2	4	1	4 5 1	Ö	1
2345:	2	2	1	2	1 3	3	3	3
	2	4	_	4	3	3	3	3

2353:	1	4	2	1	2	4	4	0
2361:	1	ō	3	3	2	ī	1	3
2369:	3	ō	4	1	2	1	2	4
2377:	5	3	5	2	1	1	2	i
2385:	2	2	2	1	1	2	2	0
2393:	1	0	3	2	0	2	1	6
2401:	1	1				2		
2401:	3		4	1	1	2	3	1
		1	5	0	0	1	1	3
2417:	1	1	2	2	2	2	3	1
2425:	5	2	0	3	3	3	3	1
2433:	0	2	1	1	2	1	3	0
2441:	0	3	1	3	8	21	97	186
2449:	151	56	14	8	6	1	0	3
2457:	1	0	0	0	1	0	3	2
2465:	1	1	3	1	1	2	2	2
2473:	2	2	0	0	2	3	2	0
2481:	1	5	5	3	1	2	0	3
2489:	1	1	2	1	1	1	0	1
2497:	2	1	1	1	0	0	2	0
2505:	0	2	3	0	2	0	1	Ō
2513:	1	1	0	ĺ	ī	Ö	ī	1
2521:	0	2	1	0	ī	ĺ	ō	1
2529:	2	ī	ī	ĺ	Ō	ī	1	2
2537:	_ 1	ō	Ō	0	ő	3	Ō	2
2545:	ō	ĺ	ő	Ö	ő	1	0	2
2553:	Ö	2	ĭ	Ö	Ö	1	1	2
2561:	2	0	0	1	4	0	0	0
2569:	0	ő	Ö	2	0	0	0	1
2577:	ő	1	0	0	2	1	1	
2585:	2	0	2	0	1	0	1	0 1
2593:	1	2	0		1		1	
2601:	0	0		1		0		0
2609:	0		1	0	0	0	2	0
2617:	7	2	1	0	6	15	23	11
2625:		3	1	2	2	1	0	0
	2	0	0	1	2	0	0	0
2633:	0	Ţ	1	0	0	1	1	0
2641:	1	0	1	2	0	1	1	1
2649:	0	0	1	1	1	1	0	1
2657:	0	1	1	0	1	0	2	0
2665:	0	2	1	0	1	0	2	0
2673:	0	1	0	2	1	1	1	4
2681:	0	1	1	0	2	0	1	0
2689:	0	1	0	1	0	1	5	3
2697:	0	1	1	0	1	0	1	0
2705:	0	0	0	0	0	1	0	1
2713:	0	1	0	0	0	0	0	1
2721:	0	0	0	1	1	0	0	2
2729:	1	1	0	2	0 -	0	0	4
2737:	0	. 0	0	0	3	0	0	0
2745:	1	1	0	0	0	0	1	1
2753:	0	Ð	0	1	0	1	1	0
2761:	0	1	1	0	0	1	0	1
2769:	1	3	3	1	0	0	Ō	0
2777:	1	0	2	0	Ō	Ö	Ö	Ö
2785:	1	1	1	Ō	Ō	1	Ö	1
2793:	1	1	0	1	Ö	Ō	ĺ	0
2801:	0	1	Ö	ō	ō	Ö	ō	1
2809:	0	0	Ö	Ö	Ö.	ŏ	Ö	0
2817:	0	1	1	Ö	Ö	Ö	Ö	1
2825:	0	0	0	Ö	ĺ	Ŏ.	Ö	0
		-	-	Ŭ	-	•	•	J

2833:	0	2	1	0	0	0	0	0
2841:	i	Õ	Ō	1	ŏ	ő	ő	2
2849:	Ō	Ö	3	Ō	. 0	ő	Ö	0
2857:	Ö	0	0	1	2	0	Ö	0
2865:	1					1	1	1
		0	1	0	0			
2873:	1	0	0	0	0	0	1	1
2881:	2	1	0	1	0	1	1	1
2889:	0	0	0	0	1	1	2	0
2897: 2905:	0	0	0	0	0	0	0	1 0
	0	0	0	2	0	0	0	
2913: 2921:	2	1	1	0	0	0	0	1
2921: 2929:	0	2	4	1	0	0	0	0
2929: 2937:	0	0	0	0	1	0	0	0
	0	0	1	1	0	0	0	0
2945:	0	0	0	1	0	1	0	0
2953: 2961:	1	0	0	0	0	0	1	0
	1	0	0	1	0	0	1	1
2969: 2977:	0	0	0	1	0	0	0	1 0
2977: 2985:	1	2	2	1	1	0	0	
2985: 2993:	2	0	0	1	1	0	1	1
	0	0	0	0	0	1	0	1
3001: 3009:	0	0	0	0	0	1	0	0
3009:	0	0	0	2	0	0	0	0
3017:	0	0	0	0	0	0	0	1
3025:	1	0	2	0	0	0	0	0
3041:	0 0	0	1	0	0	0	0	1
3041:	0	1	0	0	0	0	0 2	1 2
3057:	2	0	1	0	1	3 0	0	0
3065:	0	1	0	0	0	0	0	0
3073:	0	0 0	0	0	0			0
3073:	0	0	0	0	0	1 0	0 0	1
3089:	0	0	0	0	0	0	0	0
3097:	0	0	1 0	0	0	0	1	0
3105:	1	0	0	1 0	0 0	0	1	0
3113:	0	0	0	_	•	0	0	0
3121:	0	0		0	1	0	0	0
3129:	0	1	1 0	0 0	1 1	0	1	0
3137:	Ö	0	1	0	0	0	0	0
3145:	ő	0	1	0	0	0	0	0
3153:	Ö	0	1	1	0	Ö	Ö	0
3161:	Õ	1	2	1	0	Ö	Ö	Ö
3169:	Ö	Ō	Õ	0	Ö	ő	Ö	1
3177:	Ö	Ö	ŏ	ő	ŏ	ŏ	Ö	1 0
3185:	ĺ	Ö	ĺ	ĺ	Ö	ŏ	Ö	1
3193:	Ö	Ö	Ō	Ō	1	Ö	ĺ	1
3201:	Ö	Ö	Ö	ĭ	Ō	ŏ	Ō	0
3209:	1	Ö	ĺ	Ō	Ö	Ö	Ö	Ö
3217:	0	Ō	0	Ö	Ö	0	Ö	Ö
3225:	0	0	Ō	ĺ	Ö	Ō	Ö	0
3233:	1	Ō	Ö	ō	1	Ō	Ö	1
3241:	Ō	Ō	Ö	1	ō	Ö	Ö	0
3249:	0	Ö	Ö	ō	ĺ	Ö	ĺ	Ō
3257:	0	Ö	Ö	Ö	ī	Ö	Ō	Ö
3265:	1	Ō	Ō	Ö	0	Ö	Ō.	Ō
3273:	1	0	1	Ö	Ö	Ö	ĺ	Ö
3281:	0	0	Ō	1	0	Ö	ī	2
3289:	1	0	0	ī	1	1	Ō	1
3297:	0	0	Ō	1	0	0	Ō	0
3305:	0	1	0	0	0	0	0	0

3313:	0	0	0	0	0	0	0	0
3321:	0	2	1	0	0	0	0	0
3329:	0	0	0	0	1	0	0	0
3337:	1	0	0	0	0	0	1	0
3345:	0	1	0	0	0	0	0	0
3353:	1	0	0	0	0	0	0	0
3361:	0	0	0	0	1	0	0	0
3369:	0	0	1	0	0	1	0	0
3377:	1	0	0	0	0	0	0	1
3385:	0	0	0	0	0	0	0	0
3393:	0	0	0	0	0	2	0	0
3401: 3409:	0	0	0	0	0	0	0	2 0
3409: 3417:	0 0	1 0	0 0	1 0	0 0	1 0	2 0	0
3425:	0	0	0	0	0	1	0	0
3433:	2	1	0	1	0	Ō	1	0
3441:	ō	Ō	ő	Ö	1	ő	Ō	1
3449:	Ö	Ö	Ö	ő	Ō	Ö	Ö	Ō
3457:	Ö	Ö	Ö	Ö	Ö	Ö	0	Ō
3465:	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ō
3473:	0	0	2	ĺ	Ō	0	Ó	0
3481:	0	0	0	0	0	0	0	0
3489:	0	0	0	0	0	0	0	0
3497:	1	1	0	0	0	0	0	0
3505:	0	1	0	0	0	0	0	0
3513:	0	2	1	0	0	0	0	. 1
3521:	0	0	0	0	0	1	0	0
3529:	0	0	0	0	0	0	0	0
3537:	0	0	0	0	0	0	0	1
3545:	0	0	0	0	1	0	0	0
3553:	0	0	0	0	1	0	1	0
3561: 3569:	0 1	0	0	0	0	1	0	1
3569: 3577:	0	0	0	0	0	0 0	0 0	0
3585:	0	0 0	0 0	1 0	1 0	0	0	Ŏ
3593:	0	0	1	1	0	0	0	0
3601:	ő	Ö	Ō	Ō	Ö	Q Q	ŏ	1
3609:	Ö	Ö	Ö	ő	Ö	Ŏ	ő	Ō
3617:	Ö	Ö	1	Ö	Ö	Ŏ	1	Ö
3625:	0	Ō	0	Ö	Ö	Ō	0	0
3633:	0	0	0	1	0	0	1	0
3641:	0	0	0	0	0	1	1	0
3649:	0	0	0	1	0	0	1	1
3657:	0	0	1	0	0	0	Ο ,	0
3665:	0	0	0	0	0	0	0	0
3673:	0	0	0	0	0	0	0	0
3681:	0	0	0	0	0	0	0	0
3689:	0	0	0	0	0	0	0	0
3697: 3705:	0	1	0	0	1	0	0	0
3705: 3713:	0 0	1	0	0	0	0	1	0
3721:	1	0 0	0 0	0 0	1 0	0	1 0	0 0
3721:	0	0	0	0	0	0	1	0
3737:	ő	0	0	0	0	0	0	0
3745:	ő	Ö	Ö	Ö	0	0	Ö	0
3753:	1	Ö	ĺ	Ö	ő	ĭ	ĭ	Ö
3761:	ī	Ö	0	Ö	ő	Ō	1	0
3769:	0	0	Ö	Ö	1	Ö	ō	0
3777:	0	0	0	0	0	. 0	0	1
3785:	0	0	1	0	0	0	2	0

3793:	0	1	0	0	0	1	0	0
3801:	0	0	1	Ō	0	0	0	0
3809:	1	1	0	1	Ō	1	0	0
3817:	0	0	Ō	0	Ö	0	Ō	0
3825:	0	Ō	Ö	Ö	Ö	1	1	Ò
3833:	0	Ō	Ö	Ö	Ö	ō	0	Ō
3841:	1	i	Ö	ĭ	Ö	Ö	ĺ	Ŏ
3849:	Ō	Ō	Ö	Ō	ő	Õ	Ō	Ö
3857:	Ö	ő	Ö	ĺ	ő	ŏ	Ö	Ö
3865:	ő	ő	Ö	0	ő	Ŏ	ő	Ö
3873:	ŏ	ő	Ö	0	Ö	Ö	Ö	0
3881:	Ŏ	Ö	0	0	Ö	Ö	Ö	0
3889:	Ö	Ö	0	1	0	1	0	0
3897:	0	2	0	0	0	0	0	0
3905:	0	0	0	0	0	Ö	0	0
3913:	Ö	0	0	1	0	0	1	0
3921:	0	0	0	0	0	Ö	Ō	0
3929:	0	0	0	0	0	Ö	1	0
3937:	0	0	2	0	0	1	0	0
3945:	0	0	0	0	0	0	1	0
3953:	0	1	0		0	0	0	
3961:	0	2	0	0		0	0	0
3969:	0	0		1	0			0
3977:	0	0	0	0	0	0	0	0
3985:	0		0	0	0	0	0	0
3993:	0	1	0	0	1	0	0	0
4001:	0	0	0	0	0	0	0	0
4001:	0	0	0	0	0	0	0	0
4009:	0	0	0	0	0	0	0	0
4017:		0	0	0	0	0	0	0
4025:	0	1	0	0	0	1	0	0
4033: 4041:	0	0	0	0	0	1	0	0
4041: 4049:	0	0	0	0	1	1	0	0
4049:	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0
4065:	0	1	0	0	0	1	0	0
4073:	0	0	0	0	0	1	1	0
4081:	0	0	0	1	0	0	0	0
4089:	0	0	0	0	0	0	0	0

Sample ID : 1201163-10 Acquisition date : 22-FEB-2012 12:37:57

VAX/VMS Peak Search Report Generated 22-FEB-2012 13:40:01.38

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116310_GE3_GAS1102_176259.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{\text{V2}}$.2 Client ID : JM-73-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 12:37:57

Sample Quantity : 5.33010E+02 gram

Sample ID : 1201163-10
Sample type : SOLID
Detector name : GE3 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 01:01:50.35 3.0% Elapsed live time: 0 01:00:00.00

Start channel : 5
Sensitivity : 2.40000
Critical level : Yes End channel : 4096 Gaussian : 15.00

: 15.00000

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	26.75	385	9024	2.71	27.03	25	5 74.8		
0	31.84	301	7291	1.60	32.12	31	4 81.1		
0	46.33*	5497	15065	1.20	46.61	44	6 7.5		PB-210
0	53.32	1695	14662	1.77	53.60	51	5 22.0		
Q	63.28*	4103	21322	1.72	63.56	62	5 11.1		TH-234
1	67.76	1375	8623	1.34	68.04	67	16 17.1	3.36E+03	
1	70.84	661	17009	1.34	71.12	67	16 56.3		
1	74.84	20109	16547	1.35	75.12	67	16 2.3		AM-243
0	86.40	2767	19885	1.57	86.68	86	4 14.3		NP-237
									SN-126
0	93.44*	4709	20916	1.06	93.73	91	6 10.3		
0	112.42*	312	12637	1.01	112.71	111	5108.9		
0	121.59	394	12014	1.62	121.88	121	5 84.1		CO-57
0	144.06	1224	15631	1.48	144.35	142	6 32.8		U-235
									CE-141
0	154.60	751	13133	1.78	154.89	153	5 46.4		
0	163.96	477	11404	1.32	164.25	163	5 67.9		U-235
0	186.21*	12330	17086	1.90	186.50	183	8 4.1		RA-226
3	235.67	1496	8415	1.92	235.97	233		1.55E+01	
3	242.06	13813	5263	1.32	242.35	233	14 2.3		RA-224
0	257.80	1700	8919	1.42	258.10	254	8 19.9		
7	270.29	2288	9668	2.87	270.58	266		1.11E+01	
7	274.70	607	4243	1.40	275.00	266	12 31.7		
0	295.29*	29801	8278	1.84	295.58	291	8 1.6		PB-214
0	313.27	206	4931	1.95	313.57	312	6108.9		PA-233
0	329.30	286	3998	1.51	329.60	328	5 67.5		
2	351.98*	50136	2867	1.44	352.28	347		3.16E+00	PB-214
2	355.37	698	3818	1.87	355.67	347	13 47.9		
0	388.19	743	6142	3.24	388.49	384	10 40.1		
2	401.87	438	3809	1.92	402.18	397		1.31E+00	
2	405.36	394	3806	1.88	405.67	397	12 50.8		PB-211
0	427.78	259	3372	1.53	428.08	426	6 72.5		
0 0	454.55	222	3124	1.44	454.85	452	7 84.9		
0	462.15 473.94	298	2908	1.95	462.46	459	7 61.2		
0	480.33	154	1931	2.15	474.25	473	5 87.3		
U	-00.33	443	2589	2.02	480.63	478	7 39.2		

Page: 2
Acquisition date: 22-FEB-2012 12:37:57

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	486.76*	376	2914	2.10	487.07	485	8 50.8		
0	510.85*	552	2921	3.41	511.16	507	9 36.5		
0	533.40	116	1651	1.39	533.71	531	5106.1		
0	561.95	151	1732	3.54	562.26	560	6 89.0		
0	573.72	145	1664	3.14	574.03	572	6 90.6		
0	581.14	439	2438	2.10	581.46	577	9 41.7		
4	609.36*	35302	1288	1.57	609.68	606	15 1.1	3.40E+00	BI-214
4	612.31	585	1805	2.54	612.63	606	15 69.2		
0	665.63	987	1601	1.75	665.95	662	8 15.5		
0	703.25	249	1246	1.83	703.57	700	6 46.6		
0	719.77	251	1375	1.33	720.09	717	7 50.5		
0	742.21	184	1499	2.28	742.53	739	8 74.1		
0	753.47	160	1473	3.73	753.79	750	8 84.6		
0	768.16*	3489	2085	1.88	768.49	762	12 6.2		
0	785.86	920	1515	2.01	786.18	782	9 16.6		
0	806.18	746	1669	2.03	806.50	803	9 21.0		
0	821.25	103	870	2.44	821.58	820	5 88.4		
10	832.09	214	1431	3.26	832.42	829		2.21E+00	PB-211
10	839.04	404	918	1.81	839.37	829	14 24.5		
0	910.50	186	1598	2.72	910.83	907	9 79.4		
0	933.97	1552	1468	2.01	934.30	930	9 10.2		
0	940.80	93	936	3.60	941.13	939	6106.1		
0	963.44*	222	1421	1.97	963.78	960	9 62.6		D7 00414
0	1000.83*	341	1437		1001.17	996	10 43.1		PA-234M
0	1052.13	187	883		1052.47	1049	7 54.7		
0	1070.92	173	1077		1071.26	1067	9 70.2		
0	1102.10	77	750		1102.45	1100	6113.9		DT 014
0	1120.33	7138	1564		1120.68	1115	12 3.2		BI-214
0	1133.70 1155.24	167	739		1134.05	1131	7 56.4		
0 0	1208.15	793 205	940 793		1155.59	1151	8 15.2 8 49.6		
0	1238.13*	2669	1025		1208.51 1238.49	1205 1234	10 5.9		
0	1253.75	2009	893		1254.11	1234	10 52.4		
Ö	1280.96	585	812		1281.32	1276	9 19.4		
Ö	1337.87	88	662		1338.23	1333	9107.1		
2	1377.67	1956	493		1378.03	1371		2.45E+00	
2	1385.40	399	582		1385.77	1371	20 23.3	2.132.00	
2	1401.53	564	566		1401.89	1397		9.75E-01	
2	1407.96	903	513		1408.32	1397	17 10.3		
0	1460.81*	544	839		1461.18	1457	10 21.7		K-40
0	1509.11	869	1024		1509.48	1504	11 15.8		
0	1540.34	513	1172		1540.71	1533	15 30.5		
0	1583.23	228	555		1583.60	1579	9 39.4		
1	1594.40	120	376		1594.78	1590		1.29E+00	
1	1599.79	145	363		1600.17	1590	16 47.5		
0	1660.75	512	420		1661.13	1654	14 19.1		
0	1683.78	99	234		1684.16	1680	9 59.6		
0	1692.39	119	255	2.90	1692.77	1689	9 51.6		
0	1729.73	1253	293	2.29	1730.11	1725	11 7.8		
0	1764.56*	5770	339	2.42	1764.94	1759	13 2.9		BI-214
0	1847.44	742	214	2.30	1847.83	1844	9 10.2		

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
0	1890.56	26	101	1.80 1890.95	1889	5120.3		
0	1937.01	91	174	3.03 1937.40	1934	9 56.4		
0	2053.01	30	66	1.33 2053.42	2050	7 96.6		
0	2089.81	36	91	3.10 2090.21	2084	11108.2		
0	2118.69	416	61	2.60 2119.10	2115	10 12.0		
0	2163.92	23	46	7.04 2164.33	2161	9122.6		
0	2173.53	14	26	2.92 2173.94	2171	6126.4		
9	2204.17	1472	53	2.67 2204.58	2198	15 5.5	1.88E+00	BI-214
9	2208.57	25	48	2.99 2208.98	2198	15298.9		
0	2245.94	10	10	0.90 2246.35	2244	6120.5		
0	2294.01	98	21	2.48 2294.42	2287	14 28.3		
0	2354.37	12	9	6.78 2354.79	2348	12112.6		
0	2421.05	17	0	3.33 2421.47	2416	10 48.5		
0	2447.72	436	7	2.59 2448.15	2442	13 9.9		
0	2615.39*	28	11	2.26 2615.83	2611	9 59.3		
0	2694.56	10	0	1.77 2695.00	2691	7 63.2		
0	2978.31	5	1	1.89 2978.77	2974	7129.0		
0	3054.11	7	0	1.00 3054.57	3049	9 75.6		

Summary of Nuclide Activity Page: 4

43.69%

Sample ID : 1201163-10 Acquisition date: 22-FEB-2012 12:37:57

Total number of lines in spectrum 103 Number of unidentified lines 58 Number of lines tentatively identified by NID 45

Nuclide Type : NATURAL

		Wtd Mean	Wtd Mean		× .	
		Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flag	gs
1.28E+09Y	1.00	1.929E+01	1.929E+01	0.461E+01	23.91	
22.26Y	1.00	7.661E+01	7.678E+01	0.889E+01	11.58	
3.28E+04Y	1.00	1.692E+01	1.692E+01	0.683E+01	40.34	
1602.00Y	1.00	1.455E+02	1.455E+02	0.080E+02	5.51	
1602.00Y	1.00	1.462E+02	1.462E+02	0.341E+02	23.31	
3.28E+04Y	1.00	8.188E+00	8.188E+00	3.846E+00	46.97	
1.41E+10Y	1.00	2.816E+02	2.816E+02	0.929E+02	33.00	
1602.00Y	1.00	2.553E+02	2.553E+02	4.687E+02	183.58	
27.00D	1.93	5.239E-01	1.009E+00	1.190E+00	117.94	
4.47E+09Y	1.00	1.026E+02	1.026E+02	0.457E+02	44.59	
4.47E+09Y	1.00	5.700E+01	5.700E+01	0.796E+01	13.97	
7.04E+08Y	1.00	6.399E+00	6.399E+00	4.523E+00	70.68	
Total Activ	ity:	1.116E+03	1.117E+03			
	1.28E+09Y 22.26Y 3.28E+04Y 1602.00Y 1602.00Y 3.28E+04Y 1.41E+10Y 1602.00Y 27.00D 4.47E+09Y 4.47E+09Y 7.04E+08Y	1.28E+09Y 1.00 22.26Y 1.00 3.28E+04Y 1.00 1602.00Y 1.00 1602.00Y 1.00 3.28E+04Y 1.00 1.41E+10Y 1.00 1602.00Y 1.00 27.00D 1.93 1.47E+09Y 1.00 1.47E+09Y 1.00	Uncorrected Hlife Decay pCi/gram 1.28E+09Y 1.00 1.929E+01 22.26Y 1.00 7.661E+01 3.28E+04Y 1.00 1.692E+01 1602.00Y 1.00 1.455E+02 1602.00Y 1.00 1.462E+02 3.28E+04Y 1.00 8.188E+00 1.41E+10Y 1.00 2.816E+02 1602.00Y 1.00 2.553E+02 27.00D 1.93 5.239E-01 1.47E+09Y 1.00 1.026E+02 1.47E+09Y 1.00 5.700E+01 7.04E+08Y 1.00 6.399E+00	Uncorrected Decay Corr Hlife Decay pCi/gram pCi/gram 1.28E+09Y 1.00 1.929E+01 1.929E+01 22.26Y 1.00 7.661E+01 7.678E+01 3.28E+04Y 1.00 1.692E+01 1.692E+01 1602.00Y 1.00 1.455E+02 1.455E+02 1602.00Y 1.00 1.462E+02 1.462E+02 3.28E+04Y 1.00 8.188E+00 8.188E+00 1.41E+10Y 1.00 2.816E+02 2.816E+02 1602.00Y 1.00 2.553E+02 2.553E+02 27.00D 1.93 5.239E-01 1.009E+00 1.47E+09Y 1.00 1.026E+02 1.026E+02 1.47E+09Y 1.00 5.700E+01 5.700E+01 7.04E+08Y 1.00 6.399E+00 6.399E+00	Uncorrected Decay Corr Decay Corr Hlife Decay pCi/gram pCi/gram 2-Sigma Error 1.28E+09Y 1.00 1.929E+01 1.929E+01 0.461E+01 22.26Y 1.00 7.661E+01 7.678E+01 0.889E+01 3.28E+04Y 1.00 1.692E+01 1.692E+01 0.683E+01 1602.00Y 1.00 1.455E+02 1.455E+02 0.080E+02 1602.00Y 1.00 1.462E+02 1.462E+02 0.341E+02 3.28E+04Y 1.00 8.188E+00 8.188E+00 3.846E+00 1.41E+10Y 1.00 2.816E+02 2.816E+02 0.929E+02 1602.00Y 1.00 2.553E+02 2.553E+02 4.687E+02 27.00D 1.93 5.239E-01 1.009E+00 1.190E+00 1.47E+09Y 1.00 5.700E+01 5.700E+01 0.796E+01 7.04E+08Y 1.00 6.399E+00 6.399E+00	Uncorrected Decay Corr Decay Corr 2-Sigma Hlife Decay pCi/gram pCi/gram 2-Sigma Error %Error Flag 1.28E+09Y 1.00 1.929E+01 1.929E+01 0.461E+01 23.91 22.26Y 1.00 7.661E+01 7.678E+01 0.889E+01 11.58 3.28E+04Y 1.00 1.692E+01 1.692E+01 0.683E+01 40.34 1602.00Y 1.00 1.455E+02 1.455E+02 0.080E+02 5.51 1602.00Y 1.00 1.462E+02 1.462E+02 0.341E+02 23.31 3.28E+04Y 1.00 8.188E+00 8.188E+00 3.846E+00 46.97 1.41E+10Y 1.00 2.816E+02 2.816E+02 0.929E+02 33.00 1602.00Y 1.00 2.553E+02 2.553E+02 4.687E+02 183.58 27.00D 1.93 5.239E-01 1.009E+00 1.190E+00 117.94 1.47E+09Y 1.00 1.026E+02 1.026E+02 0.457E+02 44.59 1.47E+09Y 1.00 6.399E+00 6.399E+00 4.523E+00 70.68

Nuclide Type : FISSION

	1750 . 115.	3 1 011	_			
			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
CO-57	270.90D	1.07	2.560E-01	2.733E-01	2.318E-01	84.81
SN-126	1.00E+05Y	1.00	3.868E+00	3.868E+00	0.699E+00	18.06
CE-141	32.50D	1.72	1.507E+00	2.599E+00	1.050E+00	40.41
NP-237	2.14E+06Y	1.00	1.135E+01	1.135E+01	0.204E+01	17.98
	Total Act:	ivity :	1.698E+01	1.809E+01		

Nuclide Type : ACTIVATION

	-750 . 11011		Wtd Mean	Wtd Mean		_	
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error I	Flags
NB-95M	3.61D	135.	4.743E+00	6.403E+02	2.349E+02	36.68	-
AM-243	7380.00Y	1.00	1.573E+01	1.573E+01	0.154E+01	9.79	

Total Activity: 2.047E+01 6.560E+02

Grand Total Activity : 1.154E+03 1.791E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit Nuclide Type: NATURAL

Page: 5
Acquisition date: 22-FEB-2012 12:37:57

	- 71		1	Uncorrected Decay Corr 2-Sigma
Nuclide	Energy	%Abn	%Eff	pCi/gram pCi/gram %Error Status
K-40	1460.81	10.67*	3.724E-01	1.929E+01 1.929E+01 23.91 OK
	Final Mea	n for 1	Valid Peaks	= 1.929E+01+/- 4.611E+00 (23.91%)
PB-210	46.50	4.25*	2.378E+00	7.661E+01 7.678E+01 11.58 OK
	Final Mea	in for 1	Valid Peaks	= 7.678E+01+/- 8.895E+00 (11.58%)
PB-211	404.84	2.90*	1.151E+00	1.664E+01 1.664E+01 52.04 OK
	831.96	2.90	5.990E-01	1.664E+01 1.664E+01 52.04 OK 1.738E+01 1.738E+01 63.83 OK
	Final Mea	n for 2	Valid Peaks	= 1.692E+01+/- 6.825E+00 (40.34%)
BI-214	609.31	46.30*	7.958E-01	1.349E+02 1.350E+02 10.82 OK
	1120.29	15.10	4.615E-01	1.349E+02 1.350E+02 10.82 OK 1.443E+02 1.443E+02 10.70 OK 1.585E+02 1.585E+02 10.42 OK
	1764.49	15.80	3.245E-01	1.585E+02 1.585E+02 10.42 OK
	2204.22	4.98	2.817E-01	1.478E+02 1.478E+02 12.28 OK
	Final Mea	n for 4	Valid Peaks	= 1.455E+02+/- 8.012E+00 (5.51%)
PB-214	295.21	19.19	1.499E+00	1.459E+02 1.459E+02 45.00 OK
	351.92	37.19*	1.298E+00	1.463E+02 1.463E+02 27.24 OK
	Final Mea	n for 2	Valid Peaks	= 1.462E+02+/- 3.407E+01 (23.31%)
RN-219	401.80	6.50*	1.158E+00	8.188E+00 8.188E+00 46.97 OK
	Final Mea	n for 1	Valid Peaks	= 8.188E+00+/- 3.846E+00 (46.97%)
RA-224	240.98	3.95*	1.749E+00	2.816E+02 2.816E+02 33.00 OK
	Final Mea	n for 1	Valid Peaks	= 2.816E+02+/- 9.294E+01 (33.00%)
RA-226	186.21	3.28*	2.074E+00	2.553E+02 2.553E+02 183.58 OK
	Final Mea	n for 1	Valid Peaks	= 2.553E+02+/- 4.687E+02 (183.58%)
PA-233	311.98	38.60*	1.434E+00	5.239E-01 1.009E+00 117.94 OK
	Final Mea	n for 1	Valid Peaks	= 1.009E+00+/- 1.190E+00 (117.94%)
PA-234M	1001.03	0.92*	5.083E-01	1.026E+02 1.026E+02 44.59 OK
	Final Mea	n for 1	Valid Peaks	= 1.026E+02+/- 4.573E+01 (44.59%)
TH-234	63.29	3.80*	2.668E+00	5.700E+01 5.700E+01 13.97 OK
	Final Mea	n for 1	Valid Peaks	= 5.700E+01+/- 7.963E+00 (13.97%)

Nuclide Line Activity Report (continued) Page: 6
Sample ID: 1201163-10 Acquisition date: 22-FEB-2012 12:37:57

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

%Eff Nuclide Energy %Abn pCi/gram pCi/gram %Error Status U-235 143.76 10.50* 2.377E+00 6.911E+00 6.911E+00 37.59 <<WM Interf 4.70 4.70 163.35 2.233E+00 6.399E+00 6.399E+00 70.68 OK 205.31 1.952E+00 ---- Line Not Found -----Absent

Final Mean for 1 Valid Peaks = 6.399E+00+/-4.523E+00 (70.68%)

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status

CO-57 122.06 85.51* 2.535E+00 2.560E-01 2.733E-01 84.81 OK

136.48 10.60 2.431E+00 ---- Line Not Found ---- Absent

Final Mean for 1 Valid Peaks = 2.733E-01+/-2.318E-01 (84.81%)

SN-126 87.57 37.00* 2.723E+00 3.868E+00 3.868E+00 18.06 OK

Final Mean for 1 Valid Peaks = 3.868E+00+/-6.987E-01 (18.06%)

CE-141 145.44 48.40* 2.364E+00 1.507E+00 2.599E+00 40.41 OK

Final Mean for 1 Valid Peaks = 2.599E+00+/-1.050E+00 (40.41%)

NP-237 86.50 12.60* 2.726E+00 1.135E+01 1.135E+01 17.98 OK

Final Mean for 1 Valid Peaks = 1.135E+01+/-2.041E+00 (17.98%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma
Nuclide Energy %Abn %Eff pCi/gram pCi/gram %Error Status
NB-95M 235.69 25.00* 1.777E+00 4.743E+00 6.403E+02 36.68 OK

Final Mean for 1 Valid Peaks = 6.403E+02+/-2.349E+02 (36.68%)

AM-243 74.67 66.00* 2.729E+00 1.573E+01 1.573E+01 9.79 OK

Final Mean for 1 Valid Peaks = 1.573E+01+/-1.540E+00 (9.79%)

Flag: "*" = Keyline

Page: 7
Acquisition date: 22-FEB-2012 12:37:57

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40	1.929E+01	4.611E+00	3.934E+00	3.645E-01	4.903
CO-57 NB-95M	2.733E-01 6.403E+02	2.318E-01 2.349E+02	3.147E-01 1.544E+02	3.127E-02 4.736E+01	0.869 4.147
SN-126	3.868E+00	6.987E-01	8.756E-01	8.948E-02	4.418
CE-141	2.599E+00	1.050E+00	1.019E+00	2.370E-01	2.551
PB-210	7.678E+01	8.895E+00	6.053E+00	4.739E-01	12.684
PB-211	1.692E+01	6.825E+00	1.090E+01	1.147E+00	1.553
BI-214	1.455E+02	8.012E+00	6.629E-01	6.625E-02	219.514
PB-214	1.462E+02	3.407E+01	7.918E-01	2.133E-01	184.591
RN-219	8.188E+00	3.846E+00	4.826E+00	5.071E-01	1.697
RA-224	2.816E+02	9.294E+01	7.367E+00	2.407E+00	38.227
RA-226	2.553E+02	4.687E+02	9.032E+00	1.657E+01	28.264
PA-233	1.009E+00	1.190E+00	1.402E+00	6.338E-01	0.720
PA-234M	1.026E+02	4.573E+01	4.158E+01	4.495E+00	2.467
TH-234	5.700E+01	7.963E+00	7.990E+00	5.943E-01	7.133
Ų-235	6.399E+00	4.523E+00	2.693E+00	4.825E-01	2.376
NP-237	1.135E+01	2.041E+00	2.659E+00	2.680E-01	4.268
AM-243	1.573E+01	1.540E+00	4.832E-01	4.177E-02	32.549

	Key-Line	7 at among	MDA	MDA orror	Act/MDA
Nuclide	Activity K.L. (pCi/gram) Ideo		(pCi/gram)	MDA error	ACC/MDA
BE-7	3.354E+00	3.091E+00	4.008E+00	4.289E-01	0.837
NA-22	-2.676E-02	2.627E-01	3.896E-01	3.412E-02	-0.069
AL-26	7.563E-03	1.460E-01	2.445E-01	2.234E-02	0.031
TI-44	7.597E-01 +	1.462E-01	3.362E-01	2.657E-02	2.259
SC-46	-1.746E-01	2.895E-01	4.835E-01	5.585E-02	-0.361
V-48	1.619E-01	6.905E-01	1.172E+00	1.286E-01	0.138
CR-51	-3.844E+00	4.056E+00	5.506E+00	2.085E+00	-0.698
MN-54	1.741E-01	2.318E-01	3.989E-01	4.413E-02	0.436
CQ-56	7.554E-02	2.997E-01	4.607E-01	5.147E-02	0.164
CO-58	-3.351E-02	3.010E-01	4.595E-01	4.989E-02	-0.073
FE-59	5.336E-01	6.747E-01	1.037E+00	1.068E-01	0.514
CO-60	-7.897E-02	2.352E-01	3.901E-01	3.349E-02	-0.202
ZN-65	1.418E+00	5.976E-01	9.361E-01	8.852E-02	1.515
GA-67	1.568E+03 +	5.515E+03	2.094E+02	7.362E+02	7.488
SE-75	6.850E-02	4.184E-01	5.484E-01	2.319E-01	0.125
RB-82	3.490E+00	4.105E+00	5.188E+00	5.454E-01	0.673
RB-83	-5.281E-02	4.639E-01	7.714E-01	1.297E-01	-0.068
KR-85	8.013E+01	4.390E+01	6.998E+01	7.446E+00	1.145
SR-85	4.583E-01	2.511E-01	4.002E-01	4.259E-02	1.145
Y-88	4.296E-01	2.124E-01	3.819E-01	3.483E-02	1.125
NB-93M	1.493E+01	6.468E+00	8.949E+00	2.397E+00	1.668
NB-94	1.481E-01	2.246E-01	3.852E-01	4.388E-02	0.384
NB-95	7.148E+00	9.179E-01	9.327E-01	9.710E-02	7.664
ZR-95	2.080E-01	6.331E-01	7.866E-01	8.698E-02	0.264
RU-103	-2.457E-01	3.252E-01	5.007E-01	7.762E-02	-0.491

	Key-Line					
	Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram)	Ided		(pCi/gram)		
RU-106	7.208E-01		1.975E+00	3.101E+00	4.399E-01	0.232
AG-108M	9.233E-02		2.343E-01	3.648E-01	3.640E-02	0.253
CD-109	7.495E+01		1.123E+01	1.027E+01	1.218E+00	7.297
AG-110M	1.204E-02		2.160E-01	3.360E-01	3.156E-02	0.036
SN-113	3.017E-01		3.818E-01	5.640E-01	6.020E-02	0.535
TE123M	4.289E-01		2.992E-01	4.046E-01	3.653E-02	1.060
SB-124	2.415E-02		2.813E-01	4.389E-01	4.417E-02	0.055
I-125	1.546E+00		3.524E+00	5.651E+00	5.338E-01	0.274
SB-125	1.153E+00	+	8.456E-01	1.144E+00	1.231E-01	1.008
SB-126	4.019E+00	+	2.074E+00	2.737E+00	2.724E-01	1.469
SB-127	-1.445E+01		4.970E+01	8.504E+01	8.153E+00	-0.170
I-129	1.740E-01		3.803E-01	5.448E-01	6.099E-02	0.319
I-131	-8.497E-01		1.967E+00	3.105E+00	6.858E-01	-0.274
TE-132	-3.623E+00		5.022E+01	7.534E+01	2.103E+01	-0.048
BA-133	1.281E+00	+	7.079E-01	5.443E-01	1.485E-01	2.354
CS-134	2.655E-01		2.209E-01	3.498E-01	3.519E-02	0.759
CS-135	6.145E+00		2.942E+00	1.972E+00	8.640E-01	3.116
CS-136	5.029E-01		1.219E+00	1.860E+00	1.957E-01	0.270
CS-137	1.890E-01		2.296E-01	3.624E-01	3.390E-02	0.521
LA-138	1.260E-01		3.848E-01	6.428E-01	5.784E-02	0.196
CE-139	3.237E-01		2.678E-01	4.093E-01	3.616E-02	0.791
BA-140	1.530E+00		3.128E+00	4.883E+00	1.645E+00	0.313
LA-140	2.464E+00		1.130E+00	1.874E+00	1.715E-01	1.315
CE-144	-1.190E+00		1.595E+00	2.622E+00	2.535E-01	-0.454
PM-144	5.670E-02		2.100E-01	3.271E-01	3.177E-02	0.173
PM-145	-6.839E-01		8.995E-01	1.237E+00	8.060E-01	-0.553
PM-146	7.582E-01	+	6.496E-01	7.931E-01	8.476E-02	0.956
ND-147	5.720E+00	•	7.322E+00	1.162E+01	1.229E+00	0.492
EU-152	2.231E+01	+	3.510E+00	4.450E+00	4.975E-01	5.013
GD-153	-5.413E-01	'	7.012E-01	1.162E+00	1.169E-01	-0.466
EU-154	-7.609E-02		7.012E 01 7.297E-01	1.082E+00	9.478E-02	-0.070
EU-155	4.673E+00	+	8.404E-01	1.169E+00	1.178E-01	3.997
EU-156	-9.882E-01	1	7.234E+00	1.103E+01	2.622E+00	-0.090
HO-166M	-2.431E-01		3.897E-01	5.908E-01	5.827E-02	-0.412
HF-172	-2.029E+00		1.543E+00	2.323E+00	2.287E-01	-0.873
LU-172	-1.650E+00		5.366E+00	8.517E+00	8.299E-01	-0.194
LU-173	5.443E+00		2.653E+00	1.578E+00	7.181E-01	3.450
HF-175	-1.963E-01		3.269E-01	4.689E-01	1.408E-01	-0.419
LU-176	-3.564E-01		2.414E-01	2.981E-01	1.400E-01	-1.196
TA-182	7.292E+01	+	7.795E+00	4.238E+00	3.969E-01	17.209
IR-192	2.661E-01	т	6.123E-01	7.847E-01	8.397E-02	0.339
HG-203	-4.548E-02		3.709E-01	7.847E-01 5.501E-01	2.680E-01	-0.083
BI-207	-5.981E-04		2.496E-01	3.122E-01	3.232E-02	-0.003
TL-208	1.144E+00		6.699E-01	1.065E+00	1.091E-01	1.074
BI-210M	2.319E-01		4.849E-01	6.284E-01	2.586E-01	0.369
BI-210M BI-212	1.111E+00		1.764E+00	6.284E-01 2.762E+00	2.586E-01 2.768E-01	0.369
PB-212	1.803E+00		7.112E-01	7.006E-01	2.768E-01 2.227E-01	2.573
RA-223	8.183E+00		5.863E+00	7.622E+00	2.22/E-01 2.788E+00	2.573 1.074
	0.2002.00		J.005ET00	7.0225700	2.7000000	1.0/4

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-10 Acquisition date: 22-FEB-2012 12:37:57

Nuclide	Key-Line Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
RA-225	1.223E+00		1.735E+00	2.778E+00	2.389E-01	0.440
TH-227	1.032E+01	+	3.795E+00	2.753E+00	8.478E-01	3.748
AC-228	1.709E+00	+	1.372E+00	1.491E+00	1.721E-01	1.146
TH-230	1.938E+02	+	3.727E+01	8.571E+01	6.754E+00	2.261
PA-231	-2.378E+00		8.142E+00	1.294E+01	5.542E+00	-0.184
TH-231	2.649E+00	+	2.016E+00	2.574E+00	3.438E-01	1.029
PA-234	3.624E-01		7.840E-01	1.303E+00	1.266E-01	0.278
AM-241	2.446E+00		5.421E-01	8.212E-01	5.815E-02	2.978
CM-243	6.923E-02		1.397E+00	2.080E+00	9.976E-01	0.033

Summary of Nuclide Activity Page: 10

Sample ID : 1201163-10 Acquisition date : 22-FEB-2012 12:37:57

Total number of lines in spectrum 103
Number of unidentified lines 58

Number of lines tentatively identified by NID 45 43.69%

Nuclide Type : NATURAL

	4 4						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Fla	ıgs
K-40	1.28E+09Y	1.00	1.929E+01	1.929E+01	0.461E+01	23.91	
PB-210	22.26Y	1.00	7.661E+01	7.678E+01	0.889E+01	11.58	
PB-211	3.28E+04Y	1.00	1.692E+01	1.692E+01	0.683E+01	40.34	
BI-214	1602.00Y	1.00	1.455E+02	1.455E+02	0.080E+02	5.51	
PB-214	1602.00Y	1.00	1.462E+02	1.462E+02	0.341E+02	23.31	
RN-219	3.28E+04Y	1.00	8.188E+00	8.188E+00	3.846E+00	46.97	
RA-224	1.41E+10Y	1.00	2.816E+02	2.816E+02	0.929E+02	33.00	
RA-226	1602.00Y	1.00	2.553E+02	2.553E+02	4.687E+02	183.58	
PA-233	27.00D	1.93	5.239E-01	1.009E+00	1.190E+00	117.94	
PA-234M	4.47E+09Y	1.00	1.026E+02	1.026E+02	0.457E+02	44.59	
TH-234	4.47E+09Y	1.00	5.700E+01	5.700E+01	0.796E+01	13.97	
U-235	7.04E+08Y	1.00	6.399E+00	6.399E+00	4.523E+00	70.68	
	Total Nat	1 1 1 1 + 1 1	1 1167.00	1 1177.00			

Total Activity: 1.116E+03 1.117E+03

Nuclide Type : FISSION

Nuclide CO-57 SN-126 CE-141 NP-237	Hlife 270.90D 1.00E+05Y 32.50D 2.14E+06Y	Decay 1.07 1.00 1.72 1.00	Wtd Mean Uncorrected pCi/gram 2.560E-01 3.868E+00 1.507E+00 1.135E+01	Wtd Mean Decay Corr pCi/gram 2.733E-01 3.868E+00 2.599E+00 1.135E+01	Decay Corr 2-Sigma Error 2.318E-01 0.699E+00 1.050E+00 0.204E+01	2-Sigma %Error Fla 84.81 18.06 40.41 17.98	.gs

Total Activity: 1.698E+01 1.809E+01

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
NT	777 <i>i E</i> .	_		Decay Corr	Decay Corr	_	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Fl	.ags
NB-95M	3.61D	135.	4.743E+00	6.403E+02	2.349E+02	36.68	_
AM-243	7380.00Y	1.00	1.573E+01	1.573E+01	0.154E+01	9.79	
				~			
			0 04== 04				

Total Activity : 2.047E+01 6.560E+02

Grand Total Activity: 1.154E+03 1.791E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116310_GE3_GAS1102_176259.CNF; 1

Title :

Sample Title: JM-73-31-120128

Start Time: 22-FEB-2012 12:37 Sample Time: 28-JAN-2012 00:00 Energy Offset: -2.78447E-01

Channel

1:	0	0	0	0	0	0	0	0
9:	307	2076			2604	2164	2361	2793
			2274	2156				
17:	2351	2096	2030	1996	1918	1803	1815	1905
25:	1868	1955	1891	1959	1736	1767	1846	2006
33:	1920	1820	1845	1971	2052	1919	1959	2146
41:	2144	2198	2182	2357	2407	3818	7029	2550
49:	2456	2935	2967		3878	3892	2873	2966
				2747				
57:	3066	3333	3603	3998	4145	4188	5958	6750
65:	4296	4282	4402	5307	4438	4356	4664	4739
73:	4796	6140	16853	8176	21036	15836	4776	5005
81:	4835	4123	3535	6413	4106	3489	7559	7928
89:	3676	5469	3848	3960	7571	3795	3660	2870
								2458
97:	2630	2922	2815	2501	2521	2462	2432	
105:	2394	2443	2505	2492	2517	2605	2639	2567
113:	2813	2494	2469	2463	2472	2417	2392	2400
121:	2497	2556	2666	2420	2269	2478	2463	2463
129:	2537	2529	2538	2503	2476	2443	2473	2541
137:	2527	2524	2596	2609	2630	2613	2631	3409
145:	3000	2591	2611	2576	2585	2724	2741	2794
153:	2672	2936	3030	2650	2596	2519	2555	2514
161:	2392	2246	2429	2562	2271	2361	2258	2231
169:	2213	2228	2204	2211	2138	2074	2159	2199
177:	2167	2128	2193	2211	2070	2257	2132	2211
185:	2543				2152	2164	2017	2016
		8261	7646	2348				
193:	1997	2070	1963	2058	2047	1976	1913	1925
201:	1917	1927	1880	1768	1852	1941	1676	1676
209:	1644	1736	1726	1633	1601	1653	1716	1546
217:	1564	1539	1559	1548	1547	1526	1483	1521
225:	1486	1510	1472	1539	1417	1476	1502	1440
233:	1429	1507						1439
			1466	2107	1791	1415	1668	
241:	1897	9409	6382	1388	1313	1235	1236	1310
249:	1231	1255	1195	1217	1186	1131	1231	1396
257:	1438	1215	1771	1360	1077	1083	1110	1147
265:	1117	1059	1116	1073	1372	1852	1524	1531
273:	1117	1198	1454	1180	1039	1070	1048	1079
281:	1088	1074	1115		1064	1149	1058	984
				1042				
289:	1004	1079	979	1015	1016	1449	13720	16981
297:	1938	988	1095	1157	1051	962	971	975
305:	899	831	857	818	806	888	830	854
313:	863	926	923	788	783	833	831	768
321:	794	829	798	954	817	834	776	858
329:	837	965	868	756	821	837	839	790
337:	807							
		849	946	804	784	850	860	762
345:	794	797	769	773	835	907	4321	30290
353:	17060	1273	947	941	724	641	632	627
361:	661	606	614	638	587	583	580	588
369:	591	643	589	576	610	617	658	566
377:	617	584	615	590	624	592	605	560
385:	610	618						
			784	734	902	767	655	639
393:	616	666	605	638	633	613	617	657
401:	675	867	731	703	786	802	665	629
409:	639	650	602	629	649	607	648	658
417:	652	673	635	617	649	686	624	665
425:	624	607	648	701	574	567	534	519
			<i>-</i>		J	3 . .		

433:	524	493	516	445	509	473	503	463
441:	445	479	433	443	490	444	419	463
449:	516	421	473	469	485	461	576	499
457:	435	421	436	432	428	543	514	432
465:	421	390	405	436	388	459	422	386
473:	429	441	460	396	359	387	390	525
481:	565	415	384	366	369	411	525	551
489:	396	344	343	354	370	359	346	337
497:	320	359	321	364	346	349	333	313
505:	371	332	340	325	375	487	497	487
513:	382	334	340	323	375	294	322	320
521:	302						313	343
521:	314	331	325	314	346	294		
		323	308	337	369	418	335	346
537:	371	317	328	294	309	308	325	345
545:	307	284	308	295	304	282	323	315
553:	306	309	309	347	322	305	280	311
561:	314	332	323	324	279	289	285	271
569:	289	326	299	283	349	298	330	294
577:	255	281	283	420	421	309	311	315
585:	282	254	295	280	261	277	325	260
593:	287	251	268	288	283	274	273	255
601:	290	263	280	299	318	263	307	1201
609:	12849	19074	3201	450	457	327	307	256
617:	231	221	219	206	226	212	221	238
625:	224	204	216	209	213	208	201	224
633:	220	206	207	204	192	216	224	248
641:	217	178	217	196	167	242	201	200
649:	203	215	194	206	201	187	214	186
657:	193	195	200	211	242	198	203	215
665:	515	748	324	204	181	187	204	189
673:	195	203	203	221	205	198	203	236
681:	171	221	243	194	186	210	195	187
689:	219	200	187	192	201	198	192	186
697:	204	202	217	200	193	225	356	317
705:	204	210	230	233	208	210	260	181
713:	175	195	183	189	188	211	228	337
721:	235	219	208	197	202	193	216	206
729:	192	207	172	194	198	190	186	198
737:	189	188	170	207	185	260	257	225
745:	184	195	193	179	191		186	
753:	267	204	187	229	168			
761:	179	152	171	219	228			
769:	1830	515	208	180	187	178		
777:	184	192	184	183	154			
785:	294	578	439	231	180	165	173	
793:	187	190	200	199	191	165	182	
801:	177	161	185	176	224	475	527	
809:	189	191	196	194	176	210	208	180
817:	197	216	188	176	218	227	204	148
825:	190	196	202	181	171	215	177	239
833:	241	198	206	176	184	226	369	341
841:	190	167	205	177	188	161	181	214
849:	197	199	178	186	167	206	169	195
857;	170	178	191	189	231	180	167	187
865:	190	179	181	169	196	206	187	209
873:	192	178	194	184	201	184	187	196
881:	197	179	215	201	197	199	196	201
889:	181	205	194	183	210	204	209	186
897:	191	175	195	186	204	178	203	190
905:	210	198	192	204	198	225	201	251
		170	1 J 4	204	190	443	201	Z 🔾 I

931: 179 160 168 161 183 183 164 161 192 192: 165 206 159 171 193 184 152 195 195 192: 160 164 176 188 309 877 736 247 193 184 165 166 156 172 188 171 178 165 155 155 163 195: 166 166 158 142 150 145 179 155 155 163 196: 165 172 154 261 268 180 151 146 196: 165 172 154 261 268 180 151 146 196: 165 172 154 261 268 180 151 146 197: 165 172 154 261 268 180 151 146 197: 165 193: 162 144 172 134 132 158 160 174 198: 165 193: 162 144 172 134 132 158 160 174 198: 165 193: 142 145 152 153 151 146 137 165 193: 142 145 152 153 151 146 137 165 193: 142 154 145 143 136 174 176 179 1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 148 139 137 143 166 151 154 1033: 139 136 130 134 122 133 141 1041: 130 131 132 111 138 145 125 137 134 1043: 125 137 134 1044: 130 131 132 111 138 145 125 138 1049: 125 127 146 214 208 137 133 141 1041: 130 131 132 111 138 145 125 138 1065: 119 140 127 136 124 199 165 127 1081: 1081 122 122 136 127 146 214 199 165 127 1081: 1081 122 121 109 117 123 117 132 1099: 122 137 134 125 137 134 125 137 134 1045: 125 138 139 130: 122 122 136 127 146 214 199 165 127 1073: 143 165 127 139 1099: 122 117 103 118 133 139 131 132 121 133 130: 131 132 131 131 132 131 133 132 131 133 132 131 133 134 135 134 139 131 131 131 132 131 133 134 135 134 134 135 134 134 135 134 134 135 134 134 135 134 134 134 134 134 134 134 134 134 134									
921: 165 206 159 171 193 184 152 195 929: 160 164 176 188 171 178 165 247 937: 167 156 172 188 171 178 165 155 945: 146 166 158 142 150 145 179 155 961: 165 172 154 261 268 180 151 146 969: 186 191 159 168 160 169 155 163 197 146 146 147 146 137 165 198 160 169 155 163 174 176 178 985: 142 145 152 153 151 146 137 165 193 174 176 178 174 176 178 178 178 179 1001: 200: 174 176 179 </td <td>913:</td> <td>179</td> <td>160</td> <td>168</td> <td>161</td> <td>183</td> <td>183</td> <td>164</td> <td>161</td>	913:	179	160	168	161	183	183	164	161
929: 160 164 176 188 309 877 736 247 937: 167 156 172 188 171 178 165 155 945: 146 166 158 142 150 145 179 155 955: 169 177 130 164 147 167 148 148 961: 165 172 154 261 268 180 151 146 969: 186 191 159 168 160 169 155 163 977: 162 144 172 134 132 158 160 174 985: 142 145 152 153 151 146 137 165 993: 142 145 154 145 143 136 174 176 179 985: 142 145 154 145 143 136 174 176 179 1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 139 137 143 166 151 154 1033: 139 136 110 130 134 122 133 144 1033: 139 136 110 130 134 122 133 144 1041: 130 131 132 131 138 139 136 149 133 128 149 133 128 149 133 128 149 133 129 120 139 120 120 120 120 120 120 120 120 120 120								152	195
937: 167 156 172 188 171 178 165 155 945: 146 166 158 142 150 145 179 155 955: 169 177 130 164 147 167 148 148 969: 186 191 159 168 160 169 155 163 977: 162 144 172 134 132 158 160 174 985: 142 145 152 153 151 146 137 165 993: 142 145 152 153 151 146 137 165 993: 142 145 152 153 151 146 137 165 993: 142 154 145 152 153 151 146 137 165 163 1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 139 137 143 166 151 154 1025: 122 147 133 128 113 125 137 134 1041: 130 131 132 131 130 134 122 133 141 1041: 130 131 132 131 130 134 122 133 141 1041: 130 131 132 131 138 145 125 138 1057: 112 132 122 116 127 124 134 125 137 134 1049: 125 127 146 214 208 137 113 131 1057: 112 132 122 116 127 124 134 129 1085: 119 140 127 136 124 192 165 127 1073: 143 125 111 107 110 133 112 121 1081: 108 122 137 133 142 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 125 137 134 135 137 137 134 132 137 137 134 132 137 137 137 137 137 137 137 137 137 137	929:	160					877	736	247
945: 146 166 158 142 150 145 179 155 953: 169 177 130 164 147 167 148 148 961: 165 172 154 261 268 180 151 146 969: 186 191 159 168 160 169 155 163 977: 162 144 172 134 132 158 160 174 985: 142 145 152 153 151 146 137 165 993: 142 154 145 152 153 151 146 137 165 993: 142 154 145 152 153 151 146 137 165 190: 151 131 157 160 138 153 149 133 1007: 148 148 139 137 147 155 131 160 137 134 1033: 139 136 110 130 134 122 133 141 1041: 130 131 132 111 138 145 125 137 134 1031: 139 136 110 130 134 122 133 141 1041: 130 131 132 111 138 145 125 137 134 1055: 112 132 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1073: 143 125 117 139 1065: 119 140 127 136 124 192 165 127 1081: 108 122 122 103 117 123 117 139 1097: 147 129 114 126 135 142 148 154 125 127 1081: 108 122 122 103 117 123 117 132 118 130 129 115 120 120 120 120 120 120 120 120 120 120	937:	167						165	155
953: 169 177 130 164 147 167 148 148 148 969: 186 191 159 168 160 169 155 163 977: 162 144 172 134 132 158 160 174 985: 142 145 152 153 151 146 137 165 993: 142 154 145 152 153 151 146 137 165 1993: 142 154 145 152 153 151 146 137 165 1993: 142 154 145 152 153 151 146 137 165 1993: 142 154 145 152 153 151 146 137 165 130 1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 139 137 143 166 151 154 1025: 122 147 133 128 113 125 137 134 1033: 139 136 110 130 131 132 111 138 145 125 137 134 1041: 130 131 132 111 138 145 125 137 134 1041: 130 131 132 111 138 145 125 137 138 1049: 125 127 146 214 208 137 133 131 1057: 112 132 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1073: 143 125 111 107 110 133 112 121 1081: 108 122 127 103 118 133 95 117 132 1089: 122 117 103 118 133 95 117 139 1097: 117 129 114 126 135 142 148 154 1105: 122 135 133 123 142 111 121 121 121 121 122 135 133 130 113 122 121 133 148 564 2619 1121: 133 118 139 113 131 148 564 2619 1121: 1331 1015 224 156 127 133 131 109 1121: 3331 1015 224 156 127 133 131 109 1121: 3331 1015 224 156 127 133 131 109 1121: 3331 1015 224 156 127 133 131 109 1121: 3331 1015 224 156 127 133 131 109 1121: 3331 1015 224 156 127 133 131 109 1121: 3331 1015 224 156 127 133 131 109 115 123 115 123 116 117 103 127 113 131 109 115 123 115 123 116 117 103 127 117 131 129 115 123 115 123 116 127 133 131 109 115 123 131 131 131 131 131 131 131 131 131	945:	146					145	179	155
969: 165 172 154 261 268 180 151 146 969: 186 191 159 168 160 169 155 163 977: 162 144 172 134 132 158 160 174 985: 142 145 152 153 151 146 137 165 993: 142 154 145 143 136 174 176 179 1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 139 137 143 166 151 154 1033: 139 136 110 130 134 122 133 141 1031: 139 137 143 166 151 154 1033: 139 136 110 130 134 122 133 141 1041: 130 131 132 111 138 145 125 138 1049: 125 127 146 214 208 137 134 129 1065: 119 140 127 136 124 192 165 127 1073: 148 122 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1088: 122 137 134 122 133 112 121 1088: 128 131 12 121 1088: 122 122 135 118 133 95 117 139 1097: 117 129 114 126 135 142 148 154 1097: 117 129 114 126 135 142 148 154 154 168 129 129 113: 123 118 139 131 131 109 129: 128 107 110 133 112 121 121 121 129 114 126 135 142 148 154 154 154 154 154 154 154 154 154 154	953:	169					167	148	148
969: 186 191 159 168 160 169 155 163 977: 162 144 172 134 132 158 160 174 985: 142 145 152 153 151 146 137 165 993: 142 154 145 152 153 151 146 137 165 1993: 142 154 145 145 143 136 174 176 179 1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 148 139 137 143 166 151 154 1025: 122 147 133 128 113 125 137 134 1041: 130 131 132 111 138 145 125 137 134 1041: 130 131 132 111 138 145 125 138 1049: 125 127 146 214 208 137 113 131 1057: 112 132 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1073: 143 125 111 107 110 133 112 1088: 120 112 132 122 116 127 124 134 129 1089: 125 127 146 214 208 137 133 112 1089: 122 117 103 118 133 195 117 132 1089: 122 133 141 107 110 133 112 121 1081: 108 122 122 103 117 123 118 1089: 122 117 103 118 133 95 117 139 1089: 122 117 103 118 133 95 117 139 1097: 117 129 114 126 135 142 148 154 1105: 122 135 131 139 113 133 148 564 2619 113: 123 118 139 113 133 148 564 2619 1121: 3331 1015 224 156 127 133 131 109 109 122 113 129 115 123 1161: 99 116 117 103 127 117 132 118 121 1197: 128 107 110 117 133 177 148 127 1159: 128 107 110 117 133 177 148 127 1159: 128 107 110 117 133 177 148 127 1159: 128 107 110 117 133 129 115 123 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 117 103 127 91 110 127 1169: 102 92 116 117 103 127 91 110 127 1169: 102 92 116 117 103 127 91 110 127 115 123 118 139 130 199 177 131 131 1161: 99 16 177 100 177 13 139 177 148 127 129 115 123 129 115 123 129 115 123 129 125 100 105 88 120 98 86 95 117 134 163 128 116 129: 129 129: 129 129 129 129 129 129 130 129 131 131 131 131 131 133 133 149 139 130 149 147 149 149 149 149 149 149 149 149 149 149								151	146
985: 142 144 172 134 132 158 160 174 985: 142 145 152 153 151 146 137 165 993: 142 154 145 143 136 174 176 179 1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 139 137 143 166 151 154 143 136: 149 133 1017: 148 148 139 137 143 166 151 154 143 133: 139 136 110 130 134 122 133 141 1033: 139 136 110 130 134 122 133 141 1041: 130 131 132 111 138 145 125 138 1049: 125 127 146 214 208 137 113 131 1057: 112 132 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1073: 143 125 111 107 110 133 112 121 1089: 122 122 103 117 123 117 139 1097: 117 129 114 126 135 142 148 154 154 169 169 119 110 127 136 124 148 154 154 169 169 110 129: 123 123 118 139 133 148 154 122 122 113 119: 123 117 139 1097: 117 129 114 126 135 142 148 154 154 169 169 169 169 169 169 169 169 169 169	969:							155	163
988: 142 145 152 153 151 146 137 165 993: 142 154 145 143 136 174 176 179 1001: 260 239 171 147 156 131 160 137 1009: 151 131 131 157 160 138 153 149 133 1017: 148 148 148 139 137 143 166 151 154 1025: 122 147 133 128 113 125 137 134 1033: 139 136 110 130 134 122 133 141 1041: 130 131 132 111 138 145 125 138 1049: 125 127 146 214 208 137 113 131 1057: 112 132 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1073: 143 125 111 107 110 133 112 117 132 1089: 122 117 103 118 133 95 117 132 1089: 122 117 103 118 133 95 117 139 1097: 117 129 114 126 135 142 148 154 1105: 122 135 133 123 142 111 121 121 129 113: 123 118 139 113 133 148 564 2619 1121: 3331 1015 224 156 127 133 148 564 2619 1122: 3331 1015 224 156 127 133 177 148 127 1137: 94 113 122 110 17 133 177 148 127 1137: 94 113 109 109 122 113 129 115 123 1161: 99 116 117 103 127 113 129 115 1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 131 1161: 99 116 117 103 127 91 110 127 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 103 87 83 103 84 1217: 110 125 107 115 123 131 131 131 1161: 99 116 117 103 87 89 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 125 107 115 123 131 131 131 1161: 99 13 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1225: 100 105 88 120 98 96 86 89 92 1265: 99 93 85 75 89 94 87 81 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 281 130 79 93 94 78 91 1281: 346 88 80 75 76 97 9	977:							160	174
1001: 260 239 171 147 156 131 160 137 1009: 151 131 157 160 138 153 149 133 1017: 148 148 139 137 143 166 151 154 1025: 122 147 133 128 113 125 137 134 1041: 130 131 132 111 138 145 125 138 1049: 125 127 146 214 208 137 113 131 1057: 112 132 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1073: 143 125 111 107 110 133 112 121 1081: 1081: 108 122 122 103 117 123 117 132 121 1089: 122 117 103 118 133 95 117 139 1097: 117 129 114 126 135 142 148 154 1105: 122 135 133 123 142 111 121 129 114 126 135 142 148 154 1105: 122 135 133 133 148 564 2619 1121: 3331 1015 224 156 127 133 131 1015 122 135 133 123 148 154	985:	142	145	152	153	151	146	137	165
1009: 151 131 157 160 138 153 149 133 1017: 148 148 148 139 137 143 125 137 134 1033: 139 136 110 130 134 122 133 141 1041: 130 131 132 111 138 145 125 138 1049: 125 127 146 214 208 137 113 131 1057: 112 132 122 116 127 124 134 129 1065: 119 140 127 136 124 192 165 127 1073: 143 125 111 107 110 133 111 121 1089: 122 117 103 118 133 1099: 117 129 114 126 135 142 148 154 1105: 122 135 133 123 142 111 121 129 114 126 135 142 148 154 1105: 122 135 133 133 148 564 2619 1121: 3331 1015 224 156 127 133 137 148 127 1137: 94 113 122 112 90 122 114 112 1145: 113 109 109 122 113 129 114 121 129 128 107 110 117 133 137 148 127 1145: 113 109 109 122 113 123 148 127 1145: 113 109 109 122 113 129 115 123 118 137 148 127 1145: 113 109 109 122 113 129 115 123 1155: 124 178 415 466 203 109 117 131 1166: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 138 87 131 131 113 1185: 130 100 95 107 87 99 98 106 95 107 87 99 98 106 95 107 87 99 98 106 95 107 87 99 98 106 95 107 87 99 98 106 95 107 87 99 98 106 95 107 87 99 98 106 95 103 87 83 103 84 116 1257: 97 80 89 84 93 94 87 81 1225: 100 105 88 120 98 96 94 114 114 1225: 100 105 88 120 98 96 94 114 114 1225: 123 131 13	993:	142	154	145	143	136	174	176	179
1017:	1001:	260	239	171	147	156	131	160	137
1025: 122	1009:	151	131	157	160	138	153	149	133
1033: 139		148	148	139	137	143	166	151	154
1041: 130	1025:	122	147	133	128	113	125	137	134
1049: 125	1033:	139	136	110	130	134	122		
10657: 112		130	131	132	111	138	145	125	138
1065: 119				146	214	208	137		
1073:					116				
1081 108									
1089: 122									
1097: 117 129 114 126 135 142 148 154 1105: 122 135 133 123 142 111 121 129 1113: 123 118 139 113 133 148 564 2619 1121: 3331 1015 224 156 127 133 131 109 1129: 128 107 110 117 133 177 148 127 1137: 94 113 122 112 90 122 114 112 1145: 113 109 109 122 113 129 115 123 1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 1114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 78 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 82 1297: 90 84 85 73 80 85 88 120 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1297: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 75 76 77 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1105: 122 135 133 123 142 111 121 129 1113: 123 118 139 113 133 148 564 2619 1121: 3331 1015 224 156 127 133 131 109 1129: 128 107 110 117 133 177 148 127 1137: 94 113 122 112 90 122 114 112 1145: 113 109 109 122 113 129 115 123 1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1225: 100 105 88 120 98 96 94 114 1225: 100 105 88 120 98 96 94 114 1225: 100 105 88 120 98 96 94 114 1225: 100 105 88 120 98 96 94 114 1221: 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1337: 99 83 84 95 73 80 85 88 120 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 81 836 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109 100									
1113: 123									
11221: 3331 1015 224 156 127 133 131 109 1129: 128 107 110 117 133 177 148 127 1137: 94 113 122 112 90 122 114 112 1145: 113 109 109 122 113 129 115 123 1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 113 1185: 130 100 133 110 118 85 105 1177: 110 122 108 117 92 107 146 176 1201: 102 122 108 117 92<									
1129: 128 107 110 117 133 177 148 127 1137: 94 113 122 112 90 122 114 112 1145: 113 109 109 122 115 123 1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176									
1137: 94 113 122 112 90 122 114 112 1145: 113 109 109 122 113 129 115 123 1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 <									
1145: 113 109 109 122 113 129 115 123 1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 <									
1153: 124 178 415 466 203 109 117 131 1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384									
1161: 99 116 117 103 127 91 110 127 1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 114 37 1241: 124 102 105 104 85 1									
1169: 102 92 116 115 107 118 85 105 1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 1114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 16									
1177: 110 125 107 115 123 131 131 113 1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1185: 130 100 133 110 118 97 115 102 1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 1114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94									
1193: 100 95 107 87 99 98 106 95 1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 1114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 10									
1201: 102 122 108 117 92 107 146 176 1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 1114 74 92 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 9	1193:								
1209: 173 106 95 103 87 83 103 84 1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 1114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 39 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83									
1217: 110 122 115 113 95 102 102 111 1225: 100 105 88 120 98 96 94 114 1233: 113 87 115 111 384 1184 1114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88	1209:	173	106						
1233: 113 87 115 111 384 1184 1114 370 1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93		110	122	115	113	95	102	102	111
1241: 124 102 105 104 85 114 74 92 1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86		100	105	88	120	98	96	94	114
1249: 98 86 95 117 134 163 128 116 1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 <			87	115	111	384	1184	1114	370
1257: 97 80 89 84 93 98 68 92 1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75				105	104	85	114		92
1265: 99 93 85 75 89 94 87 81 1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86									
1273: 83 99 93 96 86 83 101 195 1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80									
1281: 346 281 130 79 93 94 78 91 1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88									
1289: 93 73 86 74 86 77 83 86 1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164									
1297: 90 84 85 73 80 85 88 120 1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1305: 104 84 101 98 96 86 85 110 1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1313: 79 92 74 70 92 92 93 102 1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1321: 96 91 81 78 83 85 58 86 1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1329: 85 80 75 76 77 65 80 94 1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1337: 99 83 84 95 73 69 82 75 1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1345: 80 86 77 82 69 90 91 86 1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1353: 84 89 80 74 77 88 78 80 1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1361: 82 82 104 91 85 73 80 88 1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1369: 80 70 66 90 81 74 80 164 1377: 492 931 552 132 95 76 91 109									
1377: 492 931 552 132 95 76 91 109	1369:								
	1385:	198	231	136	88	91	80	67	89

1393:	73	71	86	82	75	86	88	123
1401:	211	323	182	98	92	92	213	478
							76	
1409:	408	138	91	83	87	91		81
1417:	75	65	73	93	77	94	67	89
1425:	96	98	87	73	89	85	77	88
1433:	86	80	96	77	95	89	96	105
1441:	83	72	76	93	73	84	81	74
1449:	87	78	83	86	89	79	80	92
1457:	69	91	102	175	341	227	126	89
1465:	83	85	88	90	74	91	87	90
1473:	71	101	71	80	79	101	101	92
1481:	74	102	79	87	87	107	95	106
1489:	94	76	98	80	82	95	91	94
1497:	110	88				97	88	92
1505:			98	77	102			
	90	107	116	162	381	430	223	112
1513:	86	94	98	88	109	96	80	98
1521:	85	94	97	92	75	69	112	98
1529:	85	91	115	84	92	89	105	116
1537:	97	124	176	126	89	115	144	148
1545:	119	76	69	70	81	73	65	60
1553:	62	80	54	62	66	61	57	76
1561:	58	55	51	63	54	48	50	64
1569:	61	75	67	55	59	65	65	52
1577:	54	70	49	58	72	85	139	164
1585:	92	76	48	79	57	53	64	69
1593:	61	73	105	79	61	63	86	114
1601:	87	56	64	56	50	51	50	61
1609:	54	48	47	47	52	57	44	42
1617:	67	53	56	54	60	5 <i>7</i> 58	52	44
1625:	52	52			53	38	43	33
1633:			57 3.5	47				
	52	32	35	39	64	48	34	39
1641:	46	46	45	35	40	46	38	33
1649:	37	50	37	30	35	16	33	46
1657:	47	49	39	78	180	193	95	45
1665:	38	40	33	36	45	32	26	51
1673:	25	27	36	45	30	29	24	32
1681:	29	31	38	57	57	40	28	21
1689:	28	33	37	50	61	65	38	29
1697:	33	30	29	38	24	37	23	27
1705:	18	22	32	32	24	30	28	27
1713:	31	33	31	37	24	23	18	27
1721:	20	25	28	34	29	23	30	77
1729:	338	558	320	77	34	39	21	24
1737:	33	29	23	27	27	23	31	31
1745:	24	21	30	27	24	32	31	29
1753:	25	24	28	15	19	35	28	24
1761:	23	89	418	1514	2316	1281	259	52
1769:	50	33	24	19	17	18	18	21
1777:	24	12	15	26	21	21	24	21
1785:	24	19	19	23	19	18	16	18
1793:	17							
1801:		17	20	13	18 25	18	17 12	19
	24	7.2	19	14	25	18	13	18
1809:	21	19	23	18	23	13	16	25
1817:	16	15	16	14	21	12	20	18
1825:	16	20	25	25	15	11	20	14
1833:	26	18	23	16	31	50	52	52
1841:	34	27	17	21	23	81	214	332
1849:	182	43	29	31	24	21	19	22
1857:	11	17	22	16	22	17	22	18
1865:	19	19	20	26	35	18	23	30

1873;									
1888 : 26	1873 •	43	53	3.5	24	20	21	20	21
1889; 17									
1897; 30 29 20 22 22 21 15 30 30 39 30 29 20 22 22 21 15 30 30 39 30 39 30 39 30 30									
1905: 15									
1913; 28									
1921:									
1929:									
1937: 47									
1945: 20 21 17 14 17 28 22 20 20 21 15 15 21 21 17 23 17 19 29 29 1969: 23 18 21 19 16 23 12 16 1977: 16 12 14 17 20 22 12 14 1885: 19 15 20 18 14 11 21 20 20 20 20 20 20									
1953: 23				35	18	20			26
1961: 13	1945:	20	21	17	14	17	28	22	20
1961: 13	1953:	23	19	12	17	27	22	20	22
1969: 23	1961:	13							29
1977: 16									
1985: 19 15 20 18 14 11 21 20 18 19 22 12 11 14 20 15 2001: 16 17 15 16 16 20 10 17 2009: 12 21 31 15 16 9 14 16 2017: 21 30 20 15 11 16 14 11 10 16 17 2033: 15 16 10 14 11 10 16 17 2041: 10 8 6 14 11 10 16 17 2041: 10 8 6 14 12 15 12 12 20241: 10 8 6 14 12 15 12 12 12 2041: 10 8 6 14 12 15 12 12 12 13 8 13 13 7 9 8 13 13 7 9 8 13 13 13 7 9 8									
1993; 18									
2001:									
2009: 12 21 31 15 16 9 14 16 2017: 21 30 20 15 11 16 14 11 10 16 17 17 2033: 15 9 7 16 13 15 16 12 2049: 9 11 12 13 28 15 12 12 2049: 9 11 12 13 28 15 12 5 2057: 13 8 11 16 11 13 8 13 2065: 12 6 13 13 7 9 8 13 2073: 9 11 9 14 8 11 18 5 2089: 19 19 12 11 11 6 12 7 7 7 7 8 8 15 8 17 7 8 8 15 8 17 7 8 8 15 8 17 7 8 8 15 8 17 7 8 8 15 8 17 7 8 8 15 8 17 7 8 8 15 8 17 7 8 8 15 8 16 16 17 17 17 17 17 18 18 18									
2017: 21 30 20 15 11 16 14 11 10 16 17 17 16 13 15 16 17 17 16 13 15 16 17 17 16 13 15 16 17 17 16 13 15 16 17 17 17 16 13 15 16 17 17 17 16 13 15 16 17 17 17 16 13 15 16 17 17 17 17 17 18 18 15 12 15 12 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 12									
2025: 20 16 10 14 11 10 16 17 2031: 15 9 7 16 13 15 16 12 2041: 10 8 6 14 12 15 12 12 2049: 9 11 12 13 28 15 12 5 2057: 13 8 11 16 11 13 8 13 2073: 9 11 9 14 8 11 18 5 2081: 10 12 12 3 8 13 8 17 2097: 6 5 7 7 8 9 11 11 11 6 12 7 2097: 6 5 7 7 8 9 11 11 11 11 6 12 7 2105: 8 11									
2033: 15									
2041: 10 8 6 14 12 15 12 12 2049: 9 11 12 13 28 15 12 5 2057: 13 8 11 16 11 13 8 13 2065: 12 6 13 13 7 9 8 13 2073: 9 11 9 14 8 11 18 5 2081: 10 12 12 13 8 11 18 5 2081: 10 12 12 11 11 6 12 7 2097: 6 5 7 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2129: 5 2 3 4 4 6 11 11 2129:									
2049: 9 11 12 13 28 15 12 5 2057: 13 8 11 16 11 13 8 13 2073: 9 11 9 14 8 11 18 5 2081: 10 12 12 3 8 13 8 17 2089: 19 19 12 11 11 6 12 7 2097: 6 5 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2121: 3 4 4 4 6 11 11 2137: 6 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2057: 13 8 11 16 11 13 8 13 2065: 12 6 13 13 7 9 8 13 2073: 9 11 9 14 8 11 18 5 2081: 10 12 12 3 8 13 8 17 2089: 19 19 12 11 11 6 12 7 2097: 6 5 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2129: 5 2 3 4 4 6 11 11 2137: 6									
2065: 12 6 13 13 7 9 8 13 2073: 9 11 9 14 8 11 18 5 2081: 10 12 12 3 8 13 8 17 2097: 6 5 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2121: 35 10 5 4 9 7 7 7 2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 7 2153: 8									
2073: 9 11 9 14 8 11 18 5 2081: 10 12 12 3 8 13 8 17 2089: 19 19 12 11 11 6 12 7 2097: 6 5 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2121: 35 10 5 4 9 7 4 8 2121: 35 10 5 4 9 7 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6									
2081: 10 12 12 13 8 13 8 17 2089: 19 19 12 11 11 6 12 7 2097: 6 5 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 4 9 7 4 8 2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 8 1 3 4 2160:									
2089: 19 19 12 11 11 6 12 7 2097: 6 5 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2129: 5 2 3 4 4 6 11 111 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 8 6 7 6 2160: 14 10 6 8 8 6 7 8 5 10 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2097: 6 5 7 7 8 9 11 11 2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2177: 6 7 8 5 10 10 9 2 2177: 6 7 8 5 10 10 9 2 2185: 8 8							13		
2105: 8 11 7 8 8 15 8 12 2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 <t< td=""><td></td><td></td><td></td><td>12</td><td></td><td>11</td><td></td><td></td><td>7</td></t<>				12		11			7
2113: 6 8 3 12 30 99 163 116 2121: 35 10 5 4 9 7 4 8 2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2171: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 <t< td=""><td></td><td></td><td>5</td><td>7</td><td>7</td><td>8</td><td>9</td><td>11</td><td>11</td></t<>			5	7	7	8	9	11	11
2121: 35 10 5 4 9 7 4 8 2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 1 3 4 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5			11	7	8	8	15	8	12
2121: 35 10 5 4 9 7 4 8 2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5	2113:		8	3	12	30	99	163	116
2129: 5 2 3 4 4 6 11 11 2137: 6 7 11 6 9 4 7 7 2145: 3 6 5 10 7 9 8 5 2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3	2121:	35	10		4	9		4	8
2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 <td< td=""><td>2129:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2129:								
2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 <td< td=""><td>2137:</td><td>6</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2137:	6	7						
2153: 8 6 7 6 8 1 3 4 2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 <td< td=""><td></td><td>3</td><td>6</td><td></td><td></td><td>7</td><td>9</td><td></td><td></td></td<>		3	6			7	9		
2161: 14 10 6 8 8 6 7 6 2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 4 2249: 1 2 6 3 5 8 2 9 9 2257: <td< td=""><td></td><td>8</td><td>6</td><td>7</td><td></td><td></td><td>1</td><td>3</td><td>4</td></td<>		8	6	7			1	3	4
2169: 4 2 4 4 10 5 12 5 2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4			- ·						
2177: 6 7 8 5 10 10 9 2 2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2						
2185: 8 8 4 8 13 4 9 17 2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 1 2281: 2 3 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			7						
2193: 16 13 7 6 10 7 8 7 2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2289: 2 1 0									
2201: 13 49 200 468 490 233 66 14 2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4									
2209: 26 5 5 4 6 3 4 5 2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2217: 3 3 9 3 4 3 5 5 2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3<			4.5 5						
2225: 1 7 10 1 6 2 4 7 2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3<			3						
2233: 5 3 3 2 6 7 1 4 2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2329: 2 4 6 8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td>							3		
2241: 1 3 3 1 9 1 5 3 2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2249: 1 2 6 3 5 8 2 9 2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 0 2			3						
2257: 5 4 5 5 4 6 6 4 2265: 2 5 2 5 4 3 3 2 2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2			3	3				5	
2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2									
2273: 4 3 6 6 2 6 3 1 2281: 2 3 1 3 1 2 1 2 2289: 2 1 0 13 22 37 22 6 2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2		5	4	5			6	6	
2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2			5			4	3	3	2
2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2		4	3				6		1
2297: 5 4 4 0 3 1 4 4 2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2		2	3				2		2
2305: 1 3 1 3 2 2 7 2 2313: 4 4 3 3 0 2 0 5 2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2		2	1			22			
2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2			4			3	1		4
2321: 2 0 1 4 2 1 2 0 2329: 2 4 6 8 0 0 2 2			3	1		2	2		2
2329: 2 4 6 8 0 0 2 2			4	3		0	2		
2329: 2 4 6 8 0 0 2 2		2				2	1	2	
2337: 3 0 1 4 5 0 1 3 2345: 2 4 2 0 3 3 0 0		2	4	6	8	0	0	2	2
2345: 2 4 2 0 3 3 0 0		3		1	4	5	0	1	3
	2345:	2	4	2	0	3	3		0

2353: 2361:	4 4	3 1	3 1	2 3	1	2 3	0	1
2369:	4	1	2	1	3	1	1	ī
2377:	3	0	2	1	2	0	3	2
2385:	1	1	1	2	3	3 2	2	1
2393:	2	0	0	2	0		0	3
2401: 2409:	2	4	1	1	4	2	0	1 0
2409: 2417:	1 1	1 1	0 1	3 1	3 4	0 2	0 5	2
2425:	Ō	0	i	1	0	1	4	2
2433:	.1	0	3	0	1	1	2	1
2441:	1	0	2	2	7	28	82	152
2449:	121	33	10	2	2	1	0	2
2457: 2465:	0 0	1 1	0 1	2 2	0 2	1 3	3 2	1 0
2473:	2	3	i	1	0	1	1	1
2481:	_ 1	3	0	ō	2	ī	1	0
2489:	2	2	1	3	1	0	1	2
2497:	1	2	0	0	1	1	1	1
2505: 2513:	3 1	1 0	1 0	2	3 2	1 1	0 1	2 0
2521:	0	1	0	1 1	0	0	0	1
2529:	Ö	ī	ĺ	1	í	Ö	1	1
2537:	0	0.	0	0	1	2	0	1
2545:	2	1	0	0	0	0	0	1
2553: 2561:	1 0	1 0	0 1	2 2	0 1	0 0	1 1	2
2569:	1	1	i	0	0	0	1	0
2577:	1	0	ī	O ·	2	Ö	0	1
2585:	0	1	1	1	1	0	1	0
2593: 2601:	0	2	0	0	1	1	3	0
2601: 2609:	1 0	2 4	1 0	1 2	1 2	3 6	2 15	1 11
2617:	5	1	0	1	0	0	0	0
2625:	0	1	Ō	ī	0	Ō	0	2
2633:	0	1	0	0	1	0	0	0
2641: 2649:	1 0	0 0	0 2	0 0	1 1	1 1	0 1	0
2657:	1	1	0	1	1	0	1	0
2665:	0	ō	1	0	2	Ö	Ō	Ö
2673:	0	1	1	2	0	0	0	0
2681:	1	1	1	0	0	1	0	0
2689: 2697:	0 0	0 0	0 0	0 0	1 0	1 1	5 1	3 0
2705:	ŏ	Ö	0	0	0	Ō	0	0
2713:	0	0	1	1	1	1	1	1
2721:	1	0	0	0	0	1	0	2
2729: 2737:	1 0	0 0	1	0	0	0	0	0
2745:	2	0	0 1	0 0	0 0	1 1	0 0	0 0
2753:	1	Ö	Ō	1	Ö	Ō	Ö	Ö
2761:	1	0	0	0	1	. O	1	2
2769: 2777:	1	1	3	2	0	0	1	0
2777: 2785:	1 2	1 0	1 0	0 0	1 0	1 1	0 0	1 1
2793:	0	Ö	1	0	0	1	0	0
2801:	0	0	0	0	1	0	1	1
2809: 2817:	0	0	0	0	0	0	0	0
2817: 2825:	1 1	1 0	0 1	0 0	0 0	0 1	0 0	1 0
	-	J	4.	U	J	-	U	U

2833:	0	2	0	1	0	0	1	0
2833: 2841:	0 0	2 0	0 0	1 0	0 0	0 1	1 1	0 1
2849:	0	0	1	0	1	0	0	0
2857:	0	0	0	0	1	0	0	1
2865: 2873:	1 0	0	0 0	0 1	0 0	0 0	0 1	0 0
2881:	2	0	0	Ō	Ö	Ö	ĺ	1
2889:	0	0	1	1	1	1	1	0
2897:	0	0	0	0	0	0	0	0
2905: 2913:	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0
2921:	0	2	1	0	0	0	0	1
2929:	0	0	0	ĺ	0	0	0	0
2937:	0	1	0	1	0	0	0	0
2945: 2953:	0 0	0 0	0 0	0 0	0	0 0	0 0	0
2961:	0	0	1	1	0	0	0	0
2969:	0	0	0	0	0	0	0	0
2977:	1	2	3	0	1	0	0	0
2985: 2993:	0 0	0 0	1 0	0 0	0 0	0 0	0 2	0 2
3001:	ĭ	Ö	1	0	0	Ö	0	0
3009:	0	0	0	1	0	0	1	0
3017:	0	0	0	0	1	0	1	1
3025: 3033:	0 0	0 0	0 1	0 0	1 0	0 0	0 0	0
3041:	ĺ	Ö	Ō	1	í	Ö	0	Ö
3049:	0	1	0	0	0	2	0	4
3057: 3065:	0 0	0	0	0	0	0	0	0
3073:	0	0 0	0 0	0 0	0 0	0 0	0 0	0
3081:	Ō	Ö	Ö	Ö	Ö	Ö	1	Ö
3089:	0	0	0	0	0	0	0	1
3097: 3105:	0 0	0 0	0	0 0	0 0	0 0	2 0	0
3113:	Ö	Ö	0	0	0	0	0	0
3121:	0	0	0	0	Ō	ĺ	0	0
3129:	0	0	0	0	0	0	1	0
3137: 3145:	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 1
3153:	Ö	1	Ö	Ö	Ö	Ö	0	Ō
3161:	0	0	0	0	0	1	0	0
3169: 3177:	0 0	0 1	0 1	0 1	1 0	0	1 0	0 0
3185:	0	0	0	0	0	1	0	0
3193:	0	0	0	0	1	1	0	0
3201: 3209:	0	0	1	0	0	0	0	1
3209: 3217:	0 1	0 0	0 2	0 1	0 0	0 0	0 0	0 0
3225:	0	0	ī	Ō	Ö	Ö	ŏ ·	1
3233:	0	2	1	0	1	0	0	0
3241: 3249:	0 0	1 0	1 0	0 0	2 0	0	0 0	0 0
3257:	0	0	1	1	0	0	0	0
3265:	0	0	0	0	0	0	0	0
3273: 3281:	0	0	0	0	0	0	0	1
3281: 3289:	0 0							
3297:	0	2	0	0	0	0	0	0
3305:	0	1	0	0	0	0	1	0

3313: 3321: 3329: 3337: 3345: 3353: 3369: 3377: 3385: 3409: 3417: 3425: 3449: 3449: 3449: 3457: 3465: 3473: 3489: 3497: 3505: 3513: 3529: 3537: 3553: 3561: 3577: 3585: 3569: 3577: 3585: 3585: 3585: 3585: 3585: 3585: 35861: 3687: 3	000000000011000001000000000000000000000	000000010000000000000100100000000000000	001001000000010000000000000000110000000	001000000000000000001101000000000000000	000000000000000000000000000000000000000	00001000001100000000000101110000010001100	000010100200100100000000001001000000000	0000011110000000010100000101000001000000
3593: 3601: 3609: 3617:	0 0 0 0	0 0 1 0	0 0 0	0 0 0	0 0 0	0 1 0 0	0 0 0 1	0 0 0 0
3633: 3641: 3649: 3657:	0 0 0 0	0 0 0	0 0 0	0 0 0 0	1 0 0 0	1 1 0 0	0 0 0	0 0 0 0
3665: 3673: 3681: 3689: 3697:	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1 0	0 0 0 0
3705: 3713: 3721: 3729: 3737:	1 0 0 0 0	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0 0	0 0 0 0
3745: 3753: 3761: 3769: 3777: 3785:	0 0 0 0 0	0 0 1 0 0	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 2 0	1 0 0 0
3/05:	U	2	0	0	0	0	0	0

3793:	0	0	1	0	-	^	0	^
3801:	0	1	1	0	1	0 0	0	0
3809:	1		1	0	1			
3817:	0	0	0	0	0	0	0	0
3825:		0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0
3833:	0	0	0	0	0	1	0	1
3841:	0	0	0	0	0	0	1	0
3849:	0	0	1	0	0	0	0	0
3857:	0	0	0	1	0	0	0	0
3865:	0	0	0	0	0	0	0	0
3873:	0	0	1	0	0	0	0	0
3881:	0	0	0	0	0	0	0	0
3889:	0	0	1	0	0	0	0	0
3897:	0	0	0	0	0	0	0	0
3905:	0	0	1	0	0	0	0	0
3913:	0	0	0	0	0	0	0	0
3921:	0	0	0	0	0	0	0	0
3929:	0	0	0	0	0	0	0	0
3937:	0	0	0	1	0	0	0	0
3945:	0	0	0	0	0	0	0	0
3953:	0	1	0	0	0	0	0	0
3961:	0	0	0	0	0	0	0	0
3969:	0	0	0	0	0	0	0	0
3977:	1	0	1	0	0	0	0	0
3985:	1	0	0	0	0	0	0	0
3993:	0	0	0	0	0	0	0	0
4001:	0	0	0	0	0	0	0	0
4009:	0	0	0	0	0	1	0	0
4017:	0	0	0	0	0	O	0	0
4025:	0	0	0	Ō	Ō	Ō	0	Ö
4033:	0	0	0	Ö	Ö	Ö	0	Ö
4041:	0	0	0	Ö	Ō	Ö	0	Ŏ
4049:	0	0	Ō	Ö	Ö	Ö	Ö	Ö
4057:	0	1	0	Ö	Ö	i	0	Ö
4065:	0	0	ĺ	Ö	Ö	ō	0	Ö
4073:	0	Ō	0	Ö	Ö	Ö	Ö	Ö
4081:	Ō	Ö	ő	Ö	ő	Ö	ŏ	0
4089:	Ō	Ö	Ö	Ö	Ö	Ö	Ö	0
	-	<u> </u>	J	J	•	•	J	0

Sample ID : 1201163-11 Acquisition date : 22-FEB-2012 13:12:03

VAX/VMS Peak Search Report Generated 22-FEB-2012 14:12:39.01

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116311_GE2_GAS1102_176264.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{V}2.2$ Client ID : JM-55-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 13:12:03

Sample Quantity : 4.10890E+02 GRAM

Sample ID : 1201163-11
Sample type : SOLID
Detector name : GE2 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 01:00:17.40 0.5% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 01:00:00.00

Start channel : 5

Sensitivity : 2.40000 Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	
0	27.53	245	5825	1.76	27.47	25		94.8			
0	46.23*	2310	10236	1.61	46.17	44		12.9		PB-210	
0	53.76*	825	11705	1.15	53.71	51		42.1			
0	63.12*	4482	15094	1.61	63.08	60	6	9.2		TH-234	
0	67.63	684	11035	1.38	67.59	67		44.1			
0	76.49*	35374	30952	3.00	76.45	71	12	2.3			
3	84.04	2144	8075	1.12	84.00	82			7.79E+02		
3	87.40	5786	9169	1.18	87.36	82	16	5.3		NP-237	
										SN-126	
2	90.03	2140	0453	. 1 25	00.00	00	1.	12 6		CD-109	
3 3	95.03	2149 729	8453	1.35	90.00	82		13.6			
0	97.39	389	6875 8582	1.36	95.00	82		38.5			
0	112.94	436	8578	1.83 1.37	97.35 112.91	97 111		76.2 68.0			
0	130.13	296	8497	5.14	130.11	128		99.0			
0	143.98*	954	10612	$\frac{5.14}{1.21}$	143.96	$\begin{array}{c} 128 \\ 141 \end{array}$		36.4		U-235	
Ü	143.50	234	10012	1.21	143.96	747	,	30.4		CE-141	
0	154.08	889	10551	1.77	154.07	151	7	39.0		CE-T4T	
Ö	163.53*	267	6756	1.83	163.52	162		93.3		U-235	
0	186.08*	9975	10071	1.39	186.08	182	8	4.0		RA-226	
Ō	205.15	199	5101	1.90	205.16	204		108.7		U-235	
1	236.07	1060	4106	1.70	236.09	232			1.02E+01		
1	239.13*	406	4025	1.70	239.15	232		52.5		PB-212	
1	241.94*	10539	3087	1.39	241.96	232	15	2.5		RA-224	
1	256.05*	485	3392	1.72	256.07	253			3.78E+00		
1	258.86	794	3312	1.72	258.89	253		23.5			
7	270.05	1779	4432	3.07	270.09	266			1.14E+01		
7	274.88	737	4287	2.18	274.92	266	13	30.8			
0	286.03	247	3656	5.36	286.07	284	6	78.7			
0	295.12*	22417	4799	1.41	295.16	291	8	1.7		PB-214	
0	313.84	255	2925	3.17	313.89	311	6	68.1			
0	323.64	183	2456	1.31	323.69	322	5	82.2		RA-223	
0	337.90*	220	2954	1.21	337.96	336		79.4			
0	351.77*	38176	4072	1.43	351.84	347	9			PB-214	
0	372.32	145	2274	3.64	372.39	370		.04.9			
0	387.85	648	3522	3.14	387.93	384	9	34.0			

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
1	401.75	364	2065	1.79	401.83	397	12	38.6	3.18E+00	RN-219
1	405.09	279	2495	1.87	405.17	397	12	58.6		
0	427.18	193	2159	2.13	427.28	425	6	77.9		
0	454.49	226	1930	1.20	454.59	452	7	66.0		
0	462.25	213	1856	1.75	462.35	459	7	68.3		
Q	480.12	195	1436	1.88	480.23	478		63.2		
0	486.84	345	1553	1.75	486.95	484		39.5		LA-140
0	493.03	181	1459		493.14	491		71.6		
2	510.19*	211	1251	2.16	510.31	506			1.60E+00	
2	512.50	133	1241	2.16	512.63	506	11	89.6		KR-85 SR-85
1	579.79	237	1073	1.95	579.94	576	10	45.5	4.73E+00	
1	582.74	174	871	1.77	582.89	576	10	55.4		TL-208
2	604.23	55	348	2.00	604.39	603	11	83.3	2.48E+00	
2	609.03*	28216	764	1.64	609.19	603		1.2		BI-214
0	665.31	905	959	2.00	665.49	662		13.6		
0	702.66	259	891	1.98	702.85	700		40.2		
0	708.91*	98	872	5.37	709.10	707		-01.7		
0	719.65	213	1135	1.76	719.85	716		58.6		
0	741.74	258	1027	1.88	741.95	738		46.5		
0	752.53	61	586	1.29	752.74	751		.21.6		
0	767.87*	2724	1316	1.93	768.09	763		6.4		
0	785.76 805.77	648	1040	1.90	785.99	782		19.6		
0 0	821.20	614 106	1082	2.02	806.00	802		21.0		
0	829.07	185	589 1200	1.53 1.12	821.44 829.31	819 824		71.6 71.6		
0	838.63	300	731	1.66	838.87	836		30.8		
Ö	888.48	112	976	3.85	888.74	886		98.3		SC-46
Ö	910.71*	138	997	1.51	910.98	908		81.3		DC40
Ö	924.97	88	721	3.30	925.25	922		.03.7		
Ō	933.55	1413	916	1.89	933.83	930	9			
0	963.10	156	811	1.87	963.39	960		65.3		
0	1000.44*	258	840		1000.75	996		42.4		PA-234M
0	1010.77	108			1011.08			96.4		
Q	1049.87	221	945		1050.20	1044		57.3		
Ò	1069.07	200	680	2.03	1069.40	1065	9	49.1		
0	1119.76*	6197	884	1.99	1120.11	1114	12	3.2		BI-214 SC-46
0	1132.85	76	693	1.58	1133.20	1130	81	.22.8		. — —
0	1154.98	587	749		1155.34	1151		18.8		
0	1182.80	132	590		1183.18	1178		68.6		
0	1207.08	186	592	2.44	1207.46	1203	9	49.4		
0	1237.66	2316	704	2.24	1238.06	1233	11	6.1		
0	1253.36	88	536		1253.76	1250		94.1		
0	1280.26	521	603		1280.68	1276		19.7		
0	1302.62	73	450		1303.04	1300		.03.5		
3	1377.06	1573	346		1377.51	1371	22		1.59E+00	
3	1384.75	376	402		1385.20	1371		22.2		
2 2	1400.81	514	353		1401.27	1397			1.07E+00	
2 6	1407.28 1457.25	850 106	371		1407.74	1397		10.1	1 068:00	
J	143/.25	106	284	3.33	1457.72	1455	12	ρ Τ. 8	1.96E+00	

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
6	1460.24*	632	345	2.31 1460.72	1455	12 12.9		K-40
0	1497.75	62	461	1.10 1498.24	1494	8123.4		
0	1508.72	733	693	2.37 1509.22	1504	12 16.1		
0	1537.85	68	474	2.07 1538.36	1535	7109.0		
0	1542.76	76	376	2.50 1543.27	1541	7 88.7		
0	1582.08	198	374	2.89 1582.61	1578	9 38.0		
0	1597.43	248	603	7.09 1597.96	1591	16 46.2		LA-140
0	1660.79	314	220	2.59 1661.34	1657	9 20.6		
0	1692.48	137	164	3.75 1693.05	1689	10 38.6		
0	1728.86	1078	173	2.70 1729.44	1724	13 7.9		
0	1763.74*	4780	128	2.54 1764.33	1760	11 3.0		BI-214
0	1837.61	91	88	2.08 1838.23	1836	6 38.5		
0	1846.53	615	173	2.40 1847.15	1843	10 11.4		
0	1872.83	51	147	4.07 1873.47	1868	11 98.1		
5	1884.07	21	77	3.29 1884.71	1882	21135.6	1.84E+00	
5	1889.23	40	75	2.15 1889.87	1882	21 74.7		
5	1895.17	59	132	3.63 1895.82	1882	21 83.1		
0	1905.66	29	90	3.94 1906.31	1903	8118.1		
0	1933.84	71	174	3.91 1934.50	1928	14 82.0		
0	2009.38	28	83	1.23 2010.07	2008	8119.3		
0	2046.80	20	35	2.01 2047.50	2044	7107.8		
0	2054.73	54	42	8.33 2055.44	2051	11 54.5		
0	2089.00	31	49	1.16 2089.71	2083	13 99.8		
0	2117.42*	289	72	2.66 2118.14	2113	13 16.9		
0	2191.61	33	36	2.01 2192.36	2189	9 72.0		
0	2202.99	1196	56	2.73 2203.75	2198	13 6.4		BI-214
0	2234.80	14	15	4.62 2235.57	2231	10116.5		
0	2261.08	16	10	2.15 2261.86	2258	7 84.9		
1	2292.29	96	11	2.66 2293.09	2288	18 23.2	8.71E-01	
1	2300.40	14	6	2.89 2301.20	2288	18 97.8		
0	2372.39	11	9	2.49 2373.21	2367	12120.0		
0	2446.32	334	21	2.48 2447.17	2441	12 12.2		
0	2481.11	10	3	2.26 2481.97	2476	10 84.2		
0	2613.26*	36	6	2.29 2614.17	2608	12 46.3		TL-208
0	2694.49	8	5	1.90 2695.43	2691	9120.2		

Summary of Nuclide Activity Page: 4 Acquisition date : 22-FEB-2012 13:12:03 Sample ID : 1201163-11

Total number of lines in spectrum 117 Number of unidentified lines 66 Number of lines tentatively identified by NID 51 43.59%

Nuclide Type : NATURAL

	-71		-			
			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.362E+01	2.362E+01	0.401E+01	16.97
TL-208	1.41E+10Y	1.00	6.267E-01	6.267E-01	2.398E-01	38.25
PB-210	22.26Y	1.00	4.506E+01	4.516E+01	0.719E+01	15.93
PB-212	1.41E+10Y	1.00	9.159E-01	9.159E-01	4.880E-01	53.28
BI-214	1602.00Y	1.00	1.269E+02	1.269E+02	0.079E+02	6.23
PB-214	1602.00Y	1.00	1.356E+02	1.356E+02	0.092E+02	6.75
RN-219	3.28E+04Y	1.00	8.203E+00	8.203E+00	3.269E+00	39.86
RA-223	3.28E+04Y	1.00	5.872E+00	5.872E+00	4.857E+00	82.71
RA-224	1.41E+10Y	1.00	2.700E+02	2.700E+02	0.256E+02	9.47
RA-226	1602.00Y	1.00	2.647E+02	2.647E+02	4.849E+02	183.19
PA-234M	4.47E+09Y	1.00	8.555E+01	8.555E+01	3.728E+01	43.58
TH-234	4.47E+09Y	1.00	8.565E+01	8.565E+01	1.115E+01	13.02
U-235	7.04E+08Y	1.00	4.258E+00	4.258E+00	3.083E+00	72.42
	Total Acti	vity :	1.057E+03	1.057E+03		

Nuclide Type : ACTIVATION

	7 E	· · · ·					
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr		2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error	Flags
SC-46	83.83D	1.24	3.116E-01	3.850E-01	3.801E-01	98.75	-
NB-95M	3.61D	136.	4.230E+00	5.737E+02	1.212E+02	21.13	
LA-140	12.79D	4.00	1.194E+00	4.772E+00	1.479E+00	31.00	
	Total Acti	.vity :	5.735E+00	5.788E+02			

Nuclide Type : FISSION

TIACTIAC	Type . I Ibi	TOM					
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Fl	.ags
KR-85	10.72Y	1.00	5.451E+01	5.476E+01	4.937E+01	90.17	_
SR-85	64.84D	1.31	2.383E-01	3.132E-01	2.824E-01	90.17	
CD-109	464.00D	1.04	1.086E+02	1.128E+02	0.190E+02	16.81	
SN-126	1.00E+05Y	1.00	1.091E+01	1.091E+01	0.171E+01	15.63	
CE-141	32.50D	1.73	1.532E+00	2.643E+00	1.141E+00	43.18	
NP-237	2.14E+06Y	1.00	3.204E+01	3.204E+01	0.493E+01	15.38	
	motol net		0 0000				

Total Activity : 2.078E+02 2.135E+02

Grand Total Activity: 1.270E+03 1.849E+03

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Page: 5
Acquisition date: 22-FEB-2012 13:12:03

Nuclide	Type: 1	NATUF	RAL		
Nuclide K-40	Energ 1460.8	gy 81	%Abn 10.67*	%Eff 4.582E-01	Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Status 2.362E+01 2.362E+01 16.97 OK
	Final M	Mean	for 1	Valid Peaks	= 2.362E+01+/- 4.007E+00 (16.97%)
TL-208	583.1 860.1 2614.6	14 37 66	30.22* 4.48 35.85	9.242E-01 6.742E-01 3.402E-01	1.136E+00 1.136E+00 56.24 OK Line Not Found Absent 5.433E-01 5.433E-01 47.61 OK
	Final M	Mean	for 2	Valid Peaks	= 6.267E-01+/- 2.398E-01 (38.25%)
PB-210	46.5	50	4.25*	2.204E+00	4.506E+01 4.516E+01 15.93 OK
	Final N	Mean	for 1	Valid Peaks	= 4.516E+01+/- 7.193E+00 (15.93%)
PB-212	238.6 300.0	63 09	44.60* 3.41	1.817E+00 1.555E+00	9.159E-01 9.159E-01 53.28 OK Line Not Found Absent
	Final M	Mean	for 1	Valid Peaks	= 9.159E-01+/- 4.880E-01 (53.28%)
	1120.2 1764.4	29 49	15.10 15.80	5.508E-01 4.084E-01	1.249E+02
	Final N	Mean	for 3	Valid Peaks	= 1.269E+02+/- 7.899E+00 (6.23%)
PB-214	295.2 351.9	21 92	19.19 37.19*	1.574E+00 1.383E+00	1.356E+02 1.356E+02 9.41 OK 1.356E+02 1.356E+02 9.70 OK
	Final N	Mean	for 2	Valid Peaks	= 1.356E+02+/- 9.160E+00 (6.75%)
RN-219	401.8	80	6.50*	1.248E+00	8.203E+00 8.203E+00 39.86 OK
	Final M	Mean	for 1	Valid Peaks	= 8.203E+00+/- 3.269E+00 (39.86%)
RA-223	323.8	87	3.88*	1.472E+00	5.872E+00 5.872E+00 82.71 OK
	Final N	Mean	for 1	Valid Peaks	= 5.872E+00+/- 4.857E+00 (82.71%)
RA-224	240.9	98	3.95*	1.806E+00	2.700E+02 2.700E+02 9.47 OK
	Final N	Mean	for 1	Valid Peaks	= 2.700E+02+/- 2.557E+01 (9.47%)
RA-226					2.647E+02 2.647E+02 183.19 OK
					= 2.647E+02+/- 4.849E+02 (183.19%)
PA-234M					8.555E+01 8.555E+01 43.58 OK
	Final M	Mean	for 1	Valid Peaks	= 8.555E+01+/- 3.728E+01 (43.58%)

Page: 6 Nuclide Line Activity Report (continued) Sample ID : 1201163-11 Acquisition date : 22-FEB-2012 13:12:03

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma
Energy %Abn %Eff pCi/GRAM pci/GRAM
63.29 3.00 pCi/GRAM pCi/GRAM %Error Status Nuclide TH-234 63.29 3.80* 2.516E+00 8.565E+01 8.565E+01 13.02 OK Final Mean for 1 Valid Peaks = 8.565E+01+/-1.115E+01 (13.02%)

U-235 7.029E+00 40.54 <<WM Interf 143.76 10.50* 2.361E+00 7.029E+00 163.35 4.70 2.238E+00 4.640E+00 4.640E+00 95.31 OK 205.31 4.70 1.990E+00 3.896E+00 3.896E+00 110.39 OK

Final Mean for 2 Valid Peaks = 4.258E+00+/-3.083E+00 (72.42%)

Nuclide Type: ACTIVATION

Uncorrected Decay Corr 2-Sigma %Abn %Eff pCi/GRAM pCi/GRAM %Error Nuclide Energy Status SC-46 889.25 99.98* 6.569E-01 3.116E-01 3.850E-01 98.75 OK 1120.51 5.508E-01 2.056E+01 2.540E+01 10.60 <<WM Interf 99.99 Final Mean for 1 Valid Peaks = 3.850E-01+/-3.801E-01 (98.75%) NB-95M 235.69 25.00* 1.831E+00 4.230E+00 5.737E+02 21.13 OK

Final Mean for 1 Valid Peaks = 5.737E+02+/-1.212E+02 (21.13%)

LA-140 328.77 20.50 1.455E+00 ---- Line Not Found -----Absent 487.03 45.50 1.070E+00 1.296E+00 5.180E+00 40.72 OK 815.85 23.50 7.033E-01 ---- Line Not Found ----Absent 1596.49 95.49* 4.332E-01 1.095E+00 4.378E+00 47.41 OK

Final Mean for 2 Valid Peaks = 4.772E+00+/-1.479E+00 (31.00%)

Uncorrected Decay Corr 2-Sigma

Nuclide Type: FISSION

%Abn Nuclide Energy %Eff pCi/GRAM pCi/GRAM %Error Status KR-85 513.99 0.43* 1.025E+00 5.451E+01 5.476E+01 90.17 OK Final Mean for 1 Valid Peaks = 5.476E+01+/-4.937E+01 (90.17%) SR-85 513.99 99.27* 1.025E+00 2.383E-01 3.132E-01 90.17 OK Final Mean for 1 Valid Peaks = 3.132E-01+/-2.824E-01 (90.17%) CD-109 88.03 3.72* 2.618E+00 1.086E+02 1.128E+02 16.81 OK Final Mean for 1 Valid Peaks = 1.128E+02+/-1.896E+01 (16.81%) SN-126 87.57 37.00* 2.618E+00 1.091E+01 1.091E+01 15.63 OK Final Mean for 1 Valid Peaks = 1.091E+01+/-1.706E+00 (15.63%)

Nuclide Line Activity Report (continued) Page: 7
Sample ID: 1201163-11 Acquisition date: 22-FEB-2012 13:12:03

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/GRAM pCi/GRAM %Error Status

CE-141 145.44 48.40* 2.351E+00 1.532E+00 2.643E+00 43.18 OK

Final Mean for 1 Valid Peaks = 2.643E+00+/-1.141E+00 (43.18%)

NP-237 86.50 12.60* 2.619E+00 3.204E+01 3.204E+01 15.38 OK

Final Mean for 1 Valid Peaks = 3.204E+01+/-4.929E+00 (15.38%)

Flag: "*" = Keyline

Combined Activity-MDA Report Sample ID : 1201163-11

Page: 8
Acquisition date: 22-FEB-2012 13:12:03

---- Identified Nuclides ----

Nuclide	Activity (pCi/GRAM)	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
K-40	2.362E+01	4.007E+00	3.535E+00	3.624E-01	6.681
SC-46	3.850E-01	3.801E-01	4.487E-01	4.022E-02	0.858
KR-85	5.476E+01	4.937E+01	6.379E+01	5.907E+00	0.858
SR-85	3.132E-01	2.824E-01	3.649E-01	3.379E-02	0.858
NB-95M	5.737E+02	1.212E+02	1.534E+02	1.261E+01	3.740
CD-109	1.128E+02	1.896E+01	9.237E+00	1.425E+00	12.210
SN-126	1.091E+01	1.706E+00	8.935E-01	1.263E-01	12.214
LA-140	4.772E+00	1.479E+00	1.493E+00	1.457E-01	3.197
CE-141	2.643E+00	1.141E+00	1.052E+00	2.401E-01	2.511
TL-208	6.267E-01	2.398E-01	9.572E-01	8.710E-02	0.655
PB-210	4.516E+01	7.193E+00	7.257E+00	6.083E-01	6.222
PB-212	9.159E-01	4.880E-01	6.396E-01	5.261E-02	1.432
BI-214	1.269E+02	7.899E+00	6.441E-01	5.781E-02	196.965
PB-214	1.356E+02	9.160E+00	7.992E-01	6.999E-02	169.705
RN-219	8.203E+00	3.269E+00	4.818E+00	4.338E-01	1.702
RA-223	5.872E+00	4.857E+00	7.436E+00	6.374E-01	0.790
RA-224	2.700E+02	2.557E+01	7.273E+00	5.984E-01	37.123
RA-226	2.647E+02	4.849E+02	9.337E+00	1.710E+01	28.351
PA-234M	8.555E+01	3.728E+01	3.931E+01	3.609E+00	2.176
TH-234	8.565E+01	1.115E+01	8.596E+00	7.160E-01	9.963
U-235	4.258E+00	3.083E+00	2.786E+00	4.823E-01	1.528
NP-237	3.204E+01	4.929E+00	2.621E+00	3.634E-01	12.222

Nuclide	Key-Line Activity (pCi/GRAM)	K.L. Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
BE-7	2.042E-01		2.543E+00	3.950E+00	3.653E-01	0.052
NA-22	-1.248E-02		2.475E-01	3.618E-01	3.566E-02	-0.034
AL-26	8.931E-02		1,240E-01	2.299E-01	2.078E-02	0.389
TI-44	5.181E-01	+	2.345E-01	3.793E-01	3.556E-02	1.366
V-48	6.219E-01		6.769E-01	1.151E+00	1.053E-01	0.540
CR-51	2.481E-01		4.289E+00	5.449E+00	4.907E-01	0.046
MN-54	1.556E-01		3.109E-01	3.787E-01	3.399E-02	0.411
CO-56	6.669E-02		2.800E-01	4.509E-01	4.049E-02	0.148
CO-57	1.134E-01		2.009E-01	3.301E-01	2.799E-02	0.343
CO-58	4.396E-02		2.792E-01	4.231E-01	3.801E-02	0.104
FE-59	-4.882E-01		5.779E-01	9.285E-01	9.219E-02	-0.526
CO-60	1.595E-01		2.525E-01	3.813E-01	3.536E-02	0.418
ZN-65	5.590E+00		8.527E-01	1.188E+00	1.104E-01	4.705
GA-67	1.196E+03		4.213E+03	2.404E+02	8.460E+02	4.976
SE-75	-1.296E-01		4.258E-01	5.417E-01	4.488E-02	-0.239
RB-82	-1.894E+00		4.136E+00	4.822E+00	4.304E-01	-0.393
RB-83	2.911E-02		4.881E-01	7.555E-01	1.208E-01	0.039
Y-88	4.056E-01		2.118E-01	3.654E-01	3.262E-02	1.110
NB-93M	-2.279E+01		9.821E+00	1.160E+01	3.492E+00	-1.965
NB-94	-1.495E-02		2.165E-01	3.621E-01	3.250E-02	-0.041
NB-95	8.899E+00		9.979E-01	1.034E+00	9.218E-02	8.602

Nuclide		K.L. Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
ZR-95	-7.701E-03		5.343E-01	7.391E-01	7.199E-02	-0.010
RU-103	6.875E-02		3.161E-01	4.922E-01	7.167E-02	0.140
RU-105	-1.412E+00		1.744E+00	2.902E+00	3.930E-01	-0.487
AG-108M	2.115E-02		2.307E-01	3.512E-01	3.096E-02	0.060
AG-100M AG-110M	3.266E-01				2.923E-02	0.967
SN-113			2.127E-01	3.379E-01	5.126E-02	0.154
TE123M	8.597E-02 2.230E-01		3.861E-01	5.568E-01		
			3.128E-01	4.146E-01	3.335E-02	0.538
SB-124	7.548E-02		2.728E-01	4.212E-01	3.796E-02	0.179
I-125	-3.493E+00		3.950E+00	6.590E+00	6.759E-01	-0.530
SB-125	1.029E+00	+	8.077E-01	1.133E+00	1.051E-01	0.908
SB-126	3.887E+00	+	2.308E+00	2.662E+00	2.345E-01	1.460
SB-127	6.476E+01		4.885E+01	8.499E+01	7.399E+00	0.762
I-129	-1.682E-01		4.158E-01	6.498E-01	7.965E-02	-0.259
I-131	-1.964E-01		1.889E+00	3.142E+00	2.773E-01	-0.063
TE-132	-3.233E+01		5.190E+01	7.565E+01	6.210E+00	-0.427
BA-133	7.869E-02		3.296E-01	4.782E-01	6.364E-02	0.165
CS-134	1.175E-01	+	9.855E-02	4.010E-01	3.617E-02	0.293
CS-135	7.074E+00		1.343E+00	2.016E+00	1.657E-01	3.509
CS-136	1.568E+00		1.054E+00	1.808E+00	1.713E-01	0.867
CS-137	3.208E-01		2.344E-01	3.695E-01	3.192E-02	0.868
LA-138	2.214E-01		3.573E-01	5.954E-01	6.002E-02	0.372
CE-139	2.888E-01		2.808E-01	4.227E-01	3.365E-02	0.683
BA-140	-2.429E+00		2.914E+00	4.718E+00	1.571E+00	-0.515
CE-144	-1.219E+00		1.821E+00	2.717E+00	2.265E-01	-0.449
PM-144	5.987E-02		2.084E-01	3.201E-01	2.801E-02	0.187
PM-145	-1.004E+00		1.083E+00	1.438E+00	9.388E-01	-0.698
PM-146	9.220E-01	+	6.152E-01	7.850E-01	7.223E-02	1.175
ND-147	6.374E+00		6.591E+00	1.146E+01	1.060E+00	0.556
EU-152	2.224E+01	+	3.623E+00	4.280E+00	5.191E-01	5.196
GD-153	-1.103E+00		8.214E-01	1.213E+00	1.414E-01	-0.910
EU-154	-3.189E-02		6.878E-01	1.005E+00	9.910E-02	-0.032
EU-155	1.319E+01	+	2.029E+00	1.314E+00	1.821E-01	10.044
EU-156	-2.827E+00		6.808E+00	1.006E+01	2.312E+00	-0.281
HO-166M	3.066E-01		4.585E-01	5.711E-01	5.017E-02	0.537
HF-172	-7.099E-01		1.611E+00	2.419E+00	2.038E-01	-0.293
LU-172	3.225E+00		4.787E+00	8.093E+00	7.505E-01	0.398
LU-173	6.925E+00		1.138E+00	1.642E+00	1.348E-01	4.218
HF-175	-2.841E-01		3.684E-01	4.542E-01	3.954E-02	-0.626
LU-176	-2.028E-01		2.091E-01	2.970E-01	2.507E-02	-0.683
TA-182	6.640E+01		6.966E+00	4.198E+00	3.896E-01	15.815
IR-192	4.029E-01		5.073E-01	7.987E-01	7.373E-02	0.504
HG-203	1.713E-02		4.201E-01	5.377E-01	4.546E-02	0.032
BI-207	6.874E-02		1.872E-01	3.085E-01	2.822E-02	0.223
BI-210M	-6.247E-02		4.846E-01	6.196E-01	5.099E-02	-0.101
PB-211	1.417E+01	+	8.416E+00	1.176E+01	1.061E+00	1.205
BI-212	-5.102E-02		1.733E+00	2.629E+00	2.321E-01	-0.019
RA-225	-3.601E-01		2.084E+00	3.255E+00	3.021E-01	-0.111
TH-227	9.204E+00	+	1.945E+00	2.859E+00	2.351E-01	3.219

Combined Activity-MDA Report (continued) Page: 10 Sample ID: 1201163-11 Acquisition date: 22-FEB-2012 13:12:03

Nuclide	Key-Line Activity (pCi/GRAM)	K.L. Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
AC-228	1.411E+00	+	1.155E+00	1.468E+00	1.320E-01	0.962
TH-230	1.322E+02	+	5.982E+01	9.671E+01	9.021E+00	1.367
PA-231	6.247E+00		8.589E+00	1.264E+01	1.063E+00	0.494
TH-231	2.056E+00		1.964E+00	3.105E+00	4.573E-01	0.662
PA-233	7.075E-01		9.824E-01	1.429E+00	3.200E-01	0.495
PA-234	1.089E+00	+	1.083E+00	1.356E+00	1.134E-01	0.803
AM-241	2.005E+00		6.823E-01	9.347E-01	6.992E-02	2.145
AM-243	1.669E+01		2.000E+00	8.021E-01	8.791E-02	20.802
CM-243	4.838E-01		1.407E+00	2.067E+00	1.695E-01	0.234

Summary of Nuclide Activity Page: 11

Acquisition date: 22-FEB-2012 13:12:03 Sample ID : 1201163-11

Total number of lines in spectrum 117 Number of unidentified lines 66

Number of lines tentatively identified by NID 51 43.59%

Nuclide Type : NATURAL

	-1PO						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags	ŀ
K-40	1.28E+09Y	1.00	2.362E+01	2.362E+01	0.401E+01	16.97	
TL-208	1.41E+10Y	1.00	6.267E-01	6.267E-01	2.398E-01	38.25	
PB-210	22.26Y	1.00	4.506E+01	4.516E+01	0.719E+01	15.93	
PB-212	1.41E+10Y	1.00	9.159E-01	9.159E-01	4.880E-01	53.28	
BI-214	1602.00Y	1.00	1.269E+02	1.269E+02	0.079E+02	6.23	
PB-214	1602.00Y	1.00	1.356E+02	1.356E+02	0.092E+02	6.75	
RN-219	3.28E+04Y	1.00	8.203E+00	8.203E+00	3.269E+00	39.86	
RA-223	3.28E+04Y	1.00	5.872E+00	5.872E+00	4.857E+00	82.71	
RA-224	1.41E+10Y	1.00	2.700E+02	2.700E+02	0.256E+02	9.47	
RA-226	1602.00Y	1.00	2.647E+02	2.647E+02	4.849E+02	183.19	
PA-234M	4.47E+09Y	1.00	8.555E+01	8.555E+01	3.728E+01	43.58	
TH-234	4.47E+09Y	1.00	8.565E+01	8.565E+01	1.115E+01	13.02	
U-235	7.04E+08Y	1.00	4.258E+00	4.258E+00	3.083E+00	72.42	

Total Activity: 1.057E+03 1.057E+03

Nuclide Type : ACTIVATION

11001100	Type . Hers		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay		pCi/GRAM	2-Sigma Error	_
SC-46	83.83D	$1.2\overline{4}$	3.116E-01	3.850E-01	3.801E-01	98.75
NB-95 M	3.61D	136.	4.230E+00	5.737E+02	1.212E+02	21.13
LA-140	12.79D	4.00	1.194E+00	4.772E+00	1.479E+00	31.00

Total Activity : 5.735E+00 5.788E+02

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
KR-85	10.72Y	1.00	5.451E+01	5.476E+01	4.937E+01	90.17
SR-85	64.84D	1.31	2.383E-01	3.132E-01	2.824E-01	90.17
CD-109	464.00D	1.04	1.086E+02	1.128E+02	0.190E+02	16.81
SN-126	1.00E+05Y	1.00	1.091E+01	1.091E+01	0.171E+01	15.63
CE-141	32.50D	1.73	1.532E+00	2.643E+00	1.141E+00	43.18
NP-237	2.14E+06Y	1.00	3.204E+01	3.204E+01	0.493E+01	15.38

Total Activity : 2.078E+02 2.135E+02

Grand Total Activity : 1.270E+03 1.849E+03

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116311_GE2_GAS1102_176264.CNF; 1

Title :

Sample Title: JM-55-31-120128

Start Time: 22-FEB-2012 13:12 Sample Time: 28-JAN-2012 00:00 Energy Offset: 6.87229E-02 Real Time: 0 01:00:17.40 Sample ID : 1201163-11 Energy Slope: 9.99625E-01

Channel

1:	0	0	0	0	0	0	1	862
9:	1633	2098	2786	2041	2200	2978	2016	1895
17:	1608	1452	1339	1275	1192	1099	1176	1267
25:	1218	1177	1307	1267	1101	1128	1191	1400
33:	1197	1144	1169	1291	1253	1196	1242	1392
41:	1445	1386	1516	1533	1630	3665	4219	1561
49:	1603	2145	1726	1796	2950	2269	1886	1910
57:	2014	2173					5120	3931
			2343	2550	2655	2825		
65:	2531	2610	2954	3270	2844	2651	2840	2930
73:	2949	5108	11285	5271	16843	7485	3064	2925
81:	3338	2323	2563	4434	2461	2428	5884	4309
89:	2344	3570	2112	3638	4939	2196	2194	1523
97:	1472	1751	1669	1452	1310	1317	1456	1397
105:								
	1402	1456	1475	1434	1472	1501	1501	1533
113:	1709	1493	1393	1385	1377	1399	1354	1356
121:	1348	1480	1413	1430	1349	1414	1382	1476
129:	1483	1459	1505	1464	1406	1408	1448	1434
137:	1465	1543	1504	1523	1536	1543	1621	2203
145:	1649	1542	1483	1529	1510	1548	1577	1590
153:								
	1647	1906	1700	1530	1490	1443	1506	1418
161:	1413	1374	1505	1499	1334	1323	1325	1421
169:	1319	1302	1243	1327	1324	1258	1269	. 1248
177:	1252	1234	1301	1271	1310	1325	1333	1314
185:	2583	7673	3435	1262	1201	1213	1263	1161
193:	1194	1156	1179	1181	1154	1124	1167	1164
201:	1148	1124						967
			1085	1078	1149	1102	1004	
209:	996	982	976	950	948	975	908	992
217:	977	907	973	912	926	936	857	910
225:	891	887	890	855	862	821	865	823
233:	832	888	1035	1442	931	978	1062	833
241:	2622	7883	2201	736	758	736	727	735
249:	720	764	682	694	690	732	709	960
257:								
	819	875	1113	743	616	625	663	636
265:	656	636	643	662	1128	1044	1100	864
273:	712	812	938	656	654	597	611	602
281:	623	648	612	668	663	682	659	659
289:	572	605	616	603	587	2813	15032	6330
297:	668	571	607	728	569	548	586	549
305:	537	509	508		518	496	476	528
				478				
313:	556	550	583	487	490	519	496	490
321:	480	452	555	651	472	509	507	501
329:	594	579	476	499	565	546	474	489
337:	506	654	531	511	485	515	473	440
345:	462	499	495	518	551	852	9994	24340
353:	4691	441	381	425	453	382	395	415
361:	386	407						
			401	376	391	389	356	384
369:	369	372	431	399	412	415	390	380
377:	387	389	416	386	372	382	400	390
385:	380	487	559	532	637	426	383	376
393:	401	430	384	439	380	394	405	454
401:	483	596	422	453	551	479	453	396
409:	441	381	355	416	405	384	426	400
417:	401	431						
			427	408	383	422	396	395
425:	379	394	451	437	361	330	353	347

433:	315	305	303	318	324	289	314	311
441:	300	271	290	309	298	292	282	282
449:	317	279	291	305	312	331	409	250
457:	274	275	245	272	311	370	309	292
465:	270	268	252	299	298	312	283	262
473:	265	276	248	260	241	243	246	343
481:	342	232	225	250	238	265	402	319
489:	232	192	229	244	264	247	237	224
497:	195	219	219	201	225	187	222	186
505:	206	218	214	213	268	334	329	260
513:	277	195	217	205	202	185	214	195
521:	231	185	217	214	194	206	193	219
529:	236	196	208	188	261	265	197	189
537:	245	218	208	197	199	216	224	196
545:	197	212	226	185	171	213	198	182
553:	197	217	176	164	206	191	183	185
561:	196	190	184	179	176	212	173	194
569:	187	184	213	214	186	198	185	187
577:	182	179	218	298	243	177	275	205
585:	156	183	172	164	174	160	195	175
593:	190	167	203	195	183	179	168	181
601:	188	186	163	206	178	181	257	3945
609:	15686	8509	658	148	125	148	161	154
617:	129	147	122	136	142	115	146	136
625:	135	153	154	137	159	141	130	142
633:	159	134	136	153	131	138	151	137
641:	124	125	117	123	140	127	120	138
649:	160	128	127	129	122	115	158	140
657:	131	140	151	140	142	109	143	218
665:	532	424	172	140	126	105	150	119
673:	127	110	133	149	148	119	139	119
681:	121	136	142	147	135	120	150	157
689:	110	134	119	115	159	135	121	124
697:	157	146	135	127	149	183	250	191
705:	146	104	145	138	136	158	157	118
713:	121	128	126	119	129	131	183	235
721:	159	134	137	121	137	117	156	139
729:	121	116	138	123	128	159	139	113
737:	111	125	122	142	151	215	169	121
745:		108	114	106	125	121	105	159
753: 761:	137 123	124	122	118	129	109	129	124
761: 769:	923	125 206	110	138	159	222 119	511 123	1400
709:	118	101	126 137	125	124		123	113 135
777: 785:	298	414	206	123	130	113 115	107	112
703: 793:	115	133	131	132 122	138 117	103	135	122
801:	124	121	124	125	265	420	277	138
809:	117	109	128	123	110	126	110	123
817:	109	137	104	141	186	142	122	110
825:	147	146	145	117	121	140	137	199
833:	123	124	129	117	118	210	305	175
841:	106	136	146	133	145	131	132	133
849:	142	108	127	126	118	116	117	118
857:	131	133	134	135	133	137	127	113
865:	112	118	132	117	120	129	139	130
873:	123	133	134	132	149	123	138	121
881:	126	135	132	132	109	122	139	143
889:	144	156	131	122	131	123	119	132
897:	128	134	139	141	132	138	134	136
905:	148	118	120	123	132	146	199	153
						-		

913:	143	130	119	135	113	123	115	118
921:	113	88	116	130	133	126	107	109
929:	101	98	111	143	486	809	372	109
937:	101	100	107	107	115	101	121	111
945:	123	99	121	104	117	117	90	122
953:	95	105	100	99	96	116	96	99
961:	114	84	152	197	140	85	96	113
969:	127	107	117	100	112	97	97	96
977:	111	90	104	116	121	125	113	101
985:	112	114	100	107	97	99	97	95
993:	84	111	110	82	112	98	121	148
1001:	207	149		83	99	93	83	99
			101					
1009:	107	99	125	109	93	110	85	95
1017:	105	85	79	82	95	84	97	85
1025:	93	118	94	75	80	94	82	108
1033:	94	97	90	84	88	80	77	95
1041:	71	74	82	75	103	99	94	83
1049:	81	90	139	125	111	85	81	77
1057:	98	85	93	87	100	87	84	80
1065:	76	91	89	91	132	149	89	85
1073:	78	69	85	71	92	77	88	98
1073:	72	79	77	82	88	83	93	67
1089:	74	80	85		81	81	73	99
				90				
1097:	73	87	72	80	74	83	107	108
1105:	104	85	94	88	80	75	76	72
1113:	82	53	98	86	74	225	1171	2980
1121:	1823	340	78	82	75	85	99	83
1129:	92	101	97	83	128	112	80	93
1137:	75	84	74	66	70	84	77	78
1145:	75	81	71	85	74	97	87	76
1153:	84	206	369	246	100	96	72	80
1161:	77	78	76	92	78	72	87	86
1169:	64	79	66	103	81	74	93	75
1177:	83	60	69	91	84	82	100	84
1185:	85	67	54	73	58	67	71	77
1193:	69	71	68	73 70	77	55	80	7 <i>7</i>
1201:	64							
1201:		67	70 5.6	68	67 7.5	91	137	120
	93	76	56	71	75	68	67	64
1217:	78	90	75	87	70	77	66	75
1225:	66	72	69	87	71	67	72	81
1233:	64	71	72	154	612	1073	643	151
1241:	55	65	60	54	46	52	70	65
1249:	76	70	70	82	104	95	60	78
1257:	65	60	74	56	68	73	55	65
1265:	56	62	65	74	55	67	77	66
1273:	64	69	53	58	65	63	94	206
1281:	284	144	82	68	60	69	66	56
1289:		51	61	55	61	51	68	47
1297:	59 58	50	66	54	76	61	91	77
1305:	53	60	51	56	53	48	62	66
1313:	66	59	61	64	74	62	59	52
1321:	57							
		49	60 51	54	62 50	53	63 63	58
1329:	53	61	51	68	58	59	63	57
1337:	67 	66	63	60	60	68	51	56
1345:	56	49	67	54	47	65	58	65
1353:	52	62	55	61	67	66	62	57
1361:	47	49	58	51	47	55	57	63
1369:	54	54	53	53	61	61	85	231
1377:	625	626	238	70	50	57	60	97
1385:	186	122	79	55	51	57	49	43

1393:	43	43	54	50	48	49	58	136
1401:	260	212	89	57	63	98	335	374
1409:	211	75	57	49	61	60	68	65
1417:	68	50	59	53	55	51	65	75
1425:	58	66	60	58	48	74	49	55
1433:	54	70	63	63	74	56	61	56
1441:	51	61				62	55	50
			5 <i>7</i>	55	53			
1449:	61	76	57	53	68	49	43	67
1457:	61	73	130	255	306	161	71	43
1465:	59	42	63	55	51	45	68	70
1473:	50	56	61	46	66	67	68	65
1481:	63	72	54	59	61	58	59	62
1489:	68	44	69	58	62	55	61	71
1497:	65	70	66			6 4	56	60
				85	50			
1505:	65	60	100	226	324	199	114	70
1513:	72	76	60	55	61	60	59	84
1521:	66	56	61	56	54	57	66	61
1529:	69	58	53	67	52	71	65	62
1537:	73	106	109	76	51	84	87	89
1545:	42	53	46	49	44	53	43	48
1553:	36	38	41	46	36	51	44	41
1561:								
	48	41	44	39	47	47	31	38
1569:	42	40	43	43	52	36	34	54
1577:	41	42	51	47	64	81	105	87
1585:	56	38	45	38	50	46	36	41
1593:	53	80	67	54	43	72	81	71
1601:	41	47	45	42	44	34	36	49
1609:	41	45	42	23	34	40	31	33
1617:	31	42	42	27	41	26	31	30
1625:	25	30	30	29	35	25	30	32
1633:	30	24	24	28	23	39	39	26
1641:	29	30	29	29	34	24	19	26
1649:	23	30	33	13	27	27	18	38
1657:	26	18	48	99	147	104	50	26
1665:	16	21	19	30	19	20	19	28
1673:	21	22	24	21	19	24	28	16
1681:	20	20	38	38	30	18	16	14
1689:	8	20						
			38	39	53	40	30	26
1697:	22	25	17	22	21	16	14	20
1705:	16	17	15	15	20	12	18	15
1713:	25	15	24	24	18	17	14	14
1721:	18	9	17	12	23	22	41	194
1729:	371	343	145	27	21	17	22	13
1737:	12	25	22	24	21	22	22	20
1745:	22	17	19	13	12	11	16	18
1753:	14	21	20	12	21	18	18	12
1761:	26							
		199	847	1733	1438	508	101	24
1769:	17	9	10	15	12	13	10	17
1777:	10	10	15	13	13	14	11	25
1785:	14	17	11	11	15	13	13	10
1793:	9	15	17	12	11	11	11	13
1801:	16	8	16	8	15	11	14	17
1809:	11	17	17	13	16	10	9	9
1817:	19	14	18	17	15	23	17	12
1825:	9	11	10	17			19	18
1833:					16	16 57		
	20	12	11	7	30	57	40	30
1841:	15	23	15	24	46	147	261	169
1849:	77	16	16	17	15	17	16	15
1857:	16	17	14	17	8	14	23	8
1865:	10	13	20	13	16	16	21	27

1873:	26	22	20	13	12	12	10	17
1881:	16	10	20 19	15	21	11	16	11
1889:	31	26				18	31	22
1897:	19		20	10	15			11
		21	21	20	14	10	13	
1905:	18	17	20	18	14	8	14	12
1913:	13	20	13	15	10	15	9	18
1921:	19	10	15	18	8	17	8	8
1929:	15	14	13	7	17	23	30	23
1937:	28	16	15	19	17	17	20	15
1945:	6	16	15	12	13	8	20	15
1953:	14	15	12	21	16	11	14	16
1961:	9	13	10	17	13	22	18	16
1969:	16	21	14	17	15	7	11	11
1977:	14	10	21	11	15	10	10	11
1985:	13	11	16	12	12	8	5	7
1993:	11	13	12	9	15	19	11	7
2001:	15	11	10	10	10	14	4	15
2009:	8	25	16	16	9	14	8	14
2017:	10	11	8	14	13	12	9	7
2025:	8	8	9	8	16	7	10	15
2033:	11	8	7	10	12	9	13	6
2041:	4	9 3	3	7	6	6	12	14
2049:	7	3	7	10	15	9 3	13	7
2057:	7	8 5 3 5 3	6	11	3	3	11	5
2065:	12	5	9	5	9	8 2	8	. 6
2073:	5	3	5	7	7	2	4	5 7
2081:	6	5	2	5	8	6	8	
2089:	15		6	3	9	6	2	6
2097:	6	4	6	5	5	12	8	13
2105:	6	5	12	9	13	7	7	7
2113:	4	5	9	35	60	105	80	30
2121:	9 2 5 5	6	6	8	5	6	1	5
2129:	2	1	2	3	3	5	6	2
2137:	5	6	6	4	4	11	6	3
2145:	5	8	4	8	6	5	6	4
2153:	5	3	4	1	2	3	5	5
2161:	8	4	6	4	7	2	6	5
2169:	6	6	5	4	7	2	6	4
2177:	7	6	2	5	5	4	4	12
2185:	3	4	6	1	2	5	8	17
2193:	12	7	4	8	6	6	4	8
2201:	40	158	303	417	229	64	15	4
2209:	3	1	5	6	8	5	2	3
2217:	1	4	3	8	4	3	2	3 3
2225:	3 2	3	5	3	2 2	1	2	
2233:	2	6	4	5	2	4 3 2	1	0
2241:	3 4	1	3 1	3	1	3	1	0
2249:		1	1	1	1		4	1
2257:	1	3	1	4	4	6 1 3	7	1
2265:	1	5	7	2	1	1	1	3
2273:	5	2	1	0	2	3	4	1
2281:	1	3 5 2 5 2 1	3 8	4	2	2	3	1
2289:	3	2	8	16	39	27	8	1
2297:	1	1	1	3	5	9	1	1
2305:	0	1	3	1	3	2 5	5	2
2313:	2	4 2	4	4	0	5	1	1
2321: 2329:	2 4	2	3	1	4	0	4	2
2329: 2337:	4 1	4	6	6	2	3	1	1
2337: 2345:	0	1 1	3	1	0	1 3	0	2
2343;	U	.	0	. 2	1	3	2	1

2353:	1	0	1	0	1	2	0	2
2361:	0	0	1	1	1	0	2	0
2369:	0	5	2	3	1	2	2	1
2377:	2	0	1	2	0	2	1	2
2385:	1	1	1	4	0	1	1	1
2393:	2	0	3	0	2	0	1 1	2
2401: 2409:	1 1	0 1	1 1	1 1	1 0	0 0	0	0 2
2409:	0	0	4	0	3	1	2	0
2425:	í	1	2	ĭ	ō	ō	ī	1
2433:	1	0	0	1	1	4	2	2
2441:	2	2	3	8	23	73	121	69
2449:	38	15	1	0	3	1	1	1
2457:	2	1	2	1	2	3	0	2 1
2465: 2473:	3 0	2 0	1 1	1 0	1 1	2 1	0 1	0
2473.	3	4	2	1	0	Ō	0	2
2489:	2	ī	2	Ō	2	1	Ō	ī
2497:	0	0	0	0	2	0	1	1
2505:	2	0	0	1	0	0	1	0
2513:	0	0	0	1	0	2	2	0
2521: 2529:	1 0	2	0	1	0	0 0	0 3	1 1
2529: 2537:	0	1 1	1 1	1 1	1 1	1	2	0
2545:	i	i	1	Ō	1	Ō	ī	Ö
2553:	0	2	0	Ō	0	1	0	0
2561:	0	0	0	0	1	1	0	1
2569:	1	1	1	0	0	1	2	1
2577: 2585:	1 1	1 1	0 0	1 2	0 1	0 0	0	0 1
2593:	0	1	1	0	1	0	0	1
2601:	i	ī	2	ĭ	Ō	ő	í	ō
2609:	1	0	1	6	11	16	6	6
2617:	1	2	0	1	2	0	0	0
2625: 2633:	1 0	1	0	2	0	0	1	0
2633: 2641:	1	0	0	2	0 1	0 0	2 1	1
2649:	0	0	1 0	0 1	0	0	0	2
2657:	2	Ö	Ö	1	Ö	Ö	Ö	0
2665:	1	0	0	0	0	0	0	0
2673:	. 1	0	1	1	0	1	1	0
2681: 2689:	0 0	0	1	0	1	1	0	0
2697:	0	0 0	0 1	1 1	2 0	1 0	4 1	4 0
2705:	Ö	Ö	2	0	0	Ö	0	0
2713:	2	Ö	ī	Ö	Ö	ĺ	Ö	0
2721:	1	0	0	1	2	0	2	2
2729:	0	1	1	1	0	3	0	0
2737: 2745:	0 0	1 0	1 1	1 0	0 0	0 0	0 0	0 1
2753:	0	0	0	0	0	0	1	1
2761:	1	Ö	ő	ŏ	Ö	ĺ	ī	2
2769:	2	2	1	1	2	0	0	0
2777:	0	2	2	0	0	0	0	4
2785: 2793:	0 0	2	0	1	0	0	0	1
2793: 2801:	0	0 0	1 0	0 1	1 1	0 1	1 0	0 1
2809:	ő	1	0	0	1	Ō	0	0
2817:	0	0	0	1	1	0	0	0
2825:	1	0	2	1	0	0	0	0

m m m m

2833: 2841: 2849:	0 0 0	1 0 1	0 0 0	1 0 0	0 0 1	0 0 0	0 2 0	1 0 1
2857: 2865:	0 0	1 1	0	2 2	1 0	1 0	2 2	0 0
2873:	1	0	1 1	0	1	0	0	0
2881:	0	1	0	0	0	1 0	0 0	0 0
2889: 2897:	0 0	1 1	1 0	1 1	3 1	0	2	0
2905:	1	0	0	0	0	0	0	0
2913: 2921:	0 1	0 0	0 1	1 0	0 0	0 0	0 0	1 0
2929:	0	0	0	Ö	0	0	0	2
2937: 2945:	0 0	1 0	2 0	0 0	0 1	0 0	0	1 1
2953:	0	0	0	0	0	1	0	Ō
2961:	0	0	0	0	0	0	0	0
2969: 2977:	0 1	0 0	0 1	1 1	0 0	0 0	0 0	0 0
2985:	0	0	0	0	0	0	0	0
2993: 3001:	0 0	0 0	0 0	1 0	0 0	Q 0	0	0 0
3009:	1	0	0	1	0	0	0	0
3017: 3025:	0 0	1 0	0 0	0 0	0 1	0 1	0 0	1 0
3033:	2	0	1	0	0	0	0	0
3041: 3049:	0 0	0	0	0	1	1	0	1
3057:	0	0 0	2 0	2 0	3 0	0 1	1 0	0 0
3065:	0	0	0	0	1	0	0	0
3073: 3081:	0 1	2 0	0 0	0 0	0 0	0 0	1 0	0 0
3089:	0	0	0	Ö	0	0	Ö	0
3097: 3105:	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0
3113:	0	1	0	0	0	0	0	1
3121: 3129:	0 0	0	0	2	0	0	0	0
3137:	0	0 0 1	0 0	1 1	0 0	0 0	0 0	1 0
3145:	1	0	0	0	0	0	0	2
3153: 3161:	0 1	1 0	0 0	1 0	1 0	0 1	0 0	0
3169:	0	0	0	0	0	0	1	0
3177: 3185:	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0
3193:	0	1	0	0	0	0	0	Ö
3201: 3209:	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
3217:	0	1	0	0	0	0	0	0
3225: 3233:	0 1	0 0	0 0	1	0	0	0	0
3241:	0	0	0	0 0	0 0	0 1	0 .	0 0
3249:	0	1	0	0	0	1 1 1 0	0	. 0
3257: 3265:	0 1	0 1	0 0	0 1	0 1	0	0 0	1 0
3273:	0	1 2	0	0	1	0	0	0
3281: 3289:	0 0	0 0	0	0 0	0 0	0 0	0 1	0 0
3297:	0	1	0	1	0	0	1	0
3305:	0	0	0	0	0	0	0	0

3313: 3321:	0	1 0	1 0	0	0	0	0 1	0
3321:	0	0	0	0	0	Ö	0	1
3337:	2	Ö	Ö	ő	Ö	Ö	Ö	0
3345:	ō	Ö	Ö	Ö	Ö	Ö	Ō	0
3353:	1	Ö	Ŏ	ŏ	0	0	0	0
3361:	0	Ō	1	Ō	0	0	0	0
3369:	1	0	1	0	1	1	0	0
3377:	0	0	0	1	0	0	O	0
3385:	0	0	0	0	0	0	0	0
3393:	0	0	0	0	0	0	0	0
3401:	0	0	1	1	0	0	0	0
3409:	0	0	0	0	0	0	0	0 0
3417: 3425:	0 0	0 0	0	0 0	0 0	0 0	0 0	0
3433:	0	0	0 0	0	0	0	1	2
3441:	Ö	Ö	Ö	Ö	Ö	ő	Ō	0
3449:	0	0	Ō	0	0	1	0	0
3457:	0	0	1	0	1	0	1	0
3465:	0	0	0	0	0	0	0	0
3473:	1	1	1	0	0	0	0	0
3481:	0	0	0	0	1	0	0	0
3489: 3497:	0 0	1 0	0 0	0	0 0	0 1	0 0	0 0
3505:	1	0	0	0 1	0	0	1	0
3513:	Ō	Ö	Ö	Ō	Ö	ő	Ō	0
3521:	Ö	Ö	ĺ	Ö	Ö	Ö	Ö	2
3529:	1	1	1	1	0	0	0	0
3537:	2	0	0	0	0	0	1	0
3545:	0	1	0	0	0	0	0	0
3553:	0	0	0	0	0	0	0	0
3561: 3569:	0 0	0	0	0	0	0	0	0
3577:	0	0 0	0 0	0 0	0 0	0 1	0 0	1 0
3585:	Ö	ĺ	0	0	0	Ō	0	1
3593:	Ö	Ō	Ö	Ö	í	Ö	Ö	ī
3601:	0	1	Ō	Ō	0	0	0	0
3609:	0	0	1	1	0	0	0	0
3617:	0	0	0	0	0	0	0	0
3625:	0	1	0	0	1	0	0	0
3633: 3641:	0 0	0	0	0	0	0	1	0
3649:	1	0 0	0 0	0 0	0 0	0 0	0 0	1 0
3657:	Ō	Ö	0	1	0	1	1	0
3665:	Ō	1	Ö	Ō	Õ	Ō	1	Ö
3673:	0	0	1	Ō	0	0	0	0
3681:	0	1	0	0	0	0	1	0
3689:	0	0	0	0	0	0	0	0
3697:	0	0	0	0	0	1	0	0
3705: 3713:	1 0	1 0	0	0	0	1	0	0
3713: 3721:	0	0	0 0	0 0	0 0	0 0	0 0	0 1
3729:	ő	Ö	0	0	0	0	0	0
3737:	Ö	Ö	ĺ	Ö	1	Ö	Ö	Ö
3745:	1	0	0	0	0	0	0	0
3753:	0	0	0	0	0	0	0	0
3761:	1	0	0	0	0	0	0	0
3769: 3777:	0 0	1	0	0	0	0	1	0
3785:	0	0 0	0 0	0	0 0	1 0	0 0	0 0
	-	-	Ü	•	v	Ŭ	~	

3793:	0	0	0	7	. 0	0	0	0
3801:	0	0	0	1 0	1	1	1	0
3809:	1	0			0	0	Ö	0
3817:	0		0	0				0
3825:		0	0	0	0	0	0	
	0	0	0	0	0	1	0	0
3833:	0	0	0	2	0	0	0	1
3841:	0	1	0	0	0	0	0	0
3849:	0	0	1	0	0	1	0	0
3857:	0	0	0	1	0	0	1	0
3865:	0	0	0	0	0	1	0	1
3873:	0	0	0	0	1	0	0	0
3881:	0	0	0	0	0	2	1	0
3889:	0	0	0	0	0	0	0	0
3897:	0	0	0	0	0	0	0	0
3905:	0	1	0	0	0	0	0	1
3913:	0	0	0	0	0	0	0	0
3921:	0	0	0	0	0	Ó	0	1
3929:	0	0	0	0	0	0	0	0
3937:	0	0	1	0	0	0	0	1
3945:	0	0	0	0	0	1	0	0
3953:	0	0	0	0	0	0	0	0
3961:	1	0	Ō	Ō	Ō	Ō	Ö	Ō
3969:	0	0	0	Ö	Ö	Ö	Ö	0
3977:	0	0	0	Ö	Ō	Ö	Ö	ĺ
3985:	0	1	Ō	Ö	Ö	Ö	Ö	ō
3993:	0	Ō	Ö	Ö	Ö	Ö	Ö	Ö
4001:	0	Ō	ĺ	Ö	Ö	Ö	Ö	Ŏ
4009:	1	Ö	0	Ö	Ö	Ö	Ö	Ö
4017:	0	Ö	Ö	Ö	Ö	1	Ö	í
4025:	Ō	Ö	Ö	ő	Ö	Ō	Ö	Ō
4033:	Ö	i	Ö	ő	ő	O O	Ö	0
4041:	o ·	0	. 0	Ö	Ö	Ö	0	0
4049:	Ö	í	Ö	Ö	0	Ö	0	0
4057:	Ö	Ō	Ö	0	0	0	0	0
4065:	Ö	ő	Ö	1	0	0	0	0
4073:	Ö	Ö	0	0	0	0	0	
4081:	Ö	1	0	0	0			0
4089:	Ö	0	0	0	0	0 1	0 0	0 0
1005.	· ·	U	U	U	U ·	Τ.	U	U

Sample ID : 1201163-12 Acquisition date : 22-FEB-2012 13:25:31

VAX/VMS Peak Search Report Generated 22-FEB-2012 14:26:05.20

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_120116312_GE4_GAS1102_176265.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF V2.2 Client ID : JM-82-31-120128 Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 13:25:31

Sample Quantity : 4.16380E+02 GRAM

Sample Geometry : 0

sample ID : 1201163-12
Sample type : SOLID
Detector name : GE4
Elapsed live to Detector Geometry: GAS-1102

Elapsed real time: 0 01:00:17.23 0.5% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 01:00:00.00

Start channel : 5
Sensitivity : 2.40000
Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	
0	46.39*	2699	6895	1.80	45.74	43	6	10.5		PB-210	
0	53.28	578	8203	1.64	52.63	51	6	50.2			
0	63.04*	1262	11218	2.10	62.39	60	6	27.0		TH-234	
6	68.01	700	3844	2.67	67.37	66	16	22.2	9.32E+01		
6	76.19*	20121	20463	3.57	75.56	66	16	3.1			
1	83.83	652	1803	1.82	83.20	82	9	14.5	3.54E+01		
1	87.43	3158	12390	2.23	86.80	82	9	12.3		NP-237	
										SN-126	
										CD-109	
0	93.28*	1662	9500	1.79	92.65	90		20.5			
0	111.90	260	6158	4.17	111.28	109		96.4			
0	144.02	426	6318	2.62	143.43	141		59.8		CE-141	
0	154.82	366	6257	2.72	154.24	152		69.5			
0	186.09*	4586	8916	2.09	185.53	181	10	8.3		RA-226	
2	235.97	524	4725	2.59	235.45	232			5.22E+00		
2	242.11	5048	3309	1.96	241.59	232	15	4.6		RA-224	
0	259.10	150	3025	1.72	258.60	256		L17.7			
0	271.64	1021	5755	6.12	271.14	264		31.3		LU-173	
0	295.28	10757	3465	2.02	294.80	290	9			PB-214	
0	323.54	162	2230	2.23	323.08	321		98.2		RA-223	
0	351.92	17657	3566	2.19	351.48	345	12	2.0		PB-214	
0	387.81	397	2124	5.31	387.40	383		43.1			
0	401.25	121	1319	1.77	400.84	399		91.9		RN-219	
0	427.24	168	1520	3.69	426.86	424		78.6			
0	454.72	243	1342	4.01	454.36	451		53.8			
0	462.00	163	1147	4.00	461.64	459		70.9			
0	487.31	92	1099	2.99	486.97	484		L21.3			
0	511.16*	243	1462	3.82	510.84	506		63.0			
0	570.88	110	784	3.74	570.60	568		86.4			
0	581.44	176	1011	5.32	581.16	577		67.1			
0 0	609.26*	12139	1061	2.18	609.00	604	11			BI-214	
0	665.41 703.44	266	730	2.31	665.20	661		38.8		o :	
0	703.44	138	566 553	3.14	703.26	700		62.1		NB-94	
0	742.45	85 177	553	4.98	720.46	716		98.8			
0	768.18	177 1110	667 746	2.28	742.29	737		56.6			
0	700.10	1110	/46	2.41	768.04	763	ΤŢ	11.3			

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
0	785.61	217	795	2.60 785.49	779	11 52.2		
Ö	806.29	281	672	2.16 806.18	802	10 36.8		
0	839.69	168	605	2.02 839.60	837	9 55.0		
Ō	869.99	56	412	5.33 869.93	867	6117.8		NB-94
0	897.08	68	542		893	8121.4		
0	933.74	537	517		929	9 17.6		
0	1001.14*	88	495	2.95 1001.17	996	10 97.3		PA-234M
0	1069.62	53	299	3.30 1069.70	1067	7111.6		
0	1120.13	2302	419	2.40 1120.25	1115	12 5.5		BI-214
0	1155.19	256	389	2.17 1155.33	1150	10 31.4		
Q	1172.32	48	268	4.23 1172.47	1170	8120.4		
0	1207.15	64	286	3.78 1207.33		8 94.5		
0	1237.77	881	433	2.26 1237.97		13 11.8		
0	1253.15	54	216	2.65 1253.37		7 94.6		
0	1280.79	210	283			9 32.4		
2	1377.33	559	196	2.37 1377.64			5.10E-01	
2	1385.01	127	221	3.11 1385.31		18 47.3		
0	1400.92	163	258	2.59 1401.23		9 38.8		
0	1407.53	299	314	3.11 1407.85		10 25.1		
0	1460.37	248	351	2.77 1460.73		11 32.0		K-40
0	1508.58	256	380			12 32.9		
0	1584.03	116	185	1.97 1584.48		10 47.8		
0	1592.92	45	148			7 94.2		
0	1599.85	42	161			8108.8		
0	1661.06	124	112	2.89 1661.57		10 36.8		
0	1694.15	52	132	3.73 1694.68	1688	15 99.6		
0	1729.19	361	76	2.64 1729.75	1725	10 13.9		BI-214
0	1764.09 1772.43	1692	95	2.64 1764.67	1759	12 5.4 6109.2		D1-714
2	1838.04	19 30	32 70	1.18 1773.01 3.24 1838.68	1770 1830		7.70E-01	
2	1846.97	225	76 56	2.68 1847.61		25 17.5	7.7011-01	
0	2076.75	20	22	6.00 2077.56		11103.6		
0	2118.40	119	35	3.02 2119.24		12 27.2		
4	2143.18	11	8				2.67E+00	
4	2148.14	11	11	2.74 2149.00		16128.1	2.071100	
0	2160.46	9	5	1.04 2161.33		6104.9		
Ö	2203.76	458	33			11 10.5		BI-214
Ö	2293.91	29	11			12 60.6		
Ö	2305.38	9	2	2.84 2306.35		9 88.6		
Ō	2404.66	10	0	1.16 2405.70		8 63.2		
Ö	2447.06	127	5	2.88 2448.14		10 18.9		
0	2613.33*	19	0	3.87 2614.52		8 50.2		

Summary of Nuclide Activity Page: 3

Sample ID : 1201163-12 Acquisition date : 22-FEB-2012 13:25:31

Total number of lines in spectrum 76 Number of unidentified lines 39

Number of lines tentatively identified by NID 37 48.68%

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags	3
K-40	1.28E+09Y	1.00	2.327E+01	2.327E+01	0.781E+01	33.56	
PB-210	22.26Y	1.00	8.136E+01	8.154E+01	1.138E+01	13.95	
BI-214	1602.00Y	1.00	1.202E+02	1.202E+02	0.074E+02	6.18	
PB-214	1602.00Y	1.00	1.209E+02	1.209E+02	0.010E+03	8.24	
RN-219	3.28E+04Y	1.00	5.423E+00	5.423E+00	5.036E+00	92.87	
RA-223	3.28E+04Y	1.00	9.799E+00	9.799E+00	9.689E+00	98.88	
RA-224	1.41E+10Y	1.00	2.296E+02	2.296E+02	0.254E+02	11.07	
RA-226	1602.00Y	1.00	2.051E+02	2.051E+02	3.761E+02	183.37	
PA-234M	4.47E+09Y	1.00	6.975E+01	6.975E+01	6.847E+01	98.16	
TH-234	4.47E+09Y	1.00	3.653E+01	3.653E+01	1.035E+01	28.32	
	Total Acti	771 + 77 ·	9 0205,02	0 0225102			

Wtd Mean Wtd Mean

Total Activity: 9.020E+02 9.022E+02

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Siqma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error		s
NB-94	20300.00Y	1.00	5.272E-01	5.272E-01	3.092E-01	58.65	
NB-95M	3.61D	136.	3.698E+00	5.025E+02	2.344E+02	46.64	
LU-173	1.37Y	1.04	9.626E+00	9.974E+00	3.280E+00	32.89	
	Total Acti	vity :	1.385E+01	5.130E+02			

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	
CD-109	464.00D	1.04	9.044E+01	9.396E+01	1.638E+01	17.43
SN-126	1.00E+05Y	1.00	9.089E+00	9.089E+00	1.487E+00	16.36
CE-141	32.50D	1.73	1.106E+00	1.908E+00	1.225E+00	64.21
NP-237	2.14E+06Y	1.00	2.666E+01	2.666E+01	0.434E+01	16.28
	Total Act	izzi+zz .	1 2725,02	1 2165.02		

Total Activity: 1.273E+02 1.316E+02

Grand Total Activity : 1.043E+03 1.547E+03

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted "A" = Nuclide specific abn. limit Nuclide Line Activity Report Sample ID: 1201163-12

Nuclide	Type: NATU	RAL		
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff 1.798E-01	Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Status 2.327E+01 33.56 OK
	Final Mean	for 1	Valid Peaks	= 2.327E+01+/-7.810E+00 (33.56%)
PB-210	46.50	4.25*	1.407E+00	8.136E+01 8.154E+01 13.95 OK
	Final Mean	for 1	Valid Peaks	= 8.154E+01+/- 1.138E+01 (13.95%)
	1120.29 1764.49	15.10 15.80	2.230E-01 1.582E-01	1.173E+02 1.173E+02 11.73 OK 1.233E+02 1.233E+02 13.04 OK 1.221E+02 1.221E+02 10.95 OK 1.181E+02 1.181E+02 14.59 OK
	Final Mean	for 4	Valid Peaks	= 1.202E+02+/- 7.432E+00 (6.18%)
PB-214				1.208E+02 1.208E+02 10.96 OK 1.211E+02 1.211E+02 12.50 OK
	Final Mean	for 2	Valid Peaks	= 1.209E+02+/- 9.969E+00 (8.24%)
RN-219	401.80	6.50*	6.189E-01	5.423E+00 5.423E+00 92.87 OK
	Final Mean	for 1	Valid Peaks	= 5.423E+00+/- 5.036E+00 (92.87%)
RA-223	323.87	3.88*	7.663E-01	9.799E+00 9.799E+00 98.88 OK
	Final Mean	for 1	Valid Peaks	= 9.799E+00+/- 9.689E+00 (98.88%)
RA-224	240.98	3.95*	1.004E+00	2.296E+02 2.296E+02 11.07 OK
	Final Mean	for 1	Valid Peaks	= 2.296E+02+/- 2.542E+01 (11.07%)
RA-226	186.21	3.28*	1.229E+00	2.051E+02 2.051E+02 183.37 OK
	Final Mean	for 1	Valid Peaks	= 2.051E+02+/- 3.761E+02 (183.37%)
PA-234M	1001.03	0.92*	2.467E-01	6.975E+01 6.975E+01 98.16 OK
	Final Mean	for 1	Valid Peaks	= 6.975E+01+/- 6.847E+01 (98.16%)
TH-234	63.29	3.80*	1.639E+00	3.653E+01 3.653E+01 28.32 OK
	Final Mean	for 1	Valid Peaks	= 3.653E+01+/- 1.035E+01 (28.32%)

Nuclide Line Activity Report (continued) Page: 5
Sample ID: 1201163-12 Acquisition date: 22-FEB-2012 13:25:31

Nuclide Type: ACTIVATION Uncorrected Decay Corr 2-Sigma pCi/GRAM pCi/GRAM %Error Status %Eff Nuclide Energy %Abn 7.126E-01 62.98 OK NB-94 3.482E-01 7.126E-01 702.63 100.00 2.813E-01 3.597E-01 3.597E-01 118.60 OK 871.10 100.00* Final Mean for 2 Valid Peaks = 5.272E-01+/-3.092E-01 (58.65%) 235.69 25.00* 1.023E+00 3.698E+00 5.025E+02 46.64 OK NB - 95M Final Mean for 1 Valid Peaks = 5.025E+02+/-2.344E+02 (46.64%) 1.657E+00 ---- Line Not Found ----LU-173 100.72 5.24 21.20* 9.019E-01 9.626E+00 9.974E+00 32.89 OK 272.11 Final Mean for 1 Valid Peaks = 9.974E+00+/-3.280E+00 (32.89%)

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma %Abn %Eff pCi/GRAM pCi/GRAM %Error Status Nuclide Energy 9.396E+01 17.43 OK CD-109 88.03 3.72* 1.693E+00 9.044E+01 Final Mean for 1 Valid Peaks = 9.396E+01+/-1.638E+01 (17.43%) 87.57 37.00* 1.693E+00 9.089E+00 9.089E+00 16.36 OK SN-126 Final Mean for 1 Valid Peaks = 9.089E+00+/-1.487E+00 (16.36%) CE-141 145.44 48.40* 1.436E+00 1.106E+00 1.908E+00 64.21 OK Final Mean for 1 Valid Peaks = 1.908E+00+/-1.225E+00 (64.21%) 86.50 12.60* 1.695E+00 2.666E+01 2.666E+01 16.28 OK NP-237 Final Mean for 1 Valid Peaks = 2.666E+01+/-4.342E+00 (16.28%)

Flag: "*" = Keyline

Page: 6 Acquisition date: 22-FEB-2012 13:25:31

---- Identified Nuclides ----

Nuclide	Activity (pCi/GRAM)	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
K-40 NB-94 NB-95M CD-109 SN-126 CE-141 LU-173 PB-210 BI-214 PB-214 RN-219 RA-223	2.327E+01 5.272E-01 5.025E+02 9.396E+01 9.089E+00 1.908E+00 9.974E+00 8.154E+01 1.202E+02 1.209E+02 5.423E+00 9.799E+00	7.810E+00 3.092E-01 2.344E+02 1.638E+01 1.487E+00 1.225E+00 3.280E+00 1.138E+01 7.432E+00 9.969E+00 5.036E+00 9.689E+00	7.182E+00 7.028E-01 2.691E+02 1.444E+01 1.397E+00 1.746E+00 2.475E+00 1.157E+01 1.228E+00 1.424E+00 8.951E+00 1.354E+01	6.752E-01 9.026E-02 2.480E+01 1.695E+00 1.408E-01 4.030E-01 2.309E-01 9.630E-01 1.330E-01 1.662E-01 1.169E+00	3.240 0.750 1.867 6.507 6.508 1.092 4.029 7.049 97.872 84.949 0.606 0.724
RA-224 RA-226 PA-234M TH-234 NP-237	2.296E+02 2.051E+02 6.975E+01 3.653E+01 2.666E+01	2.542E+01 3.761E+02 6.847E+01 1.035E+01 4.342E+00	1.278E+01 1.582E+01 7.530E+01 1.342E+01 4.096E+00	1.182E+00 2.898E+01 9.467E+00 1.018E+00 4.076E-01	17.959 12.964 0.926 2.721 6.510

	Key-Line				
	Activity K.L.		MDA	MDA error	Act/MDA
Nuclide	(pCi/GRAM) Ideo	ì	(pCi/GRAM)		
BE-7	3.256E-01	4.815E+00	7.422E+00	9.628E-01	0.044
NA-22	8.181E-02	4.594E-01	7.044E-01	6.790E-02	0.116
AL-26	2.071E-01	2.508E-01	4.728E-01	4.031E-02	0.438
TI-44	8.023E-01 +	1.920E-01	5.912E-01	4.718E-02	1.357
SC-46	-3.450E-01	5.958E-01	8.826E-01	1.161E-01	-0.391
V-48	3.798E-01	1.269E+00	2.206E+00	2.809E-01	0.172
CR-51	-2.905E+00	6.986E+00	1.001E+01	1.101E+00	-0.290
MN-54	3.873E-01	4.713E-01	7.372E-01	9.002E-02	0.525
CO-56	8.718E-02	5.658E-01	8.671E-01	1.077E-01	0.101
CO-57	-1.190E-01	3.261E-01	5.338E-01	4.919E-02	-0.223
CO-58	3.506E-02	5.395E-01	8.260E-01	9.753E-02	0.042
FE-59	2.034E-01	1.077E+00	1.870E+00	2.238E-01	0.109
CO-60	4.098E-01 +	4.955E-01	7.070E-01	7.283E-02	0.580
ZN-65	6.961E+00	1.491E+00	2.253E+00	2.525E-01	3.090
GA-67	1.147E+03 +	4.045E+03	3.254E+02	1.145E+03	3.526
SE-75	-5.478E-01	8.621E-01	9.632E-01	9.029E-02	-0.569
RB-82	-4.891E+00	8.727E+00	9.303E+00	1.042E+00	-0.526
RB-83	3.635E-01	9.895E-01	1.438E+00	2.603E-01	0.253
KR-85	1.257E+02	8.918E+01	1.319E+02	1.666E+01	0.953
SR-85	7.192E-01	5.102E-01	7.543E-01	9.533E-02	0.953
Y-88	2.835E-01	3.556E-01	6.556E-01	5.533E-02	0.432
NB-93M	1.110E+02	4.708E+01	2.033E+01	8.347E+00	5.461
NB-95	8.713E+00	1.345E+00	1.681E+00	1.853E-01	5.182
ZR-95	4.291E-01	9.077E-01	1.483E+00	1.715E-01	0.289
RU-103	-2.571E-01	6.234E-01	9.458E-01	1.612E-01	-0.272
RU-106	-2.472E-01	3.459E+00	5.585E+00	8.172E-01	-0.044

	Vor. Time					
	Key-Line Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/GRAM)	Ided	ACC ELIOI	(pCi/GRAM)	MDA CITOI	ACC/ NDA
Nucriae	(bci) grain)	Idea		(pci/Giaii)		
AG-108M	1.933E-01		4.269E-01	6.643E-01	6.830E-02	0.291
AG-110M	-3.217E-01		4.251E-01	6.322E-01	5.929E-02	-0.509
SN-113	5.903E-01		6.960E-01	1.017E+00	1.342E-01	0.580
TE123M	6.404E-01		4.610E-01	6.791E-01	5.890E-02	0.943
SB-124	3.260E-02		5.644E-01	8.104E-01	8.913E-02	0.040
I-125	-7.552E+00		7.060E+00	1.155E+01	1.228E+00	-0.654
SB-125	1.814E+00	+	1.448E+00	2.044E+00	2.705E-01	0.887
SB-126	3.489E+00	+	3.468E+00	4.689E+00	4.802E-01	0.744
SB-127	2.481E+01	•	9.192E+01	1.606E+02	1.549E+01	0.154
I-129	1.445E-01		7.140E-01	1.192E+00	1.580E-01	0.121
I-131	-2.708E+00		3.504E+00	5.581E+00	6.749E-01	-0.485
TE-132	9.667E+00		9.079E+01	1.322E+02	1.212E+01	0.073
BA-133	1.616E+01		2.698E+00	1.488E+00	2.302E-01	10.862
CS-134	8.005E+00		1.095E+00	1.087E+00	1.191E-01	7.366
CS-135	7.604E+00		2.243E+00	3.436E+00	3.204E-01	2.213
CS-136	2.681E-02		1.937E+00	3.345E+00	4.100E-01	0.008
CS-137	6.527E-01		4.528E-01	7.210E-01	6.678E-02	0.905
LA-138	-2.789E-01		6.582E-01	1.110E+00	1.019E-01	-0.251
CE-139	-4.429E-02		4.252E-01	6.951E-01	5.944E-02	-0.064
BA-140	2.047E+00		5.577E+00	9.029E+00	3.096E+00	0.227
LA-140	4.206E+00		2.553E+00	3.315E+00	2.993E-01	1.269
CE-144	-1.206E+00		2.696E+00	4.403E+00	3.985E-01	-0.274
PM-144	3.483E-01		3.916E-01	6.181E-01	6.081E-02	0.563
PM-145	-1.944E+00		1.984E+00	2.504E+00	1.635E+00	-0.777
PM-146	2.026E+00	+	1.125E+00	1.464E+00	1.916E-01	1.384
ND-147	4.805E+00		1.291E+01	2.106E+01	2.614E+00	0.228
EU-152	1.958E+01	+	5.452E+00	7.294E+00	8.289E-01	2.685
GD-153	-1.673E+00		1.345E+00	1.932E+00	1.866E-01	-0.866
EU-154	1.796E-01		1.274E+00	1.950E+00	1.880E-01	0.092
EU-155	1.098E+01	+	1.788E+00	1.915E+00	1.905E-01	5.734
EU-156	-5.686E+00		1.295E+01	1.931E+01	4.679E+00	-0.294
HO-166M	1.759E-01		9.577E-01	1.084E+00	1.094E-01	0.162
HF-172	2.511E+00		2.417E+00	3.986E+00	3.650E-01	0.630
LU-172	6.389E+00		9.223E+00	1.624E+01	1.868E+00	0.394
HF-175	-4.156E-01		5.864E-01	8.310E-01	9.464E-02	-0.500
LU-176	-3.884E-01		3.351E-01	5.306E-01	5.410E-02	-0.732
TA-182	6.232E+01	+	8.121E+00	6.388E+00	7.100E-01	9.756
IR-192	3.796E-02		1.017E+00	1.464E+00	1.908E-01	0.026
HG-203	-3.073E-02		6.706E-01	9.713E-01	9.277E-02	-0.032
BI-207	4.698E-01	+	4.101E-01	5.967E-01	7.010E-02	0.787
TL-208	1.978E+00		1.371E+00	2.034E+00	2.331E-01	0.972
BI-210M	2.371E-01		9.843E-01	1.130E+00	1.053E-01	0.210
PB-211	1.306E+01		1.441E+01	2.103E+01	2.749E+00	0.621
BI-212	1.907E+00		3.203E+00	5.012E+00	5.189E-01	0.381
PB-212	1.038E+01		1.316E+00	1.472E+00	1.359E-01	7.050
RA-225	8.798E+00		3.749E+00	5.578E+00	5.251E-01	1.577
TH-227	8.049E+00	+	3.754E+00	4.691E+00	4.323E-01	1.716
AC-228	1.080E+00		1.585E+00	2.769E+00	3.668E-01	0.390

Combined Activity-MDA Report (continued) Page: 8 Sample ID: 1201163-12 Acquisition date: 22-FEB-2012 13:25:31

Nuclide	Key-Line Activity (pCi/GRAM)	K.L. Ided	Act error	MDA (pCi/GRAM)	MDA error	Act/MDA
TH-230	2.047E+02	+	4.896E+01	1.509E+02	1.201E+01	1.356
PA-231	2.245E+01		1.526E+01	2.249E+01	2.263E+00	0.999
TH-231	-1.689E+00		3.502E+00	5.797E+00	9.657E-01	-0.291
PA-233	5.043E-01		1.561E+00	2.543E+00	5.894E-01	0.198
PA-234	-4.321E-02		1.324E+00	2.173E+00	1.974E-01	-0.020
U-235	5.064E+00	+	3.163E+00	4.658E+00	8.222E-01	1.087
AM-241	2.370E+00		1.235E+00	1.468E+00	1.071E-01	1.615
AM-243	2.674E+01		2.667E+00	1.254E+00	1.082E-01	21.331
CM-243	3.037E+00		2.550E+00	3.750E+00	3.497E-01	0.810

Summary of Nuclide Activity Acquisition date : 22-FEB-2012 13:25:31

Sample ID : 1201163-12

76 Total number of lines in spectrum Number of unidentified lines 39

Number of lines tentatively identified by NID 37 48.68%

Nuclide Type : NATURAL

	21		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flag	gs
K-40	1.28E+09Y	1.00	2.327E+01	2.327E+01	0.781E+01	33.56	_
PB-210	22.26Y	1.00	8.136E+01	8.154E+01	1.138E+01	13.95	
BI-214	1602.00Y	1.00	1.202E+02	1.202E+02	0.074E+02	6.18	
PB-214	1602.00Y	1.00	1.209E+02	1.209E+02	0.010E+03	8.24	
RN-219	3.28E+04Y	1.00	5.423E+00	5.423E+00	5.036E+00	92.87	
RA-223	3.28E+04Y	1.00	9.799E+00	9.799E+00	9.689E+00	98.88	
RA-224	1.41E+10Y	1.00	2.296E+02	2.296E+02	0.254E+02	11.07	
RA-226	1602.00Y	1.00	2.051E+02	2.051E+02	3.761E+02	183.37	
PA-234M	4.47E+09Y	1.00	6.975E+01	6.975E+01	6.847E+01	98.16	
TH-234	4.47E+09Y	1.00	3.653E+01	3.653E+01	1.035E+01	28.32	
	Total Acti	vitv :	9.020E+02	9.022E+02			

TOTAL ACTIVITY: 9.020E+02 9.022E+02

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error l	Flags
NB-94	20300.00Y	1.00	5.272E-01	5.272E-01	3.092E-01	58.65	
NB-95M	3.61D	136.	3.698E+00	5.025E+02	2.344E+02	46.64	
LU-173	1.37Y	1.04	9.626E+00	9.974E+00	3.280E+00	32.89	

Total Activity : 1.385E+01 5.130E+02

Nuclide Type : FISSION

	-750 . 110.		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/GRAM	pCi/GRAM	2-Sigma Error	%Error Flags
CD-109	464.00D	1.04	9.044E+01	9.396E+01	1.638E+01	17.43
SN-126	1.00E+05Y	1.00	9.089E+00	9.089E+00	1.487E+00	16.36
CE-141	32.50D	1.73	1.106E+00	1.908E+00	1.225E+00	64.21
NP-237	2.14E+06Y	1.00	2.666E+01	2.666E+01	0.434E+01	16.28
	Total Nati		1 0725.00	1 3160.00		

Total Activity : 1.273E+02 1.316E+02

Grand Total Activity: 1.043E+03 1.547E+03

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted
"A" = Nuclide specific abn. limit Spectrum : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_120116312_GE4_GAS1102_176265.CNF;1

Title :

Sample Title: JM-82-31-120128

Start Time: 22-FEB-2012 13:25 Sample Time: 28-JAN-2012 00:00 Energy Offset: 6.91748E-01

Channel

_	_	_	_	_	•	^	0	0
1:	0	0	0	0	0	0	0	0 1098
9:	0	0	0	0	0	6	894 866	841
17:	937	968	895	923	872	802 829	895	935
25:	880	902	851	831	848 946	997	946	1018
33:	851	865	824	955 1205	1824	2564	1726	1160
41:	1080	1020	1074	1285	1759	1397	1374	1356
49:	1298	1380	1304	1591	1759	2378	2503	2066
57:	1413 1897	1539 1961	1691 2207	1764	1916	1994	2095	2119
65: 73:	3033	5306	5296	2095 7064	6903	3112	2079	1960
	1841	1779	2102	1992	1730	2792	3097	2067
81: 89:	1929	1779	1696	2225	1783	1401	1249	1085
97:	1020	1095	1035	1034	987	937	962	982
105:	1026	1093	1014	1034	1061	1098	1083	1076
113:	1066	1002	1001	1017	1031	960	939	1021
121:	985	1034	1043	1012	1051	998	1039	1047
129:	995	998	1043	1025	978	1023	1014	996
137:	1002	1042	1042	1023	1075	1023	1221	1213
145:	1154	1042	1091	1066	1073	1113	1155	1122
153:	1157	1189	1133	1048	974	983	1064	960
161:	994	997	981	906	939	969	938	936
169:	920	897	875	892	887	859	854	877
177:	853	952	934	890	933	899	970	1237
185:	2545	2921	1403	883	867	864	887	849
193:	882	826	791	898	834	744	783	735
201:	796	748	750	764	769	719	701	710
209:	699	656	701	714	680	636	636	674
217:	680	609	621	664	622	625	618	634
225:	613	603	644	615	595	570	655	560
233:	589	594	757	733	631	673	666	944
241:	2498	2669	1057	511	502	516	534	513
249:	468	450	466	477	514	511	590	552
257:	526	575	588	485	449	470	480	417
265:	440	435	479	562	642	659	612	503
273:	507	549	511	460	415	402	467	451
281:	429	420	451	427	459	439	421	426
289:	377	421	379	412	866	3620	5440	2203
297:	524	357	384	410	381	385	395	353
305:	346	316	334	366	317	342	339	336
313:	355	382	332	349	355	332	322	333
321:	306	372	396	358	322	332	306	330
329:	355	353	329	329	331	337	332	308
337:	366	364	327	293	309	332	332	298
345:	346	348	331	340	440	2052	7027	7451
353:	2028	320	262	278	262	278	252	248
361:	258	230	247	243	248	243	222	281
369:	232	240	247	272	276	234	243	264
377:	282	238	. 245	269	259	259	224	264
385:	296	295	332	286	319	282	223	240
393:	257	272	254	265	243	251	276	278
401:	316	328	242	286	313	286	272	285
409:	287	248	260	266	242	240	275	274 229
417: 425:	270 261	231 271	248 246	304	277	261 215	242 193	229
46J;	201	Z / I	240	248	218	213	193	434

433:	209	200	188	212	201	191	212	180
441:	161	185	191	184	176	200	173	178
449:	184	177	167	192	221	233	223	205
457:	187	157	172	195	202	204	196	174
465:	167	160	194	179	170	181	164	179
473:	172	183	132	168	184	156	158	191
481:	184	155	160	158	153	192	189	187
489:	168	144			153	145	158	149
497:	150	127	167	149		139	150	141
505:	159	143	124	145	136		194	172
513:	136	143 152	139	179	185	213 124	138	134
521:	125	148	128	119	119 131	124	128	129
521:	136	102	120	130		156	115	133
537:	117	138	117	128	146			135
545:	118	116	146	129	111	133	136	107
545: 553:	134		123	104	123	121	121	139
561:	101	132 99	114	122	103	126	120 96	
569:	127		119	113	126	124		106
		142	122	155	129	113	128	132
577: 585:	109	122	148	165	143	142	124	136
	98	114	121	115	99	113	101	112
593:	120	116	123	120	110	105	119	85
601:	114	118	116	106	132	130	523	2960
609:	5488	3090	516	94	83	80	89	106
617:	72	93	79	93	66	82	81	85
625:	86	85	61	84	77	86	89	100
633:	84	103	68	83	92	73	79	93
641:	105	84	83	74	84	75 73	89	82
649:	85 77	102	81	75	87	71	88	80
657:	77	73	69	98	84	80	73	155
665:	218	173	80	69	64	83	73	83
673:	82	79	85	69	81	78	79	87
681:	63 70	94	70	88	77	86	61	88
689: 697:	78	66 75	63	78	92	92	75	94
705:	78	75	75	50	80	110	116	105
	86	80	77 67	78	79 65	105	64	69
713: 721:	80	74	67	73	65	79	87	88
721: 729:	84 69	84 73	78	59	80	76	82	88
729:	64		75	69	71	76	72	78
737: 745:	77	63	84	90	90	126	111	79
753:	81	60 79	66	73	72	72	67	81
753: 761:	80		89	76	69	68	80	70 510
769:	372	60	73	53	82	121	304	512
777:	73	130	77	78	54	84	65 64	64 05
777: 785:	73 147	68 155	66	67	73	79	64	95 74
793:	58	155 70	116	79	71	84	77	74
801:	86		72 76	75	83	88	73	71
809:	61	68 78	76	99	147	178	104	77
817:	76	78 73	65	55	72	64	66 77	76
825:	78	73 94	74	77	83	86	77 60	74
833:	76 86	63	80	66	61	74	69 133	97
841:	78	85	74 01	69 70	62	104	133	97 70
849:	78 86	85 66	81	70	63	74	91 63	70
857:	53	62	68	83	80	62 01	63 5.0	80
865:	53 71	62 84	88 65	74	77 93	81	58 70	90 76
873:	53	84 70	65 90	92 66	83 76	82 66	70 72	76
881:	87	70 74	90 68	66 85	76	66 72	72 71	91 77
889:	8 <i>4</i>	74 63	68 69	85 72	91 63	72 71	71 77	77 85
897:	85	85	69 79	72 65	63 71	71 92	7 / 71	90
905:	82	68	101	80	71 79	92 92	71 76	90 77
<i>-</i>	<u> </u>	00	TOT	00	19	94	70	, ,

913:	67	83	75	74	68	74	59	60
921:	64	56	65	47	66	62	77	72
929:	62	76	69	106	191	288	151	70
937:	41	57	75	49	71	65	69	76
945:	59	66	68	70	60	63	67	71
953:	46	69	65	55	48	56	55	70
961:	47	64	84	67	84	73	63	64
969:	59	67	64	68	54	55	57	58
977:	63	5 <i>4</i>	62	58	59	71	61	62
985:	64	49	61	55	55	69	51	48
993:	56	50	51	48	49	56	66	57
1001:	79	60	58	59	52	47	60	54
1009:	59	57	46	53	50	63	54	55
1017:	52	5 <i>1</i>	35	60	52	52	49	47
1025:	66	38	58	45	54	52	59	58
1033:	51	5 <i>9</i>	51	50	49	50	36	46
1041:	56	34	43	50	49	43	51	40
1049:	47	48	58	55	55	50	57	45
1057:	61	53	51	48	50	39	55	45
1065:	54	49	37	51	62	61	61	44
1073:	36	49	39	41	51	49	41	57
1081:	46	54	32	41	41	37	54	42
1089:	52	38	54	42	$\overline{44}$	46	47	60
1097:	49	45	43	41	33	56	45	38
1105:	55	42	47	45	53	51	49	43
1113:	32	46	38	53	51	112	474	925
1121:	669	235	60	31	44	29	30	41
1129:	31	37	56	46	51	53	48	40
1137:	37	40	52	42	48	39	43	44
1145:	51	44	46	38	44	39	42	41
1153:	45	79	147	122	51	44	35	38
1161:	46	31	27	35	36	36	45	35
1169:	27	32	38	46	45	44	47	29
1177:	35	38	35	40	41	51	52	38
1185:	43	43	37	42	39	40	37	43
1193:	37	38	37	44	42	38	33	31
1201:	50	32	36	36	32	55	60	43
1209:	55	41	28	43	33	37	39	43
1217:	39	30	30	37	41	33	42	45
1225:	45	44	42	28	38	36	31	34
1233:	43	32	49	73	202	388	268	90
1241:	39	31	34	31	37	26	40	33
1249:	30	34	27	41	51	52	39	26
1257:	34	34	23	30	36	30	22	31
1265:	32	22	31	31	24	35	24	26
1273:	27	43	36	39	39	26	48	98
1281:	122	67	38	33	22	30	31	18
1289:	26	26	34	24	36	26	32	30
1297:	29	33	36	30	24	36	27	33
1305:	41	27	37	23	31	30	30	28
1313:	25	19	38	25	34	26	32	38
1321:	34	26	32	31	36	26	34	34
1329:	28	24	24	37	18	34	31	32 25
1337:	26	31	25	34	28	42	35	25
1345:	33	29	32	34	27	35	31	27
1353:	33	40	35	33	26	29	40	27
1361:	36 34	24	27	35	26 25	30	32	38
1369: 1377:	24 221	28	38	36 40	25	29	34 29	83 52
13//: 1385:	221 60	229 61	112	40	28 24	29 23	29 24	5∠ 35
T202:	00	ρŢ	34	33	24	23	24	33

1393:	28	26	27	22	25	33	39	47
1401:	85	85	59	26	40	58	109	126
1409:	103	57	28	35	33	24	37	31
1417:	30	40	38	28	28	40	28	40
1425:	29	43	35	28	35	39	30	29
1433:	28	28	33	38	33	31	24	26
1441:	25	34	32	39	41	34	25	31
1449:	32	30	32	32	42	27	32	33
1457:	39	29	53	99	121	90	43	34
1465:	33	25	38	22	29	37	29	34
1473:	37	37	30	25	30	42	44	35
1481:	24	30	28	31	27	27	21	34
1489:	45	33	34	36	38	25	24	29
1497:	41	35	31	31	27	32	41	24
1505:	37	48	55	76	112	102	58	36
1513:	31	32	25	37	27	37	38	39
1521:	26	28	23	34	37	29	34	43
1529:	41	29	43	29	42	30	32	35
1537:	38	48	47	35	41	35	36	43
1545:	41	25	21	24	20	28	23	28
1553:	21	26	24	22	33	15	27	19
1561:	24	31	20	35	22	17	29	15
1569:	24	21	24	24	26	21	23	32
1577:	24	12	24	12	32	27	52	37
1585:	32	30	24	32	23	15	21	26
1593:	31	37	32	28	18	29	33	31
1601:	33	20	18	21	15	25	20	21
1609:	25	24	12	25	18	22	21	16
1617:	22	19	16	21	15	16	14	9
1625:	15	18	17	23	12	19	25	17
1633:	14	10	16	9	17	27	16	13
1641:	13	12	18	16	14	12	17	29
1649:	10	13	8	11	10	11	15	10
1657:	12	11	15	36	50	55	29	9
1665:	9	11	20	10	16	12	8	13
1673:	16	11	15	17	19	10	15	11
1681:	13	12	16	21	14	12	9	8
1689:	12	15	10	18	20	22	19	10
1697:	5	7	11	7	13	7	11	10
1705:	7	14	14	2	11	9	9	9
1713:	10	12	8	6	5 8	6	8	9
1721:	11	10	10	12	8	10	20	49
1729:	106	135	74	23	7	5	6	13
1737:	11	8	4	8	13	6	11	10
1745:	9	6	8	14	4	6	12	6
1753:	8	13	8	9	5	11	7	12
1761:	10	54	229	465	605	305	69	17
1769:	10	4	10	21	6	9	1	8
1777:	7	10	9	3	6	9	7	12
1785:	6	4	11	8	7	10	7	7
1793:	10	8	7	7	5	7	6	4
1801:	6	2	6	10	, b	7	5 6	9 6 5 7
1809:	9	12	5	10	11	4		<u>ت</u>
1817:	9 2	12	12	6	8 7	11 7	5 8	ວ 7
1825:		9 6	8	7 7	15	14	8 17	17
1833:	11 7	6 9	5		10		1 / 69	17 91
1841: 1849:	7 39	9 16	8 6	8	12	36 4	10	ο 91
1857:	11	11	8	13 5	6 8	8	9	5
1865:	8	7	8 7	5 4	7	5	5	8 5 8
1000.	J	,	,	4	,	5	J	5

				•	_	10	0	0
1873:	19	15	16	9	5	13	9	8
1881:	6	5	7	10	10	4	7	8
1889:	10	9	13	9	11	8	13	13
1897:	16	12	11	11	4	- 8	7	7
1905:	9	9	4	11	6	9	9	7
1913:	7	6	4	7	6	4	11	6
1921:	, 9	7	5	8	10	7	7	7
					8	6	3	10
1929:	8	3	12	8			11	7
1937:	14	11	16	10	7	13		11
1945:	5	14	11	9	13	8	7	
1953:	2	11	5	2	7	8	18	7
1961:	3	7	7	8	4	6	6	6
1969:	5	5	3	9	9	9	11	8
1977:	5	3	3	2	14	8	5	3
1985:	8	3	9	4	7	5	8	7
1993:	7	5	7	5	8	9	2	5
2001:	4	4	8	2	5	6	6	6
2009:	3	7	4	7	7	6	5	4
2017:	10	5	7	3	, 6	8	2	3
2025:	4	7	4	2		6	5	3
2033:	5		2	6	5	6	9	3
		4			8 5 2	6	4	4
2041:	4	4	3	5	2		5	6
2049:	4	4	8	7	5	8		
2057:	2	8	3	3	1	1_	8	4
2065:	3	4	8	4	3	7	2	1
2073:	4	7	0	3	8	5	6	3
2081:	4	1	4	4	0	. 5	3	3
2089:	2	4	4	4	1	4	3	1
2097:	4	3	5	7	6	1	4	2
2105:	3	3	3	6	5	3	3	5
2113:	4	2	4	4	15	40	40	28
2121:	8	_ 6	3	Ō	3	6	2	2
2129:	3	3	2	1	1	Ö	4	1
2137:	2	2	7	3	2	3	2	7
2145:	3	1	Ó	4	2 5	6	2	6
	<u>З</u>				0	0	í	2
2153:	-	1	6	3	-	Ū	_	_
2161:	1	8	2	2	2 3 3	4	4	3 3
2169:	1	2	6	0	3	3	3	3
2177:	0	6	6	4	3	2	4	5 7
2185:	5	1	3	4	1	2	2	
2193:	7	3	2	4	3	4	6	2
2201:	1	16	64	163	149	65	19	6
2209:	0	2	3	2	3	2	1	2
2217:	3	0	2	3	2	0	0	1
2225:	1	4	5	2	1	3	2	0
2233:	4	1	3	2	1	2	1	2
2241:	2	5	1	4	1	3	1	0
2249:	1	0	2	2	1	3	2	2
2257:	1	4	2	3		0	2	1
2265:	2	3	3	Ō	3 1 2	2	ī	1
2273:	3	1	Ō	1	2	2	ī	2
2281:	ĺ	1 3	3	0	1	ĺ	2	2
2201:	0	1	2		1 9 0	8	7	1
2289:		1 2 2		5	9	0 1		0
2297:	3	2	0	0		1	1	
2305:	1		3	3	0	1	0	2
2313:	0	0	1	0	1	2	3	0
2321:	1	0	0	2	1	2	1	2
2329:	1	2	1	1	2	1	1	0
2337:	0	1	1	0	1 1 2 1	2	1	0
2345:	1	0	0	0	1	1	1	0

2353:	0	0	0	0	0	1	0	0
2361:	1	2	Ö	Ö	3	0	0	0
2369:	1	Ō	1	ĺ	1	1	0	1
2377:	2	ĺ	2	Ō	2	2	2	1
2385:	2	0	1	0	3	0	ī	1
					0	0	Ō	1
2393:	2	0	0	1		4	1	2
2401:	0	0	2	1	0		0	0
2409:	0	0	0	0	1	0		
2417:	0	0	0	2	1	1	1	4
2425:	2	0	2	1	1	0	0	1
2433:	0	1	0	1	0	1	0	1
2441:	1	0	0	1	2	4	32	44
2449:	33	13	3	0	2	0	0	0
2457:	0	1	1	1	0	0	0	0
2465:	0	1	0	0	1	0	1	0
2473:	0	0	0	0	0	0	0	2
2481:	0	1	2	0	0	1	2	1
2489:	0	0	0	0	0	1	1	0
2497:	0	0	1	1	0	1	0	1
2505:	0	1	0	0	0	3	1	0
2513:	0	0	1	0	0	0	1	0
2521:	0	0	0	0	1	1	0	1
2529:	0	0	0	2	0	1	1	0
2537:	0	0	0	0	0	0	0	0
2545:	0	0	1	0	1	0	0	0
2553:	1	0	0	0	0	0	0	0
2561:	0	0	0	0	0	0	0	2
2569:	0	1	0	0	1	1	0	0
2577:	0	0	0	0	0	0	1	1
2585:	0	0	0	0	0	0	1	0
2593:	0	0	0	1	0	0	1	0
2601:	2	0	1	2	0	0	1	0
2609:	0	0	0	0	6	5 .	6	6
2617:	0	0	1	1	0	1	1	0
2625:	0	0	0	0	1	1	2	0
2633:	0	0	3	0	2	0	0	1
2641:	1	1	0	0	0	1	0	0
2649:	0	0	0	0	1	1	0	2
2657:	0	0	0	1	0	0	0	0
2665:	0	0	0	0	0	0	0	0
2673:	0	1	0	0	0	0	0	1
2681:	0	0	0	1	0	1	2	0
2689:	0	1	Ō	_ 1	1	0	1	1
2697:	0	1	1	0	0	1	1	0
2705:	0	0	0	ĺ		1	0	0
2713:	0	Ō	Ō	Ō	0 2 1	0	2	0
2721:	0	0	ĺ	Ö	1	0	0	0
2729:	0	Ö	Ō	Ö	ō	0	0	0
2737:	0	1	Ö	Ö	1	0	0	1
2745:	0	0	Ö	Ö		0	1	0
2753:	0	Ö	Ö	Ö	0 2 0	Ō	0	0
2761:	0	Ö	Ö	Ö	0	Ō	Ō	0
2769:	Ō	Ö	2	ĺ	Ö	Ō	Ō	0
2777:	Ö	Ö	Ō	ī	Ö	Ö	Ō	1
2785:	Ö	Ö	Ö	Ō	Ö	Ö	Ō	0
2793:	Ö	ĺ	Ö	Ö	Ö	Ō	1	0
2801:	Ŏ	Ō	Ö	í	ĺ	ĺ	ō	Ö
2809:	Ō	Ö	Ö	Ō	ō	ī	ĺ	Ō
2817:	Ō	Ö	Ö	Ö	Ö	0	1	0
2825:	1	Ö	Ö	3	Ö	Ö	0	0
·		-	-	-	-	-		_

							_	_
2833:	0	0	0	0	1	0	0	0
2841:	1	0	1	0	0	1	0	0
2849:	0	1	0	0	0	0	0	0
2857:	0	0	0	0	0	0	0	0
2865:	0	0	0	1	1	0	. 0	0
2873:	0	0	0	1	0	0	0	1
2881:	0	1	0	0	0	1	1	1
2889:	0	0	0	1	0	1	0	0
2897:	0	0	0	0	0	0	0	0
2905:	0	0	0	0	1	0	0	0 0
2913:	0	0	0	1	0	0	1 0	0
2921:	1	0	0	0	0 0	0 0	0	0
2929:	1	0	0	1	0	0	0	0
2937:	0	1	0	1	1	0	0	0
2945: 2953:	0 1	0 0	0 0	0 0	0	0	0	0
2953: 2961:	0	0	2	0	0	0	0	0
2969:	0	0	0	0	0	0	2	0
2977:	0	0	1	0	0	1	ō	Ö
2985:	0	0	Ō	0	Ö	Ō	Ö	Ö
2993:	Ö	1	í	ő	Ö	Ŏ	Ö	2
3001:	Ö	Ō	Ō	Ö	i	Ō	2	0
3009:	Ö	Ö	Ö	ĺ	0	0	0	0
3017:	Ö	ĺ	1	0	0	0	0	0
3025:	0	0	0	0	0	0	0	0
3033:	0	0	0	1	0	0	1	0
3041:	0	0	0	0	0	0	0	0
3049:	0	1	0	0	0	1	3	0
3057:	0	0	0	Ò	1	0	0	0
3065:	0	0	1	0	0	0	0	0
3073:	0	0	0	0	0	0	0	0
3081:	0	0	0	1	1	1	0	0
3089:	0	0	1	0	0	0	0	0
3097:	0	0	0	0	0	0	0	0
3105:	0	0	0	0	0	0	0	0
3113:	1	0	0	0	0	0	0	U
3121: 3129:	0 0	0	0	0 0	0	1 0	0 0	0 1
3129:	0	0 0	0 1	0	0 0	0	0	0
3145:	0	0	0	0	1	0	0	0
3153:	Ö	Ö	Ö	0	0	Ö	Ö	1
3161:	Ö	ő	ő	Ö	Ö	ő	Ö	0
3169:	Ö	Ö	ő	ő	Ö	Ö	Ö	Ō
3177:	Ö	Ö	Ō	1	Ö	1	0	0
3185:	1	0	2	0	0	0	0	0
3193:	0	1	0	0	0	0	0	. 0
3201:	0	0	0	0	0	0	0	0
3209:	0	0	1	0	0	0	0	0
3217:	0	0	1	0	0	0	0	0
3225:	0	0	0	0	0	1	0	1
3233:	0	0	0	0	0	0	0	0
3241:	2	0	0	0	1 0	0	0	0
3249:	0	2	0	1		0	0	0
3257: 3265:	0	0 0	1	0	0	0	1 0	0
3265: 3273:	0 0	0	0 0	0 0	0 0	0 0	0	0
3273:	0	0	0	0	1	0	0	0
3289:	Ö	Ö	0	0	0	2	ő	0
3297:	1	ĭ	ŏ	Ö	Ö	Ō	Ö	Ö
3305:	ō	ō	ĺ	ĺ	Ö	1	Ö	0

3313:	0	0	0	1	0	0	0	0
3321:	0	0	0	0	0	0	0	0
3329:	1	0	1	0	0	0	0	0
3337:	0	0	0	0	0	1	0	0
3345:	1	1	1	0	0	0	1	0
3353:	1	0	1	0	0	0	0	0
3361:	0	0	0	0	0	1	0	1
3369:	0	1	0	0	0	0	0	0
3377:	. 0	0	0	1	0	0	0	0
3385:	0	0	0	0	0	. 0	0	0
3393:	0	0	0	0	. 0	0	0	0
3401:	0	0	0	1	0	0	0	0
3409:	0	0	0	2	0	0	0	0
3417:	0	0	0	0	0	1	0	0
3425:	0	0	0	0	0	0	0	0 1
3433:	0	0	0	0	0	0	0	0
3441: 3449:	0 0	0	0	0	0	0 0	1 0	1
3449: 3457:	0	1 0	0	1 1	0 0	0	0	1
3465:	1	0	1 0	0	0	0	0	0
3473:	0	0	0	0	0	0	0	0
3481:	Ö	1	0	Ö	0	Ö	Ö	Ö
3489:	ŏ	Ō	0	Ö	0	0	ő	Ö
3497:	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö
3505:	Ō	Ö	Ö	Ö	Ö	Ö	Ō	0
3513:	0	0	0	0	0	0	0	0
3521:	0	0	0 .	0	0	0	1	1
3529:	0	0	0	0	0	0	0	0
3537:	0	0	0	0	0	0	0	0
3545:	0	1	0	0	0	0	0	0
3553:	1	0	0	0	0	0	0	0
3561:	0	1	0	0	0	0	0	0
3569:	0	0	0	0	0	0	0	0
3577:	1	0	0	0	0	0	0	0
3585:	0	0	0	0	0	0	0	1
3593: 3601:	0 0	0	0	0	0	0	0 0	0 0
3609:	0	0 1	0 0	0	0 0	1 0	0	0
3617:	Ö	1	0	0	0	0	0	0
3625:	Ö	Ō	2	Ö	ő	Ö	ŏ	Ö
3633:	1	Ö	ō	Ö	ő	Ö	Ö	Ö
3641:	0	Ō	Ö	Ö	Ō	Ö	1	0
3649:	0	0	0	0	0	0	0	0
3657:	0	0	0	0	0	1	0	0
3665:	0	0	0	0	0	0	1	0
3673:	0	1	0	0	0	1	0	0
3681:	0	0	0	0	0	0	0	0
3689:	0	1	0	0	0	0	0	0
3697:	0	0	0	0	1	0	0	0
3705:	1	0	0	0	0	0	0	0
3713: 3721:	0 1	Ò	0	0	0	0	0	0
3721: 3729:	0	0	0	0	0	0	0	0 1
3729: 3737:	0	0	1 0	0 0	0 0	0 0	0 0	0
3745:	0	1	0	0	0	0	0	0
3753:	Ö	1	0	0	0	0	0	0
3761:	ŏ	0	Ö	0	1	0	Ö	0
3769:	Ö	Ö	Ö	ő	Ō	i	ĭ	Ö
3777:	Ō	Ö	Ö	Ö	ŏ	Ō	Ō	Ö
3785:	0	0	Ö	Ö	Ö	ĺ	Ō	0

3793:	1	0	0	0	0	0	0	0
3801:	0	Ö	Ö	Ö	Ö	Ō	0	0
3809:	Ŏ	Ö	Ö	Ö	Ö	0	0	0
3817:	Ö	Ö	Ö	Ö	Ö	0	0	0
3825:	ő	ő	Ö	Ö	Ö	Ö	Ō	0
3833:	ŏ	ő	ő	ő	Ö	Ö	ĺ	1
3841:	ő	ő	Ŏ	Ö	Ö	Ö	0	0
3849:	ő	ő	ő	Ö	ő	Ö	Ö	Ō
3857:	Ö	Ö	ő	Ö	ĭ	Ö	Ö	Ö
3865:	Ö	ő	Ŏ	Ö	0	Ö	ĺ	Ō
3873:	Ö	Ö	Ö	Ö	Ö	Ö	ō	0
3881:	ő	ő	Õ	ő	Ö	Ö	Ö	0
3889:	1	í	1	Ö	ő	ŏ	Ö	Ö
3897:	Ō	Ō	Ō	Ö	ő	ő	Ö	0
3905:	0	0	0	0	ŏ	Ö	Ö	1
3913:	Ö	Ö	0	Ö	Ö	Ö	Ö	0
3921:	0	1	0	Ö	0	ő	Ö	Ö
3929:	0	0	1	Ö	Ö	ő	Ö	Ö
3937:	1	0	0	1	ĺ	Ö	Ö	Ö
3945:	Ō	0	1	1	0	ő	Ŏ.	Ö
3953:	0	0	0	1	Ö	ĭ	ő	Ö
3961:	0	1	0	0	0	Ō	Ö	Ö
3969:	0	Ō	0	1	Ö	ő	ő	Ö
3977:	0	0	1	0	0	Ö	ő	Ö
3985:	1	0	0	0	0	Ö	Ö	1
3993:	0	1	0	0	0	Ö	Ö	0
4001:	0	0	0	0	0	Ö	ő	Ö
4001:	0	0	0	0	0	Ö	Ö	0
4017:	1	0	0	0	0	Ö	Ŏ	Ö
4025:	0	0	0	0	0	0	ő	Ö
4033:	0	0	0	0	0	1	0	0
4041:	0	1	0	0	0	Ō	0	0
4041:	0	0	0	0	0	0	0	0
4057:	0	0	0	. 0	0	Ö	Ö	Ö
4065:	0	1	0	0	0	0	Ö	0
4073:	0	0	1	0	0	0	0	0
4073:	0	1	0	0	0	0	0	0
4081:	0	0	0	1	0	0	1	0
せいのブ:	U	U	U	Т	U	J		U

Acquisition date : 22-FEB-2012 13:38:17 Sample ID : 1201163-13

VAX/VMS Peak Search Report Generated 22-FEB-2012 14:38:35.84

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_120116313_GE1_GAS1102_176268.
Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF V2.2
Client ID : JM-84-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 13:38:17

Sample Quantity : 4.63640E+02 gram

Sample ID : 1201163-13
Sample type : SOLID
Detector name : GE1 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 01:00:03.90 0.1% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 01:00:00.00

Start channel : 5
Sensitivity : 2.40000
Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	46.50*	775	2118	1.87	46.12	43	7 21.0		PB-210
0	53.87	114	1739	1.00	53.50	51	5111.3		
1	60.51	98	843	1.25	60.14	59		4.36E+00	
1	63.50*	834	2283	1.53	63.12	59	8 18.8		TH-234
0	76.36*	4447	5145	2.99	75.99	71	10 6.7		
2	84.39*	376	1984	1.38	84.03	82		1.17E+02	
2	87.63	677	1826	1.34	87.27	82	17 19.0		NP-237
									SN-126
									CD-109
2	90.51	410	2050	1.58	90.14	82	17 36.8		
0	130.12	139	1782	3.63	129.77	127	7101.8		
0	144.22*	129	1316	1.10	143.87	142	5 86.9		CE-141
0	155.79	135	1531	1.33	155.44	152	6 93.5		
0	186.45*	1988	2198	1.47	186.10	181	10 9.9		RA-226
0	211.07	126	1362	4.64	210.73	207	8103.3		
1	236.49	168	461	1.63	236.16	235		2.30E+01	
1	239.22*	992	737	1.76	238.89	235	11 10.5		PB-212
1	242.37	1323	660	1.57	242.03	235	11 8.2		RA-224
0	258.16	138	800	3.08	257.83	255	7 70.3		
0	270.98	429	1341	3.06	270.65	265	12 35.5		LU-173
0	283.77	68	640	3.63	283.44	281	6119.1		
0	295.62*	2725	810	1.81	295.30	291	8 5.3		PB-214
0	312.30	73	492	1.96	311.98	310	6 99.2		PA-233
0	329.53	80	501	3.05	329.22	327	6 91.0		
0	339.33	208	647	1.98	339.01	335	8 44.6		AC-228
5	349.34	85	526	2.71	349.03	346		3.24E+00	
5	352.36*	4743	446	1.55	352.05	346	12 3.2		PB-214
0	388.64	84	449	2.88	388.33	385	7 86.7		
0	404.00	94	687	3.66	403.70	398	10106.6		
0	463.45	67	352	1.18	463.16	459	8100.9		
0	511.68*	223	483	2.65	511.40	505	14 45.0		mr 000
0	583.40*	320	430	1.99	583.14	577	12 28.4		TL-208
0	609.84*	3555	409	2.01	609.58	604	12 4.1		BI-214
0	664.12	160	294	5.71	663.88	658	13 46.9		
0	675.50	38	120	2.14	675.25	673	6 97.8		DT 010
0	727.70	70	175	2.05	727.46	724	8 70.3		BI-212

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	769.07	403	227	2.08	768.84	764	11 17.6		
0	786.00	180	174		785.78	780	12 32.9		
0	795.24*	46	123	2.35	795.02	792	8 89.6		
3	806.86	98	131	2.43	806.64	801	12 43.4	4.85E+00	
0	839.94	104	188	3.38			10 53.2		
0	861.10*	36	132	2.67	860.89		7112.9		TL-208
0	911.62*		197				10 29.3		AC-228
0	934.40	158	246		934.21		12 42.9		
0	963.74	38	148	2.75	963.56	961	7111.2		
0	969.66*		136	2.17	969.47	967	7 43.9		AC-228
0	1001.30*	75 27	155		1001.12		10 66.6		PA-234M
3	1115.84	27	44		1115.69			1.20E+00	
3	1120.90	747	96		1120.75				BI-214
4	1150.68	19	43		1150.53			2.24E+00	
4	1155.64	88	93		1155.49		11 42.0		
0	1207.48	40	68		1207.35		7 76.2		
0	1238.66	274	132		1238.53		11 20.2		
0	1254.96	34	92		1254.84		9108.2		
0	1282.10	96	109		1281.99		12 47.8	2.61E+00	
1	1378.23	211	49		1378.13		18 47.2	2.616+00	
1 0	1385.91 1402.22	60 46	61 82		1385.81 1402.13		9 76.7		
4	1402.22		60		1402.13			4.03E-01	
4	1412.14	19	37		1412.05		10150.4	4.035 01	
0	1461.46*		87		1461.38		12 9.6		K-40
Ö	1511.70	60	135		1511.63		15 88.3		
Ö	1539.10	23	47		1539.04		6100.0		
3	1583.51	38	52		1583.45			2.22E+00	
3	1588.75	32	34		1588.70		16 69.1		
0	1598.41	39	74		1598.36		15101.1		
0	1660.76		34		1660.72		13 49.1		
0	1730.15	119	36		1730.12		12 27.2		
0	1765.22*	580	49	2.38	1765.21	1761	10 9.5		BI-214
0	1848.66	84	34	2.10	1848.66	1843	11 35.1		
0	1878.06	53	23	14.55	1878.06	1867	23 54.3		
0	1948.81	24	15	3.79	1948.83				
0	1994.29	7	7		1994.32		7137.9		
0	2081.11	8	3		2081.16		5104.4		
0	2120.52	38	25		2120.58		14 63.4		
0	2149.25	9	7		2149.31		7114.9		
0	2186.18	8	3		2186.25	2183	6 98.4		
0	2204.96	163	20		2205.03		13 19.3		BI-214
0	2293.89	18	15		2293.98		10 94.1		
0	2447.81	56	6		2447.94		10 32.2		mr 000
0	2615.26*	107	6		2615.42		11 21.6		TL-208
0	2763.61	5	0	2.41	2763.80	2760	7 89.4		

Page: 3 Summary of Nuclide Activity

Acquisition date : 22-FEB-2012 13:38:17 Sample ID : 1201163-13

Total number of lines in spectrum 80 Number of unidentified lines 40

Number of lines tentatively identified by NID 40 50.00%

Nuclide Type : NATURAL

	7 L		Wtd Mean	Wtd Mean	Degar Corr	2-Sigma
			Uncorrected	Decay Corr	Decay Corr	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	
K-40	1.28E+09Y	1.00	2.015E+01	2.015E+01	0.270E+01	13.42
TL-208	1.41E+10Y	1.00	1.457E+00	1.457E+00	0.271E+00	18.59
PB-210	22.26Y	1.00	1.129E+01	1.132E+01	0.258E+01	22.77
BI-212	1.41E+10Y	1.00	1.110E+00	1.110E+00	0.788E+00	70.98
PB-212	1.41E+10Y	1.00	1.800E+00	1.800E+00	0.251E+00	13.93
BI-214	1602.00Y	1.00	1.300E+01	1.300E+01	0.086E+01	6.61
PB-214	1602.00Y	1.00	1.338E+01	1.338E+01	0.096E+01	7.14
RA-224	1.41E+10Y	1.00	2.730E+01	2.730E+01	0.334E+01	12.25
RA-226	1602.00Y	1.00	4.252E+01	4.253E+01	7.800E+01	183.42
AC-228	1.41E+10Y	1.00	1.632E+00	1.632E+00	0.362E+00	22.20
PA-233	27.00D	1.93	1.824E-01	3.518E-01	3.579E-01	101.75
PA-234M	4.47E+09Y	1.00	1.983E+01	1.983E+01	1.332E+01	67.19
TH-234	4.47E+09Y	1.00	1.232E+01	1.232E+01	0.254E+01	20.58
AM-241	432.20Y	1.00	1.559E-01	1.559E-01	1.172E-01	75.16
	Total Nati		1 6615.00	1 663E+02		
	Total Acti	vity:	1.661E+02	1.663E+02		

Total Activity: 1.661E+02 1.663E+02

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
ZN-65	244.40D	1.08	1.396E-01	1.501E-01	1.304E-01	86.87
NB-95M	3.61D	136.	5.400E-01	7.349E+01	2.725E+01	37.08
LU-173	1.37Y	1.04	1.784E+00	1.848E+00	0.677E+00	36.61

Total Activity : 2.463E+00 7.549E+01

Nuclide Type : FISSION

	-76		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	-
CD-109	464.00D	1.04	1.005E+01	1.045E+01	0.237E+01	22.65
SN-126	1.00E+05Y	1.00	1.011E+00	1.011E+00	0.221E+00	21.84
CE-141	32.50D	1.73	1.663E-01	2.870E-01	2.582E-01	89.96
NP-237	2.14E+06Y	1.00	2.965E+00	2.965E+00	0.646E+00	21.79
	m 7 7		1 4000.01	3 4 E 3 E . O 1		

Total Activity : 1.420E+01 1.471E+01

Grand Total Activity: 1.828E+02 2.565E+02

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Nuclide	Type: NATU	RAL	,	Incompated Degra, Corr 2-Sigma
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff	Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 2.015E+01 2.015E+01 13.42 OK
	Final Mean	for 1	Valid Peaks	= 2.015E+01+/- 2.704E+00 (13.42%)
TL-208	860.37	4.48	7.505E-01	1.667E+00 1.667E+00 30.12 OK 1.727E+00 1.727E+00 113.22 OK 1.361E+00 1.361E+00 23.97 OK
	Final Mean	for 3	Valid Peaks	= 1.457E+00+/- 2.708E-01 (18.59%)
PB-210	46.50	4.25*	2.613E+00	1.129E+01 1.132E+01 22.77 OK
	Final Mean	for 1	Valid Peaks	= 1.132E+01+/- 2.577E+00 (22.77%)
BI-212	727.17 1620.62	11.80* 2.75	8.597E-01 4.684E-01	1.110E+00 1.110E+00 70.98 OK Line Not Found Absent
	Final Mean	for 1	Valid Peaks	= 1.110E+00+/- 7.879E-01 (70.98%)
PB-212	238.63 300.09	44.60* 3.41	2.000E+00 1.716E+00	1.800E+00 1.800E+00 13.93 OK Line Not Found Absent
	Final Mean	for 1	Valid Peaks	= 1.800E+00+/- 2.508E-01 (13.93%)
BI-214	1120.29 1764.49	15.10 15.80	6.104E-01 4.432E-01	1.252E+01 1.252E+01 10.91 OK 1.313E+01 1.313E+01 12.40 OK 1.341E+01 1.341E+01 13.04 OK 1.360E+01 1.360E+01 21.58 OK
	Final Mean	for 4	Valid Peaks	= 1.300E+01+/- 8.589E-01 (6.61%)
PB-214	295.21 351.92	19.19 37.19*		1.325E+01 1.325E+01 10.52 OK 1.350E+01 1.350E+01 9.74 OK
	Final Mean	for 2	Valid Peaks	= 1.338E+01+/- 9.560E-01 (7.14%)
RA-224	240.98	3.95*	1.987E+00	2.730E+01 2.730E+01 12.25 OK
	Final Mean	for 1	Valid Peaks	= 2.730E+01+/- 3.345E+00 (12.25%)
RA-226	186.21	3.28*	2.308E+00	4.252E+01 4.253E+01 183.42 OK
	Final Mean	for 1	Valid Peaks	= 4.253E+01+/- 7.800E+01 (183.42%)
AC-228	911.07	27.70*	7.170E-01	1.881E+00 1.881E+00 45.51 OK 1.667E+00 1.667E+00 30.61 OK 1.435E+00 1.435E+00 44.83 OK
	Final Mean	for 3	Valid Peaks	= 1.632E+00+/- 3.622E-01 (22.20%)

Nuclide Type: NATURAL Uncorrected Decay Corr 2-Sigma %Abn %Eff Nuclide Energy pCi/gram pCi/gram %Error Status 1.670E+00 1.824E-01 3.518E-01 101.75 PA-233 311.98 38.60* Final Mean for 1 Valid Peaks = 3.518E-01+/-3.579E-01 (101.75%) PA-234M 1001.03 0.92* 6.658E-01 1.983E+01 1.983E+01 67.19 OK Final Mean for 1 Valid Peaks = 1.983E+01+/-1.332E+01 (67.19%) TH-234 63.29 3.80* 2.884E+00 1.232E+01 1.232E+01 20.58 OK Final Mean for 1 Valid Peaks = 1.232E+01+/-2.535E+00 (20.58%) AM-241 59.54 35.90* 2.848E+00 1.559E-01 1.559E-01 75.16 OK Final Mean for 1 Valid Peaks = 1.559E-01+/-1.172E-01 (75.16%) Uncorrected Decay Corr 2-Sigma %Eff pCi/gram pCi/gram Nuclide Type: ACTIVATION pCi/gram pCi/gram %Error Nuclide Energy %Abn 50.75* 6.124E-01 1.396E-01 1.501E-01 86.87 ZN-65 1115.52

Status Final Mean for 1 Valid Peaks = 1.501E-01+/-1.304E-01 (86.87%) 235.69 25.00* 2.015E+00 5.400E-01 7.349E+01 37.08 OK NB-95M Final Mean for 1 Valid Peaks = 7.349E+01+/-2.725E+01 (37.08%) Absent LU-173 100.72 2.881E+00 ---- Line Not Found ----5.24 21.20* 1.836E+00 1.784E+00 1.848E+00 36.61 Final Mean for 1 Valid Peaks = 1.848E+00+/-6.767E-01 (36.61%)

Nuclide Type: FISSION

pCi/gram pCi/gram %Error Status %Abn Nuclide Energy %Eff 1.045E+01 CD-109 22.65 88.03 3.72* 2.931E+00 1.005E+01 OK Final Mean for 1 Valid Peaks = 1.045E+01+/-2.366E+00 (22.65%) 37.00* 2.932E+00 1.011E+00 1.011E+00 21.84 OK SN-126 87.57 Final Mean for 1 Valid Peaks = 1.011E+00+/-2.207E-01 (21.84%) CE-141 145.44 48.40* 2.589E+00 1.663E-01 2.870E-01 89.96 OK Final Mean for 1 Valid Peaks = 2.870E-01+/-2.582E-01 (89.96%)

Uncorrected Decay Corr 2-Sigma

OK

Nuclide Line Activity Report (continued) Acquisition date : 22-FEB-2012 13:38:17 Sample ID : 1201163-13

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status %Abn %Eff Nuclide Energy 2.935E+00 2.965E+00 2.965E+00 21.79 OK NP-237 86.50 12.60*

Final Mean for 1 Valid Peaks = 2.965E+00+/-6.459E-01 (21.79%)

Flag: "*" = Keyline

Combined Activity-MDA Report Sample ID: 1201163-13

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
Nuclide K-40 ZN-65 NB-95M CD-109 SN-126 CE-141 LU-173 TL-208 PB-210 BI-212 PB-212 PB-214 PB-214 RA-224 RA-226 AC-228	(PC1/gram) 2.015E+01 1.501E-01 7.349E+01 1.045E+01 1.011E+00 2.870E-01 1.848E+00 1.457E+00 1.132E+01 1.110E+00 1.300E+01 1.338E+01 2.730E+01 4.253E+01 1.632E+00	2.704E+00 1.304E-01 2.725E+01 2.366E+00 2.207E-01 2.582E-01 6.767E-01 2.708E-01 2.577E+00 7.879E-01 2.508E-01 8.589E-01 9.560E-01 3.345E+00 7.800E+01 3.622E-01	1.105E+00 2.816E-01 5.704E+01 2.990E+00 2.892E-01 3.782E-01 4.970E-01 3.587E-01 2.403E+00 9.072E-01 2.244E-01 2.213E-01 2.752E-01 2.551E+00 3.099E+00 4.403E-01	9.365E-02 2.308E-02 4.671E+00 3.472E-01 2.874E-02 8.716E-02 4.039E-02 3.318E-02 1.855E-01 8.291E-02 1.837E-02 2.058E-02 2.276E-02 2.088E-01 5.675E+00 3.498E-02	18.244 0.533 1.288 3.494 3.495 0.759 3.718 4.061 4.709 1.224 8.024 58.737 48.632 10.702 13.722 3.706
PA-233 PA-234M TH-234 NP-237 AM-241	3.518E-01 1.983E+01 1.232E+01 2.965E+00 1.559E-01	3.579E-01 1.332E+01 2.535E+00 6.459E-01 1.172E-01	4.933E-01 1.424E+01 3.037E+00 8.480E-01 2.999E-01	1.100E-01 1.154E+00 2.250E-01 8.323E-02 2.124E-02	0.713 1.392 4.056 3.496 0.520

	Key-Line		1677	1477	7 /34T) 7
NT		L. 'Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram) Id	led	(pCi/gram)		
BE-7	2.976E-01	8.158E-01	1.449E+00	1.277E-01	0.205
NA-22	1.356E-02	8.007E-02	1.257E-01	1.028E-02	0.108
AL-26	1.671E-02	4.839E-02	9.112E-02	7.278E-03	0.183
TI-44	-3.040E-02	9.578E-02	1.269E-01	9.942E-03	-0.240
SC-46	-3.236E-02	8.951E-02	1.515E-01	1.212E-02	-0.214
V-48	1.963E-01	2.250E-01	4.079E-01	3.297E-02	0.481
CR-51	-1.266E+00	1.331E+00	1.852E+00	1.614E-01	-0.684
MN-54	6.094E-02	8.148E-02	1.333E-01	1.131E-02	0.457
CO-56	2.190E-02	9.304E-02	1.474E-01	1.237E-02	0.149
CO-57	2.419E-02	7.143E-02	1.172E-01	1.131E-02	0.206
CO-58	2.210E-02	9.639E-02	1.526E-01	1.326E-02	0.145
FE-59	-7.982E-02	1.896E-01	3.173E-01	2.829E-02	-0.252
CO-60	-2.270E-02	7.599E-02	1.282E-01	1.048E-02	-0.177
GA-67	4.596E+02	1.619E+03	9.400E+01	3.309E+02	4.889
SE-75	8.581E-02	1.410E-01	1.875E-01	1.539E-02	0.458
RB-82	9.008E-01	1.264E+00	1.710E+00	1.521E-01	0.527
RB-83	-2.593E-02	1.746E-01	2.729E-01	4.330E-02	-0.095
KR-85	4.311E+01	1.564E+01	2.902E+01	2.613E+00	1.485
SR-85	2.466E-01	8.950E-02	1.660E-01	1.495E-02	1.485
Y-88	3.966E-02	5.770E-02	1.137E-01	9.031E-03	0.349
NB-93M	-8.572E+00	2.095E+00	5.152E-02	1.146E-02	-166.397
NB-94	4.258E-02	7.354E-02	1.260E-01	1.030E-02	0.338

	Vor. Time				
	Key-Line Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram) Ided	ACC ELIOI	(pCi/gram)	MDA CIIOI	1100/11011
	(por, gram, raca		(501) 314)		
NB-95	4.799E-01	1.529E-01	2.674E-01	2.394E-02	1.795
ZR-95	1.167E-02	1.614E-01	2.816E-01	2.771E-02	0.041
RU-103	-5.163E-02	9.751E-02	1.670E-01	2.396E-02	-0.309
RU-106	4.939E-01	6.036E-01	1.097E+00	1.515E-01	0.450
AG-108M	3.863E-02	7.631E-02	1.237E-01	1.133E-02	0.312
AG-110M	-2.256E-02	7.120E-02	1.094E-01	1.022E-02	-0.206
SN-113	-1.617E-02	1.195E-01	1.883E-01	1.597E-02	-0.086
TE123M	2.198E-02	9.494E-02	1.423E-01	1.178E-02	0.154
SB-124	4.026E-02	8.955E-02	1.449E-01	1.346E-02	0.278
I-125	-7.070E-01	1.248E+00	2.058E+00	1.867E-01	-0.344
SB-125	-7.258E-02	2.019E-01	3.502E-01	3.033E-02	-0.207
SB-126	5.231E-01	5.393E-01	8.984E-01	8.235E-02	0.582
SB-127 I-129	4.530E+00	1.703E+01	3.018E+01	2.802E+00	0.150 -0.461
I-129 I-131	-9.125E-02 -1.797E-01	1.206E-01	1.981E-01	2.080E-02 8.899E-02	-0.461
TE-132	-1.797E-01 -5.263E+00	6.166E-01 1.681E+01	1.077E+00 2.671E+01	2.186E+00	-0.197
BA-133	9.103E-01	1.802E-01	2.512E-01	3.259E-02	3.624
CS-134	6.289E-02	7.128E-02	1.176E-01	1.096E-02	0.535
CS-135	7.666E-01	4.198E-01	6.987E-01	5.687E-02	1.097
CS-136	-1.598E-01	3.371E-01	5.632E-01	4.743E-02	-0.284
CS-137	1.187E-01	7.636E-02	1.369E-01	1.281E-02	0.867
LA-138	2.743E-02	1.063E-01	1.878E-01	1.544E-02	0.146
CE-139	-2.463E-02	9.181E-02	1.473E-01	1.177E-02	-0.167
BA-140	2.811E-01	9.784E-01	1.713E+00	5.700E-01	0.164
LA-140	3.074E-01	3.119E-01	5.425E-01	4.450E-02	0.567
CE-144	2.011E-01	6.498E-01	9.809E-01	9.065E-02	0.205
PM-144	-3.611E-02	6.636E-02	1.123E-01	1.040E-02	-0.322
PM-145	-7.134E-02	2.834E-01	4.648E-01	3.027E-01	-0.153
PM-146	9.501E-02	1.516E-01	2.613E-01	2.266E-02	0.364
ND-147	3.200E-01	2.316E+00	4.080E+00	3.705E-01	0.078
EU-152	2.331E+00 +	7.487E-01	1.336E+00	1.414E-01	1.745
GD-153	-1.357E-01	2.776E-01	4.485E-01	4.388E-02	-0.303
EU-154	4.214E-02	2.228E-01	3.503E-01	2.867E-02	0.120
EU-155	1.221E+00 +	2.660E-01	4.416E-01	4.334E-02	2.765
EU-156	7.628E-01	2.289E+00	3.645E+00	8.332E-01	0.209
HO-166M HF-172	1.035E-02	1.143E-01	2.006E-01	1.845E-02	0.052
LU-172	-2.422E-01 4.730E-01	5.736E-01	8.501E-01	8.087E-02 2.417E-01	-0.285
HF-175	2.907E-01	1.682E+00 1.213E-01	2.955E+00 1.570E-01	1.298E-02	0.160 0.185
LU-176	-7.734E-03	7.236E-02	1.055E-01	8.660E-03	-0.073
TA-182	6.639E+00 +	8.233E-01	1.035E-01 1.231E+00	1.007E-01	5.394
IR-192	-6.125E-02	1.695E-01	2.628E-01	2.302E-02	-0.233
HG-203	-2.021E-02	1.479E-01	1.883E-01	1.574E-02	-0.107
BI-207	4.956E-02	6.387E-02	1.146E-01	1.056E-02	0.433
BI-210M	4.371E-02	1.637E-01	2.139E-01	1.745E-02	0.204
PB-211	3.819E+00 +	4.085E+00	3.971E+00	3.302E-01	0.962
RN-219	8.460E-01	9.946E-01	1.783E+00	1.478E-01	0.474
RA-223	1.425E+00	1.728E+00	2.622E+00	2.162E-01	0.544

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-13 Acquisition date: 22-FEB-2012 13:38:17

Nuclide	Key-Line Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
RA-225	3.130E-01		6.882E-01	1.075E+00	8.999E-02	0.291
TH-227	1.175E+00	+	4.356E-01	1.061E+00	8.690E-02	1.107
TH-230	6.390E+00		2.406E+01	3.237E+01	2.530E+00	0.197
PA-231	9.318E-01		3.060E+00	4.539E+00	3.719E-01	0.205
TH-231	6.387E-01		6.309E-01	1.072E+00	1.310E-01	0.596
PA-234	4.108E-01	+	4.205E-01	4.955E-01	4.620E-02	0.829
U-235	7.630E-01	+	6.770E-01	1.025E+00	1.807E-01	0.745
AM-243	1.720E+00		2.165E-01	2.561E-01	2.180E-02	6.716
CM-243	3.177E-01		5.563E-01	7.353E-01	5.959E-02	0.432

Summary of Nuclide Activity Page: 10

Acquisition date : 22-FEB-2012 13:38:17 Sample ID : 1201163-13

Total number of lines in spectrum 80 Number of unidentified lines 40

Number of lines tentatively identified by NID 40 50.00%

Nuclide Type : NATURAL

	-21		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flag	js
K-40	1.28E+09Y	1.00	2.015E+01	2.015E+01	0.270E+01	13.42	
TL-208	1.41E+10Y	1.00	1.457E+00	1.457E+00	0.271E+00	18.59	
PB-210	22.26Y	1.00	1.129E+01	1.132E+01	0.258E+01	22.77	
BI-212	1.41E+10Y	1.00	1.110E+00	1.110E+00	0.788E+00	70.98	
PB-212	1.41E+10Y	1.00	1.800E+00	1.800E+00	0.251E+00	13.93	
BI-214	1602.00Y	1.00	1.300E+01	1.300E+01	0.086E+01	6.61	
PB-214	1602.00Y	1.00	1.338E+01	1.338E+01	0.096E+01	7.14	
RA-224	1.41E+10Y	1.00	2.730E+01	2.730E+01	0.334E+01	12.25	
RA-226	1602.00Y	1.00	4.252E+01	4.253E+01	7.800E+01	183.42	
AC-228	1.41E+10Y	1.00	1.632E+00	1.632E+00	0.362E+00	22.20	
PA-233	27.00D	1.93	1.824E-01	3.518E-01	3.579E-01	101.75	
PA-234M	4.47E+09Y	1.00	1.983E+01	1.983E+01	1.332E+01	67.19	
TH-234	4.47E+09Y	1.00	1.232E+01	1.232E+01	0.254E+01	20.58	
AM-241	432.20Y	1.00	1.559E-01	1.559E-01	1.172E-01	75.16	
	Total Act	ivitv :	1.661E+02	1.663E+02			

Total Activity : 1.661E+02 1.663E+02

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Fla	ıgs
ZN-65	244.40D	1.08	1.396E-01	1.501E-01	1.304E-01	86.87	
NB-95M	3.61D	136.	5.400E-01	7.349E+01	2.725E+01	37.08	
LU-173	1.37Y	1.04	1.784E+00	1.848E+00	0.677E+00	36.61	
Total Activity :		2.463E+00	7.549E+01				

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags	
CD-109	464.00D	1.04	1.005E+01	1.045E+01	0.237E+01	22.65	
SN-126	1.00E+05Y	1.00	1.011E+00	1.011E+00	0.221E+00	21.84	
CE-141	32.50D	1.73	1.663E-01	2.870E-01	2.582E-01	89.96	
NP-237	2.14E+06Y	1.00	2.965E+00	2.965E+00	0.646E+00	21.79	

Total Activity : 1.420E+01 1.471E+01

Grand Total Activity: 1.828E+02 2.565E+02

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116313_GE1_GAS1102_176268.CNF; 1

Title

Sample Title: JM-84-31-120128

Start Time: 22-FEB-2012 13:38 Sample Time: 28-JAN-2012 00:00 Energy Offset: 3.84457E-01

Channel

1:	0	0	0	0	0	0	0	0
9:	0	0	0	0	0	0	0	0
17:	Ö	Ö	201	265	258	396	648	390
			241	200	215	201	178	220
25:	219	226						260
33:	197	192	220	182	249	239	233	
41:	250	266	276	296	346	752	689	294
49:	285	371	324	327	503	365	334	362
57 :	367	411	411	493	482	539	1046	732
65:	486	449	522	519	507	454	498	516
73:	579	1054	1569	989	2335	994	571	508
81:	592	459	517	756	506	429	877	657
89:	447	633	459	882	1152	519	387	326
						273	268	273
97:	300	311	321	265	277			
105:	297	283	278	279	266	288	282	294
113:	312	276	283	237	267	247	259	222
121:	264	274	265	258	241	241	251	267
129:	299	283	283	282	256	266	268	276
137:	245	261	258	258	260	248	273	407
145:	279	252	287	301	267	284	302	249
153:	249	348	294	272	254	227	258	250
161:	241	251	248	247	252	241	232	199
						220	209	234
169:	251	242	210	240	227			
177:	211	200	209	214	224	230	243	229
185:	479	1415	704	254	245	221	220	162
193:	239	183	224	179	215	210	180	202
201:	185	180	168	167	180	193	172	183
209:	215	205	184	179	187	163	159	151
217:	150	138	152	145	161	182	164	162
225:	164	174	142	147	149	165	153	162
233:	162	158	156	242	197	427	714	241
						131	113	133
241:	345	948	395	129	118			
249:	135	113	106	132	127	133	125	146
257:	156	128	171	111	101	107	127	104
265:	111	114	112	114	190	229	233	167
273:	109	136	148	107	124	126	104	102
281:	94	128	118	131	130	107	119	105
289:	106	98	90	104	126	293	1571	1085
297:	183	92	126	164	102	105	106	85
305:	98	96	87	112	75	78	109	111
313:	87	89	91	81	86	92	86	74
321:	83	76	97	110	84	96	81	122
								83
329:	93	120	89	76	84	92	83	
337:	81	176	156	106	87	83	68	90
345:	93	82	83	110	99	151	884	3017
353:	1073	141	95	119	98	83	70	80
361:	58	75	62	70	66	65	60	74
369:	71	67	68	72	72	72	68	59
377:	62	72	44	59	55	60	59	68
385:	57	60	94	87	104	71	60	71
393:	53	79	62	67	88	62	78	65
401:	81	119	71	82	91	72	60	67
409:	72	88	71 72	55	72	61	70	73
417:	72 67					66	53	73
		52 53	79	68	67 50			
425:	70	53	54	60	50	55	55	44

433:	60	61	51	75	47	51	53	49
441:	45	52	56	49	61	52	61	41
449:	55	46	48	43	48	44	89	40
457:	45	50	42	54	46	52	81	47
465:	49	48	37	44	53	48	59	5 <i>7</i>
						69	42	60
473:	45	53	50	42	59			56
481:	55	42	48	38	30	45	63	
489:	46	44	36	51	40	29	34	36
497:	42	41	37	43	43	35	35	42
505:	33	44	42	45	55	93	128	91
513:	62	43	46	39	39	33	31	42
521:	46	52	32	42	40	53	29	50
529:	42	39	32	45	49	46	41	37
537:	37	54	40	38	31	33	45	38
545:	32	38	41	31	37	30	32	34
553:	42	33	30	36	37	37	33	38
561:	35	41	38	26	33	35	33	50
569:	52	41	31	36	42	48	25	41
577:	37	37	42	52	46	55	177	167
577. 585:	48	41	30	23	43	31	33	25
	41	37	35	33	29	31	29	24
593:						31	65	192
601:	39	32	29	36	36			30
609:	1521	1614	278	56	53	53	41	
617:	26	25	34	31	27	26	32	25
625:	21	23	19	31	35	27	22	32
633:	16	25	18	21	25	21	28	34
641:	19	29	19	22	24	24	32	21
649:	20	28	17	28	22	28	25	20
657:	19	22	30	17	47	58	23	24
665:	52	70	35	29	23	24	25	28
673:	20	30	40	32	21	15	20	23
681:	31	21	34	34	23	21	25	23
689:	28	29	20	24	21	34	24	25
697:	21	21	29	39	26	34	38	44
705:	34	32	21	33	26	32	23	24
713:	27	19	17	28	18	29	24	41
721:	22	31	21	24	24	24	49	52
729:	29	24	19	24	20	24	18	27
727:	24	25	29	31	17	22	37	33
745:	32	19	24	18	20	32	30	26
						31	25	24
753:	28	33	25	25	23			
761:	28	23	24	20	18	35	54	150
769:	184	58	28	27	35	21	18	24
777:	31	25	12	17	23	21	27	24
785:	35	63	57	28	23	23	13	16
793:	17	25	34	26	22	20	12	20
801:	12	23	30	16	16	57	50	23
809:	29	28	19	18	25	23	17	24
817:	20	15	11	19	27	22	12	21
825:	25	31	35	15	25	13	25	27
833:	28	21	21	30	27	28	37	32
841:	46	31	27	13	21	22	32	22
849:	19	18	18	24	23	28	14	25
857:	22	26	16	40	30	34	16	21
865:	14	21	20	32	21	24	18	30
873:	21	23	21	18	22	22	17	28
881:	20	18	24	26	27	22	21	12
889:	29	17	26	26	21	16	27	27
897:	13	28	17	27	18	14	26	24
905:	21	26 17	18	27 26	18	27	115	94
JUJ:	21	Ι/	Τ0	40	TO	41	T T 2	24

913:	39	27	17	24	19	21	20	18
921:	20	20	15	21	26	15	24	14
929:	23	28	23	22	34	84	71	36
937:	31	16	22	22	15	21	19	20
						17	25	20
945:	21	17	19	15	32			
953:	18	17	15	14	12	18	26	17
961:	17	20	32	28	47	32	10	39
969:	66	70	23	15	18	19	20	18
977:	12	18	25	13	20	21	22	28
985:	21	19	11	17	20	16	18	18
993:	15	20	19	12	19	15	23	27
1001:	47	35	25	19	11	20	18	27
1009:	18	25	14	14	18	22	14	17
1017:	20	18	11	20	10	22	26	13
1025:	12	11	17	16	21	15	17	22
1033:	18	14	16	12	14	17	21	15
1041:	12	13	18	13	4	13	17	15
1049:	17	17	12	16	30	8	17	15
1057:	19	17	12	12	20	13	17	14
1065:	16	17	19	13	19	13	22	18
1073:	19	8	14	18	18	12	19	13
1081:	9	13	18	9	13	13	13	13
1089:	19	8	18	21	15	18	15	15
1097:	14	15	18	15	10	10	14	15
1105:	18	10	20	16	18	21	19	12
1113:	9	12	22	15	22	20	67	234
1121:	357	141	28	22	25	19	20	22
1129:	19	26	8	17	17	30	15	17
1137:	11	20	21	18	18	14	14	12
1145:	14	16	20	14	15	23	11	15
1153:	17	21	49	43	24	9	11	14
1161:	14	18	12	10	21	16	16	16
1169:	10	14	8	15	15	11	21	13
1177:	18	18	11	13	18	25	21	9
1185:	22	19	16	25	14	12	18	13
1193:	12	12	18	12	11	19	11	22
1201:	12	13	8	11	15	15	12	27
1209:	17	11	9	12	15	16	15	15
1217:	17	17	20	19	16	17	15	17
1225:	20	11	18	9	10	8	16	14
1233:	10	16	14	17	35	106	123	43
1241:	16	16	10	14	11	18	17	15 16
1249:	13 11	11	13	13	16	19	20	16
1257:	17	11	7	11	13	8	10	16
1265:	13	9	15	12	14	8	16 16	9
1273:		10	17	8	9	10	16 15	19
1281: 1289:	35 10	35 17	18	10	16	13	15 13	9 8
1297:	10	17	13	10	8 16	6	13	19
1305:	18	15 11	15 10	10		9 9	14	
1305:	18	11 13	10 12	10 12	12 17	9 13	6 10	7 8
1313:	13	6	13 7	13 10	17	8	7	8 18
1321:	10	8	11	7	8 12	8 7	12	20
1337:	6	10	8	10	13	13	12	17
1345:	. 8	7	8 10	9	9	10	10	12
1353:	. 8 7	9	7	6	9 11	10	8	
1361:	14	13	10	12	13	6	13	8 8
1369:	7	6	9	15	13 5	6	9	12
1377:	50	97	63	26	12	14	11	13
1385:	12	35	15	6	13	12	7	12
		33	J	•	±-/	± 4		

1393:	10	9	14	1	10	6	17	8
1401:	31	24	20	11	11	11	21	42
1409:	55	23	12	17	10	5	6	8 13
1417:	5	13	5	5	9	15	8 7	13
1425: 1433:	7 13	6	11	9 7	9 12	6 6	5	11
1433: 1441:	13	13 4	6 10	10	6	12	8	13
1441:	8	6	12	7	9	10	9	5
1457:	8	11	20	111	267	250	53	12
1465:	14	8	4	11	6	3	16	11
1473:	7	14	8	6	3	10	7	6
1481:	8	11	5	12	8	8	10	9
1489:	13	10	12	10	9	9	4	11
1497:	11	13	5	9	6	12	8	9
1505:	9	11	10	20	24	33	24	9
1513:	7	8	7	6	5	16	6 6	12 12
1521:	7 12	7	8	10	12 8	5 14	12	7
1529: 1537:	5	5 16	3 16	9 15	9	9	9	15
1545:	11	8	7	2	8	11	6	3
1553:	9		10	5	8	4	4	13
1561:	6	2	11	7	Ö	5	5	7
1569:	14	8 2 3	8	7	7	7	7	5
1577:	9	7	2	6	10	7	22	20
1585:	10	8	4	23	16	10	6	5
1593:	15	12	5	6	5	9	10	10
1601:	7	10	4	7	6	2	7	3
1609:	5	6	2	4	8	6	4 5	8
1617: 1625:	11 1	6 6	3 3	9 5	8	12 3	5 5	2
1623:	7	7	8	5 7	5 6 8 8 5 7	4	4	3 8 5 2 6 8 4
1641:	3	7	2	5	3	6	3	8
1649:	3 5	3	2	2	1	ĺ	3	4
1657:	3	5	2	14	20	17	12	4
1665:	4	5 4	2 5	8	2	3	5	4
1673:	6	3	4	3	6	3	3	4
1681:	5	3	6	8	9	8	8	6
1689:	1	3	7	6	6	6	3	3
1697: 1705:	5 3	5 1	3	2	2 4	5	2 4	6 3 2 4 2 7
1703:	3 6	$\frac{1}{4}$	1 3	4	4	4 4	3	2
1721:	3	2	2	2 2	1	5	6	7
1729:	15	5 7	38	10	1 6	4	4	
1737:	5	5	4	5	2	2	6	4 1 1 7
1745:	2	2	3	3	2 5	1	1	1
1753:	1	2	1	1	1	2	5	
1761:	1_	8	24	119	237	175	45	8
1769:	7	8	3	4	1	0	1	1
1777: 1785:	1	0	2	3	4	2	0	4 2
1793:	3	2 5	6 1	1 0	2	3	3 3	5
1801:	3 2 2 3 2 2	0	2	4	2 3 3 5 0 6	2 3	5	4 2 5 3 0
1809:	3	3	2	3	3	5	1	Ō
1817:	2	2	$\frac{-}{4}$	3	5	4	3	3 0
1825:		2 3	2	3	0	2 5	1	0
1833:	1_	2	2	2	6	5	6	8
1841:	5	5	5	1	4	5	20	41
1849: 1857:	26	6	5	3	2	1	0	2
1857: 1865:	5 1	2 1	3 0	3 2	0 3	3 3	1 2	2 2 5
1000.	_	_	U	4	3	J	2	,

1873:	6	6	3	5	1	3	3	1
1881:	4	ĺ	5	3	6	4	4	4
1889:	2	ī	7	3	2	6	2	7
1897:	1	5	2	0	2	3	_ 1	3
1905:	1	3	4	1	2	4	1	5
		3			4	2	4	1
1913:	1	2	3	4			1	2
1921:	3	4	3	1	1	4	5	5
1929:	3	2	2	5	5	1	1	2
1937:	3	6	3	3	4	0 7	6	2
1945:	3	2	2	5	5		7	1
1953:	3	1	3	0	1	4		2
1961:	1	3	3	3	2	2	1	0
1969:	0	3	3	3	0	3	4	5
1977:	6	2	1	3	3	1	3	
1985:	3	4	2	1	3	0	1	4
1993:	4	3	2	0	1	1	3	2
2001:	3	2	1	0	1	2	2	3
2009:	1	2	3	0	4	1	3	4
2017:	0	7	4	1	4	2	2	1
2025:	3	0	2	3	5	2	1	4
2033:	1	1	1	1.	1	3	4	. 3
2041:	2	2	2	3	3	2	4	3
2049:	1	4	2	0	0	3	3	3
2057:	4	0	2	2	0	2	3	3
2065:	1	0	3	1	1	1	4	0
2073:	2	2	2	3	3 2	1	1	3
2081:	4	3	0	1	2	3	1	0
2089:	1	2	2	3	3	3	0	2
2097:	0	2	2	1	• 0	4	3	3
2105:	5	4	3	4	1	1	2	1
2113:	1	2	2	0	3	12	17	13
2121:	9	1	1	1	0	4	2	0
2129:	1	1	3	1	1	3	1	2
2137:	2	1	1	0	1	0	0	3 1
2145:	. 0	3	2	2	6	3	0	
2153:	0	0	2	0	1	1	0	4
2161:	1	1	2	2	2 5 3 1	1	2	1 2 2 0
2169:	2	2 3	2	1	5	2	3	2
2177:	1	3	3	1	3	1	0	2
2185:	3	1	5	0		0	2	0
2193:	3 3	2	2	0	0	1	2	1
2201:	3	0	21	38	59	41	4	4
2209:	4	2	3	2	1	2	1	0
2217:	4	0	0	1	0	2	2	1
2225:	0	1	2	2	3	1	2	0
2233:	1	2	1	0	1	2 1	0	1
2241:	0	1	2	2	0	1	0	2
2249:	1	1	0	1	2	1	2	2
2257:	0 2	2	0	2 2	1	0	2	2
2265:	2	1 2 2 1	0	2	3 1 0 2 1 2 2 3 5 1 3 0 3 1 2 1	1	0	1 2 2 2 1 2 1 2
2273:	0	1	1	0	2	0	0	2
2281:	1	0 2	0	0	3	2	0	1
2289:	1	2	2	2	5	11	4	2
2297:	1	3	1	1	1	0	0	0
2305:	0	1	3	0	3	0	1	1
2313:	0 2 1 1 2	4	0	3	0	1	4	1 2 2 0
2321:	1	1	2	3 2	3	2	3	2
2329:	1	1	3	2	1	0	1	0
2337:		1 2	1	0	2	0	0	0
2345:	0	2	1	2	1	3	3	0

2353:	3	1	1	1	0	0	3	2
2361:	3 2	Ō	1	1	í	Ö	1	1
2369:	1	1	1	3	Ō	Ö	2	2
2377:	1	3	2	1	3	2	3	0
2385:	1			0	0	6	2	0
		0	2					0
2393:	2	0	1	1	2	0	2	
2401:	0	2	1_	0	2	0	1	3
2409:	0	1	5	1	0	1	1	1
2417:	0	1	1	0	0	1	1	0
2425:	0	0	1	0	1	0	2	0
2433:	1	1	1	0	2	2	0	0
2441:	0	0	1	2	3	3	12	19
2449:	14	8	0	3	1	1	0	1
2457:	1	0	0	0	2	1	0	3
2465:	1	0	0	1	1	0	2	0
2473:	0	1	2	0	0	0	1,	0
2481:	0	1	1	1	1	1	0	2
2489:	1	0	1	1	1	.0	0	0
2497:	1	0	1	0	0	1	0	1
2505:	1	3	0	3	1	0	1	0
2513:	1	0	1	1	0	1	1	1
2521:	1	1	1	0	1	0	0	0
2529:	0	0	0	1	1	0	1	0
2537:	0	1	0	0	0	0	0	1
2545:	0	2	Ō	1	0	1	0	0
2553:	0	0	Ō	0	Ō	0	0	1
2561:	3	Ö	Ö	Ö	Ö	Ō	1	0
2569:	Ō	Ö	Ö	ĺ	Ö	1	1	1
2577:	Ö	Ö	Ö	ī	1	0	0	0
2585:	Ö	Ö	ő	Ō	Ō	Ö	Ö	0
2593:	Ö	ő	Ö	Ö	Ö	Ö	Ö	2
2601:	ĺ	ĭ	ő	Ö	ĭ	ő	i	0
2609:	1	ĺ	Ö	1	6	21	41	27
2617:	12	5	3	i	ĭ	0	1	0
2625:	0	1	Õ	0	Ō	ő	1	Ö
2633:	0	n n	2	0	1	1	Ô	1
2641:	Ö	0	0	1	0	1	ŏ	0
2649:	0	0	0	0	0	0	1	1
2657:	0	1	0	1	0	Ö	1	0
2665:	0	0		0		1	1	1
2673:	0		0		1 0	1	0	1
2681:	0	2 0	0	0	0	0	0	1
2689:	1	1	0	0	0	0	1	1
2697:			0	0				
2697: 2705:	1 0	0 1	2	1	0	2 0	1	0 0
			0	0	0			
2713:	0	1	0	0	1	0	0	0
2721:	0	1	0	0	0	0	1	0
2729:	0	0	1	1	0	1	0	0
2737:	0	0	0	0	3	0	1	0
2745:	1	0	2	0	1	1	1	1
2753:	0	0	0	1	1	0	0	0
2761:	0	0	2	2	1 0	0	0	0
2769:	1	0	0	0	Ü	0	0	0
2777:	0	0	0	0	0	0	1	0
2785:	0	0	1	0	0	0	1	0
2793:	0	0	0	1	0	0	0	0
2801:	0	0	0	0	0	0	1	2
2809:	0	0	0	1	0	0	0	0
2817:	1	0	1	1	0	2	0	0
2825:	0	1	1	0	0	0	0	0

2833:	0	1	0	0	0	0	0	0
2841:	1	1	1	1	0	0	0	0
2849:	1	· 0	1	1	0	0	0	1
2857:	0	0	1	0	0	0	0	0
2865:	2	1	1	1	0	0	0	0
2873:	0	0	0	0	0	0	1	2
2881:	1	0	0	1	1	0	0	0
2889:	0	0	0	1	0	0	1	0
2897:	1	0	0	0	0	0	0	0
2905:	0	0	0	0	0	0	0	1
2913:	0	0	1	0	0	0	0	0
2921:	0	1	0	0	0	0	2	0
2929:	0	0	1	0	0	0	0 1	0
2937: 2945:	0 0	1 1	0	0	0	0 0	0	1 0
2943:	0	0	1 0	1 0	0 0	0	0	0
2961:	Ö	0	0	0	0	Ö	0	0
2969:	Ö	0	Ö	0	Ö	ő	Ö	Ö
2977:	Ö	Ö	í	ő	Ŏ	Ö	Ö	Ö
2985:	Ō	Ö	ō	Ö	Ö	Ö	Ō	0
2993:	0	Ō	Ö	Ō	0	1	0	0
3001:	0	0	0	0	0	0	0	0
3009:	0	0	0	0	0	1	1	0
3017:	0	0	0	0	0	1	1	0
3025:	0	1	0	0	0	0	0	0
3033:	1	0	1	0	1	0	0	0
3041:	0	0	0	0	0	0	0	0
3049: 3057:	2 0	0	0	1	0	0 0	1 0	0
3065:	0	0 0	0 0	0 0	0 1	0	0	0
3073:	Ö	0	0	1	0	0	0	0
3081:	Ö	0	0	0	1	Ö	Ö	0
3089:	Ö	í	ő	Ö	Ō	Ö	Ö	Ö
3097:	Ö	1	Ö	Ö	Ö	Ö	Ö	1
3105:	0	0	Ō	Ō	1	0	0	1
3113:	0	0	1	0	1	0	0	0
3121:	1	0	0	1	1	0	0	0
3129:	0	0	0	0	1	0	0	0
3137:	0	0	0	0	0	0	1	0
3145:	0	0	0	0	0	3	0	0
3153:	0	0	0	0	0	0	1	0
3161: 3169:	0 0	0 0	0	0	0	0	0	0 0
3177:	0	0	0 0	1 1	1 0	0 1	0	1
3185:	0	1	0	0	0	0	0	0
3193:	1	1	Ö	0	Ö	1	2	0
3201:	ō	Ō	Ö	Ö	Ö	Õ	ō	1
3209:	1	0	Ō	1	Ō	Ō	Ō	0
3217:	0	0	0	0	0	0	0	0
3225:	0	1	0	1	0	0	0	1
3233:	0	0	0	0	0	0	0	0
3241:	0	0	0	0	0	0	0	0
3249:	0	0	0	0	0	0	0	0
3257: 3265:	0 0	0 0	0 0	0	2 0	0 0	0	0 0
3273:	0	0	0	0 1	0	0	0 1	0
3281:	Ö	0	0	0	0	1	0	0
3289:	Ö	Ö	ő	ĺ	ő	Ō	ő	Ö
3297:	0	0	Ö	ō	ĺ	Ö	Ö	0
3305:	0	0	0	0	0	0	1	0

3313:	1	0	0	0	0	0	0	0
3321:	0	i	Ö	Ö	Ö	0	0	0
3329:	Ö	Ō	í	Ö	Ö	ĺ	0	1
3337:	Ö	ő	0	Ö	1	ō	Ō	0
3345:	ĺ	Ö	0	Ö	ī	2	1	Ō
3353:	Ō	0	0	Ö	Ō	0	Ō	Ö
3361:	1	1	0	0	1	Ö	ő	Ö
3369:	0	0	0	Ö	1	Ö	Ö	Ö
3377:	0	0	0	1	ĺ	ő	Ö	Ö
3385:	0	0	0	1	0	Ö	Ö	Ö
3393:	0	1	0	Ō	1	ő	ő	Ö
3401:	Ö	0	0	Ö	Ō	Ö	Ö	Ö
3409:	Ö	2	Ö	Ö	ő	ő	Ŏ	Ö
3417:	0	0	1	Ö	í	ŏ	Ö	Ŏ
3425:	Ö	1	Ō	Ö	Ō	ő	Ö	Ö
3433:	Ö	Ō	Ö	Ö	Ö	Ö	Ö	1
3441:	ő	Ö	ĭ	Ö	í	Ö	0	0
3449:	ĺ	Ö	Ō	Ö	Ō	ő	Ö	Ö
3457:	1	Ö	Ö	Ö	Ö	ĺ	Ö	Ö
3465:	Ō	Ö	Ö	Ö	Ö	0	Ö	Ö
3473:	. 0	Ö	Ö	ĺ	Ö	1	Ō	0
3481:	ő	Ö	Ö	0	Ö	ō	Ō	1
3489:	Ö	Ö	í	Ö	Ö	Ō	Ō	0
3497:	Ö	í	Ō	ĺ	Ö	Ö	Ō	2
3505:	ŏ	Ō	Ö	Ō	Ö	Ö	1	0
3513:	ő	Ö	Ö	Ö	Ö	Ö	0	0
3521:	Ö	Ö	Ö	Ö	Ö	Ō	Ō	0
3529:	Ö	Ö	Ö	Ŏ	Ō	Ō	0	0
3537:	Ö	Ö	Ö	Ö	Ö	Ō	Ō	0
3545:	1	Ö	Ö	Ö	Ō	Ö	0	0
3553:	Ō	Ö	Ö	Ö	Ö	Ö	0	0
3561:	Ö	Ö	Ö	Ö	Ö	Ō	0	1
3569:	0	Ö	Ō	Ö	1	0	0	0
3577:	0	Ö	0	Ö	0	0	1	0
3585:	0	1	Ō	Ö	0	0	0	0
3593:	0	0	0	0	1	0	0	0
3601:	0	0	0	0	0	1	1	0
3609:	0	0	0	0	0	0	0	0
3617:	0	0	0	0	0	0	0	0
3625:	1	0	1	0	0	0	0	0
3633:	0	1	0	1	0	0	0	0
3641:	0	1	0	0	0	0	0	0
3649:	0	1	0	0	0	1	0	0
3657:	1	0	0	0	1	1	1	0
3665:	0	0	0	0	0	1	0	0
3673:	0	0	0	0	1	0	0	0
3681:	0	0	0	0	0	0	0	0
3689:	0	0	1	0	0	0	0	0
3697:	0	0	0	0	0	0	1	0
3705:	0	0	0	0	0	1	0	0
3713:	0	0	0	0	0	0	1	0
3721:	0	0	1	0	0	0	0	0
3729:	0	0	0	0	0	0	0	0
3737:	0	0	0	0	0	0	0	0
3745:	1	0	0	0	0	0	0	1
3753:	2	0	0	0	0	2	0	0
3761:	0	0	1	0	2	0	0	0
3769:	0	0	0	0	0	0	0	0
3777:	0	0	0	0	1	1	0	0 1
3785:	0	0	0	0	1	0	0	1.

3793:	1	0	0	0	0	2	1	0
3801:	0	0	1	0	Ö	Õ	Ō	Ö
3809:	Ö	ő	Ō	Ö	ő	Ö	Ö	Ö
3817:	Ö	ő	ő	ő	ő	0 -	Ö	Ö
3825:	Ö	Ö	Ö	Ö	Ö	1	Ö	Ö
3833:	0	0	0	0	0	Ō	Ö	Ö
3841:	0	0	0	0	1	Ö	0	0
3849:	0	0	0	0	Ō	Ö	Ö	0
3857:	0	0	0	0	0	0	0	0
3865:	0	0	0	0	0	0	Ô	0
3873:	1	0	0	0	1	0	0	0
3881:	0	0	1		0	0	0	0
3889:	0	0	0	0 0	0	0	3	0
3897:	0					0	3 1	0
3997: 3905:	0	0 0	0	0	0 1	0	0	0
3905: 3913:			0	0		0	0	0
3913: 3921:	1	1	0	0	0		0	0
	0	0	0	0	0	0		
3929:	0	1	0	1	0	0	1	0
3937:	0	0	0	1	0	0	0	0
3945:	0	0	0	0	0	0	0	0
3953:	0	0	0	0	1	0	0	0
3961:	0	0	0	0	0	0	0	2
3969:	2	0	0	1	0	0	0	0
3977:	0	0	0	0	0	0	0	1
3985:	0	0	0	0	0	0	0	0
3993:	0	0	0	0	0	0	0	0
4001:	0	0	0	0	0	0	0	0
4009:	0	0	0	0	1	0	0	0
4017:	0	0	0	0	0	0	1	0
4025:	0	1	0	0	0	0	0	1
4033:	0	0	0	0	0	0	0	0
4041:	0	0	0	0	0	0	1	0
4049:	0	0	0	0	0	0	0	1
4057:	0	0	0	0	0	0	0	0
4065:	0	0	1	0	0	0	0	0
4073:	0	1	0	0	0	1	0	0
4081:	0	0	0	0	0	0	0	0
4089:	0	0	0	0	1	0	0	0

Acquisition date : 22-FEB-2012 13:40:23 Sample ID : 1201163-14

VAX/VMS Peak Search Report Generated 22-FEB-2012 14:41:51.72

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116314_GE3_GAS1102_176269.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{\text{V2}}$.2 Client ID : JM-54-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 13:40:23

Sample Quantity : 3.76810E+02 gram

Sample ID : 1201163-14
Sample type : SOLID
Detector name : GE3 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed real time: 0 01:01:15.18 2.0% End channel : 4096 Gaussian : 15.00000 Elapsed live time: 0 01:00:00.00

Start channel : 5

Sensitivity : 2.40000 Critical level : Yes

Post-NID Peak Search Report

			_							•
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides
0	46.30*	3894	9612	1.19	46.59	44	6	8.6		PB-210
0	53.47	1289	8589	1.78	53.76	51	5	22.3		
0	63.13*	1194	14828	1.80	63.41	61	6	32.8		TH-234
0	67.62	642	13154	1.03	67.90	67		54.1		
0	76.46*	36475	28767	3.60	76.75	71	12	2.1		
0	87.88	7597	12126	1.86	88.17	86	6	5.1		NP-237
										SN-126
										CD-109
0	93.42*		9752	2.46	93.70	92		24.0		
0		337	6541	2.99	113.65	112		72.9		
0	144.03	567	8540	2.09	144.32	142		52.1		CE-141
0	154.48	623	10185	1.92	154.77	152	7	54.3		
0	186.19*	7057	8489	1.90	186.48	183	7			RA-226
3	235.99	012	3194	1.44	236.28	233			2.89E+01	
3	238.85*	486	3940	1.59	239.14	233	14	41.0		PB-212
3	242.04	9459	3833	1.51	242.33	233	14			RA-224
0		933	6014	3.65	257.95	254		30.7		
6	270.33	1606	4898	2.60	270.62	266	13	15.9	5.14E+00	
6	274.90	571	3046	1.82	275.19	266	13	30.8		
0	295.27*	19709	4923	1.83	295.56	292	8	1.9		PB-214
.0	313.98	156	2721	2.70	314.27	312	61	L07.3		
0	323.53	324	3247	1.38	323.83	321		59.3		RA-223
0	338.22*	133	2404	1.55	338.52	337		112.3		
2	351.98*		1731	1.43	352.28				1.01E+01	PB-214
2	355.37	295	1992	1.76	355.67	347	12	86.6		
0	370.16	161	2101	1.87	370.46	368		90.9		
0	388.08	437	3488	3.34	388.38	384		49.7		
6	401.72	296	1566	1.42	402.03				2.22E+00	RN-219
6	405.55	176	1984	1.60	405.85	397		77.5		
0	427.38	216	3146	4.03	427.69	424		95.0		
0	455.52	159	1525	1.45	455.83	454		79.6		
0	462.04	112	1221	1.67	462.35	461		95.5		
0	480.56	164	1642	1.31	480.87	478		83.4		
0	487.67*	358	1939	2.03	487.98	484		45.7		LA-140
Q	533.50	163	1288	1.34	533.81	531		74.9		
0	609.39*	23468	1784	1.79	609.70	605	10	1.5		BI-214
						A				

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	665.49	576	1176	1.78	665.81	662	9 23.0		
0	703.45	108	1069	1.71	703.77	700	8107.0		
0	719.77	169	957	2.39	720.09	717	8 65.3		
0	742.57	104	902	3.33	742.89	739	8102.0		
0	768.50*	2101	1216	1.78	768.82	764	10 7.6		
0	786.15	566	1041	1.99	786.48	782	10 22.9		
0	806.06	551	972	2.00	806.39	802	9 22.1		
0	839.26	226	933	1.93	839.59	836	8 48.7		
0	911.03	105	803	1.76	911.36	909	7 91.4		
0	934.16	1136	1216	2.02	934.50	930	12 13.7		
0	1051.84	112	539		1052.18	1049	7 71.0		
0	1096.06 1120.40	57 4775	424		1096.40	1094	6118.7 12 3.9		BI-214
0	1120.40	4775 87	929 526		1120.75 1133.44	1115 1130	12 3.9 7 90.1		D1-214
0	1155.45	520	718		1155.80	1151	10 21.2		
Ö	1182.13	82	425		1182.48	1180	7 85.8		
Ö	1208.18	140	567		1208.53	1205	9 63.6		
Ö	1238.26*	1688	759		1238.61	1233	12 8.2		
0	1254.24	179	484		1254.59	1250	9 46.8		
0	1281.44	412	717	2.16	1281.79	1276	12 27.9		
0	1303.62	71	419	1.63	1303.97	1300	8102.0		
0	1377.71	1222	517	2.13	1378.07	1374	10 9.0		
0	1385.57	202	387		1385.94	1383	8 36.8		
3	1401.44	375	352		1401.81	1396		1.87E+00	
3	1408.00	686	334		1408.36	1396	18 11.7		
0	1461.15*	504	590		1461.51	1457	12 21.4		K-40
0	1509.25	490	590		1509.62	1504	10 20.6		
0	1538.06	59	433		1538.43	1536	7119.9		
0	1543.72 1583.24	116 184	275 317		1544.09 1583.61	1542 1580	6 49.5 8 36.6		
7	1595.02	75	165		1595.39	1593		2.84E+00	T.A - 140
7	1599.69	101	231		1600.07	1593	11 54.5	2.040100	1,11 1 1 0
Ó	1618.94	44	219		1619.31	1615	8119.8		
Ö	1649.46	50					7 75.9		
0	1660.94	293	238		1661.31		14 25.2		
0	1684.86	49	187		1685.24		10108.1		
0	1695.02	176	193	3.43	1695.40	1689	15 38.1		
4	1729.74	813	108		1730.12			1.58E+00	
4	1741.64	41	125		1742.03		25115.3		
0	1764.63*	3625	168		1765.02		14 3.7		BI-214
0	1800.74	26	69		1801.13		8119.1		
0	1837.74	85 401	121		1838.12		10 52.8		
0 0	1847.46 1889.49	491 29	126		1847.85		10 12.4		
0	1896.16	36	95 100		1889.88 1896.56		7117.9 8101.8		
Ö	1936.34	44	160		1936.73		12117.4		
Ö	2018.33	26	70		2018.73		9125.1		
Ö	2118.79	269	36		2119.19		12 15.1		
Ō	2204.33	997	37		2204.74		14 6.9		BI-214
0	2267.22	22	21		2267.64		11 92.2		
0	2293.56	53	11	1.42	2293.98		9 35.9		

Post-NID Peak Search Report (continued)
Sample ID: 1201163-14

Page: 3
Acquisition date: 22-FEB-2012 13:40:23

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	2392.64	6	2	2.81	2393.07	2391	5128.1		
0	2399.58	5	0	2.98	2400.00	2397	6 89.4		
0	2448.16	302	0	2.80	2448.59	2445	12 11.5		
0	2614.79*	43	2	3.10	2615.23	2612	9 34.1		
0	2695.06	8	0	2.98	2695.50	2691	9 70.7		

Summary of Nuclide Activity Page: 4 Acquisition date : 22-FEB-2012 13:40:23 Sample ID : 1201163-14

Total number of lines in spectrum 90 Number of unidentified lines 53

Number of lines tentatively identified by NID 37 41.11%

Nuclide Type : NATURAL

			1100 110011	,, , , , , , , , , , , , , , , , , , , ,		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.529E+01	2.529E+01	0.597E+01	23.63
PB-210	22.26Y	1.00	7.678E+01	7.695E+01	0.945E+01	12.28
PB-212	1.41E+10Y	1.00	1.233E+00	1.233E+00	0.642E+00	52.06
BI-214	1602.00Y	1.00	1.356E+02	1.356E+02	0.076E+02	5.62
PB-214	1602.00Y	1.00	1.388E+02	1.388E+02	0.324E+02	23.31
RN-219	3.28E+04Y	1.00	7.824E+00	7.824E+00	3.196E+00	40.85
RA-223	3.28E+04Y	1.00	1.196E+01	1.196E+01	0.835E+01	69.83
RA-224	1.41E+10Y	1.00	2.728E+02	2.728E+02	0.902E+02	33.04
RA-226	1602.00Y	1.00	2.067E+02	2.067E+02	3.795E+02	183.60
TH-234	4.47E+09Y	1.00	2.346E+01	2.346E+01	0.793E+01	33.83
	Total Act:	ivity :	9.004E+02	9.006E+02		

Wtd Mean Wtd Mean

Nuclide Type : ACTIVATION

Nuclide NB-95M	Hlife 3.61D	Decay 136.	pCi/gram	Wtd Mean Decay Corr pCi/gram 5.572E+02	Decay Corr 2-Sigma Error 2.010E+02	_	Flags
LA-140	12.79D Total Acti		5.668E-01 4.660E+00	2.268E+00 5.595E+02	0.967E+00	42.63	

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
CD-109	464.00D	1.04	1.495E+02	1.553E+02	0.210E+02	13.53
SN-126	1.00E+05Y	1.00	1.502E+01	1.502E+01	0.182E+01	12.12
CE-141	32.50D	1.73	9.881E-01	1.705E+00	0.976E+00	57.23
NP-237	2.14E+06Y	1.00	4.407E+01	4.407E+01	0.529E+01	12.00
	Total Acti	lvity :	2.096E+02	2.161E+02		

Grand Total Activity: 1.115E+03 1.676E+03

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Nuclide Type: NATURAL

Page: 5
Acquisition date: 22-FEB-2012 13:40:23

nacitae	Type. Inition		T	T	Dogger Corr () Ciama	
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff 3.724E-01	Jncorrected pCi/gram 2.529E+01	pCi/gram	%Error	Status
	Final Mean	for 1	Valid Peaks	= 2.529E+0	1+/- 5.974E-	+00 (23.	63%)
PB-210	46.50	4.25*	2.378E+00	7.678E+01	7.695E+01	12.28	OK
	Final Mean	for 1	Valid Peaks	= 7.695E+0	1+/- 9.447E-	+00 (12.	28%)
PB-212	238.63 300.09	44.60* 3.41	1.761E+00 1.480E+00	1.233E+00 Line	1.233E+00 Not Found	52.06	OK Absent
	Final Mean	for 1	Valid Peaks	= 1.233E+0	0+/- 6.418E	-01 (52.	06%)
BI-214	609.31 1120.29 1764.49 2204.22	46.30* 15.10 15.80 4.98	7.958E-01 4.615E-01 3.245E-01 2.817E-01	1.269E+02 1.365E+02 1.409E+02 1.417E+02	1.269E+02 1.365E+02 1.409E+02 1.417E+02	10.87 10.90 10.64 12.95	OK OK OK
	Final Mean	for 4	Valid Peaks	= 1.356E+0	2+/- 7.627E-	+00 (5.	62%)
PB-214	295.21 351.92	19.19 37.19*	1.499E+00 1.298E+00	1.365E+02 1.396E+02	1.365E+02 1.397E+02	45.01 27.25	OK OK
	Final Mean	for 2	Valid Peaks	= 1.388E+0	2+/- 3.235E	+01 (23.	.31%)
RN-219	401.80	6.50*	1.158E+00	7.824E+00	7.824E+00	40.85	OK
	Final Mean	for 1	Valid Peaks	= 7.824E+0	0+/- 3.196E	+00 (40.	. 85%)
			1.391E+00				
			Valid Peaks				
RA-224			1.749E+00				
			Valid Peaks				
RA-226			2.074E+00				OK
			Valid Peaks				
TH-234			2.668E+00				
	Final Mean	for 1	Valid Peaks	= 2.346E+0	1+/- 7.934E	+00 (33.	. 83%)

Nuclide Line Activity Report (continued) Page: 6
Sample ID: 1201163-14 Acquisition date: 22-FEB-2012 13:40:23

Nuclide Type: ACTIVATION Uncorrected Decay Corr 2-Sigma %Abn %Eff pCi/gram %Error Status Nuclide pCi/gram Energy 25.00* 1.777E+00 4.093E+00 5.572E+02 36.07 OK NB-95M 235.69 Final Mean for 1 Valid Peaks = 5.572E+02+/-2.010E+02 (36.07%) 1.374E+00 ---- Line Not Found ----Absent LA-140 328.77 20.50 9.761E-01 1.605E+00 6.423E+00 47.15 OK 487.03 45.50 6.097E-01 ---- Line Not Found ----Absent 815.85 23,50 1596.49 95.49* 3.485E-01 4.489E-01 1.797E+00 56.80 OK Final Mean for 2 Valid Peaks = 2.268E+00+/-9.670E-01 (42.63%)

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error %Abn %Eff Nuclide Status Energy 2.722E+00 1.495E+02 1.553E+02 13.53 CD-109 88.03 3.72* Final Mean for 1 Valid Peaks = 1.553E+02+/-2.101E+01 (13.53%) 87.57 37.00* 2.723E+00 1.502E+01 1.502E+01 12.12 OK SN-126 Final Mean for 1 Valid Peaks = 1.502E+01+/-1.820E+00 (12.12%) CE-141 145.44 48.40* 2.364E+00 9.881E-01 1.705E+00 57.23 OK Final Mean for 1 Valid Peaks = 1.705E+00+/-9.759E-01 (57.23%) 86.50 12.60* 2.726E+00 4.407E+01 4.407E+01 12.00 OK NP-237 Final Mean for 1 Valid Peaks = 4.407E+01+/-5.289E+00 (12.00%)

Flag: "*" = Keyline

Combined Activity-MDA Report Sample ID: 1201163-14

Page: 7
Acquisition date: 22-FEB-2012 13:40:23

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40	2.529E+01	5.974E+00	4.336E+00	4.017E-01	5.832
NB-95M	5.572E+02	2.010E+02	1.649E+02	5.057E+01	3.380
CD-109	1.553E+02	2.101E+01	9.658E+00	1.145E+00	16.081
SN-126	1.502E+01	1.820E+00	9.339E-01	9.543E-02	16.086
LA-140	2.268E+00	9.670E-01	1.849E+00	1.693E-01	1.227
CE-141	1.705E+00	9.759E-01	1.084E+00	2.522E-01	1.574
PB-210	7.695E+01	9.447E+00	6.879E+00	5.385E-01	11.187
PB-212	1.233E+00	6.418E-01	6.855E-01	2.179E-01	1.798
BI-214	1.356E+02	7.627E+00	7.468E-01	7.464E-02	181.574
PB-214	1.388E+02	3.235E+01	8.698E-01	2.343E-01	159.542
RN-219	7.824E+00	3.196E+00	5.348E+00	5.620E-01	1.463
RA-223	1.196E+01	8.350E+00	7.864E+00	2.877E+00	1.521
RA-224	2.728E+02	9.015E+01	7.801E+00	2.549E+00	34.970
RA-226	2.067E+02	3.795E+02	9.810E+00	1.800E+01	21.068
TH-234	2.346E+01	7.934E+00	8.472E+00	6.302E-01	2.769
NP-237	4.407E+01	5.289E+00	2.774E+00	2.797E-01	15.885

	Key-Line				
37	-	L. Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram) Id	ded	(pCi/gram)		
BE-7	-1.693E+00	3.083E+00	4.403E+00	4.712E-01	-0.385
NA-22	4.156E-02	3.062E-01	4.613E-01	4.040E-02	0.090
AL-26	5.087E-02	1.909E-01	2.940E-01	2.687E-02	0.173
TI-44	5.017E-01 -	+ 2.752E-01	3.690E-01	2.916E-02	1.359
SC-46	3.133E-01	3.238E-01	5.609E-01	6.480E-02	0.559
V-48	-4.943E-01	7.652E-01	1.271E+00	1.395E-01	-0.389
CR-51	4.245E-01	4.487E+00	5.847E+00	2.214E+00	0.073
MN-54	2.131E-01	2.779E-01	4.364E-01	4.829E-02	0.488
CO-56	-3.901E-02	3.314E-01	5.064E-01	5.659E-02	-0.077
CO-57	9.639E-02	2.002E-01	3.346E-01	3.325E-02	0.288
CO-58	-4.152E-03	3.332E-01	5.125E-01	5.564E-02	-0.008
FE-59	-1.037E+00	7.925E-01	1.117E+00	1.150E-01	-0.929
CO-60	1.202E-01	2.763E-01	4.509E-01	3.871E-02	0.267
ZN-65	6.966E-01	6.862E-01	1.068E+00	1.010E-01	0.652
GA-67	6.438E+02 -	+ 2.272E+03	1.985E+02	6.988E+02	3.244
SE-75	-3.020E-01	4.686E-01	5.829E-01	2.465E-01	-0.518
RB-82	-4.075E+00	4.805E+00	5.598E+00	5.885E-01	-0.728
RB-83	-3.751E-01	4.989E-01	8.515E-01	1.432E-01	-0.441
KR-85	-2.594E+01	4.553E+01	7.852E+01	8.355E+00	-0.330
SR-85	-1.484E-01	2.605E-01	4.492E-01	4.780E-02	-0.330
Y-88	5.147E-01	2.623E-01	4.493E-01	4.098E-02	1.145
NB-93M	5.338E+00	5.657E+00	9.605E+00	2.573E+00	0.556
NB-94	-6.725E-02	2.448E-01	4.147E-01	4.724E-02	-0.162
NB-95	5.952E+00	8.490E-01	1.024E+00	1.066E-01	5.812
ZR-95	-8.335E-02	5.073E-01	8.693E-01	9.613E-02	-0.096
RU-103	-3.515E-02	3.439E-01	5.426E-01	8.412E-02	-0.065
RU-106	-2.086E-01	1.895E+00	3.286E+00	4.662E-01	-0.063
					·

	Var. Time				
	Key-Line Activity K.I	L. Act error	MDA	MDA error	Act/MDA
Nuclide	Activity K.I (pCi/gram) Ide		(pCi/gram)	MDA CITOI	ACC/ NDA
Nucliac	(pci/gram) ide	zu –	(pci/gram)		
AG-108M	1.140E-01	2.618E-01	4.111E-01	4.103E-02	0.277
AG-110M	1.047E-01	2.422E-01	3.830E-01	3.598E-02	0.273
SN-113	1.528E-01	4.210E-01	6.223E-01	6.642E-02	0.245
TE123M	2.985E-01	2.786E-01	4.285E-01	3.868E-02	0.697
SB-124	-1.793E-01	3.117E-01	4.787E-01	4.818E-02	-0.375
I-125	-3.065E+00	3.662E+00	6.227E+00	5.882E-01	-0.492
SB-125	1.361E+00 +	1.302E+00	1.285E+00	1.382E-01	1.060
SB-126	3.823E+00 +	2.529E+00	3.086E+00	3.072E-01	1.239
SB-127	-1.410E+00	5.670E+01	9.797E+01	9.393E+00	-0.014
I-129	-4.129E-01	3.583E-01	6.044E-01	6.765E-02	-0.683
I-131	-1.751E+00	2.358E+00	3.368E+00	7.440E-01	-0.520
TE-132	2.389E+01	5.417E+01	8.146E+01	2.273E+01	0.293
BA-133	7.662E-01 +	6.964E-01	5.860E-01	1.599E-01	1.307
CS-134	7.121E-02	2.449E-01	3.855E-01	3.879E-02	0.185
CS-135	6.748E+00	3.220E+00	2.161E+00	9.468E-01	3.123 -0.054
CS-136	-1.103E-01	1.340E+00	2.025E+00	2.130E-01	-0.034
CS-137 LA-138	-1.222E-02	2.574E-01	4.007E-01 7.301E-01	3.747E-02 6.570E-02	0.248
CE-139	1.810E-01 -3.923E-02	4.319E-01	4.291E-01	3.791E-02	-0.091
BA-140	-1.422E+00	2.607E-01 3.384E+00	5.213E+00	1.757E+00	-0.273
CE-144	4.873E-01	1.655E+00	2.756E+00	2.663E-01	0.177
PM-144	-6.851E-03	2.362E-01	3.669E-01	3.563E-02	-0.019
PM-145	-6.838E-01	9.209E-01	1.373E+00	8.949E-01	-0.498
PM-146	5.696E-01	5.797E-01	8.616E-01	9.208E-02	0.661
ND-147	4.517E+00	7.936E+00	1.266E+01	1.339E+00	0.357
EU-152	2.395E+01 +	3.990E+00	5.167E+00	5.777E-01	4.636
GD-153	-1.041E+00	7.289E-01	1.190E+00	1.197E-01	-0.875
EU-154	1.192E-01	8.507E-01	1.282E+00	1.123E-01	0.093
EU-155	1.815E+01 +	2.178E+00	1.306E+00	1.316E-01	13.897
EU-156	-1.124E+00	7.959E+00	1.218E+01	2.895E+00	-0.092
HO-166M	-1.138E-02	5.390E-01	6.660E-01	6.569E-02	-0.017
HF-172	-5.251E-01	1.480E+00	2.453E+00	2.414E-01	-0.214
LU-172	3.665E+00	6.641E+00	1.024E+01	9.983E-01	0.358
LU-173	6.668E+00	3.207E+00	1.761E+00	8.015E-01	3.787
HF-175	1.491E-01	3.906E-01	5.074E-01	1.524E-01	0.294
LU-176	3.480E-02	2.022E-01	3.260E-01	1.359E-01	0.107
TA-182	6.903E+01 +	7.519E+00	4.876E+00	4.567E-01	14.158
IR-192	4.612E-01	5.850E-01	8.675E-01	9.282E-02	0.532
HG-203	-2.557E-01	4.192E-01	5.902E-01	2.876E-01	-0.433
BI-207	-1.061E-01	2.027E-01	3.484E-01	3.606E-02	-0.305
TL-208	5.919E-01	7.090E-01	1.246E+00	1.276E-01	0.475 0.010
BI-210M PB-211	6.937E-03 1.048E+01 +	5.175E-01	6.803E-01 1.280E+01	2.799E-01 1.347E+00	0.010
BI-212	1.048E+01 + -4.008E-01	8.209E+00 1.952E+00	3.006E+01	3.013E-01	-0.133
RA-225	1.249E+00	1.952E+00 1.945E+00	3.124E+00	2.686E-01	0.400
TH-227	8.907E+00 +	3.221E+00	3.124E+00 3.014E+00	9.279E-01	2.955
AC-228	1.372E+00 +	1.265E+00	1.716E+00	1.981E-01	0.800
TH-230	1.280E+02 +	7.018E+01	9.400E+01	7.407E+00	1.361
			20200		_ : - :

Combined Activity-MDA Report (continued) Page: 9
Sample ID: 1201163-14 Acquisition date: 22-FEB-2012 13:40:23

Key-Line Activity K.L. (pCi/gram) Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
-1.014E+01	1.036E+01	1.369E+01	5.860E+00	-0.741
2.150E+00	1.660E+00	2.858E+00	3.817E-01	0.752
3.869E-01	1.037E+00	1.530E+00	6.919E-01	0.253
-4.836E-02	8.175E-01	1.358E+00	1.320E-01	-0.036
3.593E+01	2.928E+01	5.078E+01	5.490E+00	0.708
4.531E+00 +	2.504E+00	2.969E+00	5.319E-01	1.526
2.796E+00	5.833E-01	8.880E-01	6.288E-02	3.149
1.689E+01	1.667E+00	8.313E-01	7.186E-02	20.321
-4.777E-01	1.533E+00	2.249E+00	1.079E+00	-0.212
	Activity K.L. (pCi/gram) Ided -1.014E+01 2.150E+00 3.869E-01 -4.836E-02 3.593E+01 4.531E+00 + 2.796E+00 1.689E+01	Activity K.L. Act error (pCi/gram) Ided -1.014E+01	Activity K.L. Act error MDA (pCi/gram) Ided (pCi/gram) -1.014E+01 1.036E+01 1.369E+01 2.150E+00 1.660E+00 2.858E+00 3.869E-01 1.037E+00 1.530E+00 -4.836E-02 8.175E-01 1.358E+00 3.593E+01 2.928E+01 5.078E+01 4.531E+00 + 2.504E+00 2.969E+00 2.796E+00 5.833E-01 8.880E-01 1.689E+01 1.667E+00 8.313E-01	Activity K.L. Act error (pCi/gram) Ided (pCi/gram) -1.014E+01

Summary of Nuclide Activity Page: 10

Sample ID : 1201163-14 Acquisition date : 22-FEB-2012 13:40:23

Total number of lines in spectrum 90 Number of unidentified lines 53

Number of lines tentatively identified by NID 37 41.11%

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.529E+01	2.529E+01	0.597E+01	23.63
PB-210	22.26Y	1.00	7.678E+01	7.695E+01	0.945E+01	12.28
PB-212	1.41E+10Y	1.00	1.233E+00	1.233E+00	0.642E+00	52.06
BI-214	1602.00Y	1.00	1.356E+02	1.356E+02	0.076E+02	5.62
PB-214	1602.00Y	1.00	1.388E+02	1.388E+02	0.324E+02	23.31
RN-219	3.28E+04Y	1.00	7.824E+00	7.824E+00	3.196E+00	40.85
RA-223	3.28E+04Y	1.00	1.196E+01	1.196E+01	0.835E+01	69.83
RA-224	1.41E+10Y	1.00	2.728E+02	2.728E+02	0.902E+02	33.04
RA-226	1602.00Y	1.00	2.067E+02	2.067E+02	3.795E+02	183.60
TH-234	4.47E+09Y	1.00	2.346E+01	2.346E+01	0.793E+01	33.83
	Total Acti	lvity :	9.004E+02	9.006E+02		

Wtd Mean Wtd Mean

TOTAL ACTIVITY: 9.004E+02 9.006E+02

Nuclide Type : ACTIVATION

Nuclide NB-95M	Hlife 3.61D	-	Wtd Mean Uncorrected pCi/gram 4.093E+00	Wtd Mean Decay Corr pCi/gram 5.572E+02	Decay Corr 2-Sigma Error 2.010E+02	_	ags
LA-140	12.79D		5.668E-01	2.268E+00	0.967E+00	42.63	

Total Activity: 4.660E+00 5.595E+02

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
CD-109	464.00D	$1.0\overline{4}$	1.495E+02	1.553E+02	0.210E+02	13.53
SN-126	1.00E+05Y	1.00	1.502E+01	1.502E+01	0.182E+01	12.12
CE-141	32.50D	1.73	9.881E-01	1.705E+00	0.976E+00	57.23
NP-237	2.14E+06Y	1.00	4.407E+01	4.407E+01	0.529E+01	12.00
	Total Nati	774 + 77 .	2 0065.02	2 1610,02	:	

Total Activity : 2.096E+02 2.161E+02

Grand Total Activity: 1.115E+03 1.676E+03

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116314_GE3_GAS1102_176269.CNF; 1

Title :

Sample Title: JM-54-31-120128

Start Time: 22-FEB-2012 13:40 Sample Time: 28-JAN-2012 00:00 Energy Offset: -2.78447E-01 Real Time: 0 01:01:15.18 Sample ID : 1201163-14 Energy Slope: 9.99940E-01

Live Time : 0 01:00:00.00 Sample Type: SOLID Energy Quad : 0.00000E+00

Channel

1:	0	0	0	0	0	0	0	0
9:	195	1293	1455	1342	1615	1379	1515	1558
17:	1318	1231	1211	1110	1090	1073	1141	1103
25:	1201	1131	1193	1179	1053	1112	1107	1255
33:	1196	1117	1074	1190	1271	1188	1212	1345
41:	1365	1372	1386	1484	1473	2580	4995	1518
	1511	1948	1738	1648	2449	2442	1601	1660
49:						2344	3033	3191
57:	1722	1960	2171	2239	2436			2679
65:	2545	2522	2617	3235	2638	2644	2662	
73:	2853	3653	11529	5250	14725	10580	2862	3108
81:	2970	2393	1964	4059	2341	1912	4954	5092
89:	2136	3466	2163	1744	2678	1873	2043	1507
97:	1340	1514	1444	1381	1375	1210	1286	1309
105:	1279	1325	1304	1354	1346	1317	1288	1340
113:	1439	1395	1427	1277	1332	1335	1292	1349
121:	1338	1316	1394	1364	1327	1355	1300	1383
129:	1393	1326	1320	1357	1430	1371	1296	1319
137:	1358	1377	1463	1408	1433	1346	1505	1716
145:	1683	1433	1424	1471	1453	1507	1515	1467
153:	1489	1753	1728	1462	1457	1452	1405	1381
161:	1328	1294	1314	1311	1241	1325	1215	1255
169:	1222	1258	1272	1141	1225	1195	1194	1193
177:	1239	1256	1184	1242	1227	1261	1235	1282
185:	1394	4543	4683	1292	1158	1208	1214	1190
193:	1187	1166	1148	1166	1213	1084	1100	1106
201:	1126	1142	1083	1052	994	1080	948	1022
209:	1007	997	985	977	894	901	913	851
217:	87.4	863	922	837	880	865	876	812
225:	831	853	847	840	880	808	835	831
233:	784	808	798	1333	1122	822	1086	910
241:	1142	6125	4257	797	767	772	718	676
249:	719	682	695	700	705	632	695	838
257:	932	734	1026	788	639	663	673	600
265:	640	593	617	608	824	1163	1034	940
273:	624	726	909		627	593	620	576
2/3:				719		671	598	565
	644	655	628	658 547	574 508			
289:	570 1150	558	582	547	598	885	8914	11298 512
297:	1150	628	619	694	628	512	531 488	435
305:	535	531	510	467	458	445		
313:	524	503	526	436	453	443	413	443
321:	471	472	517	655	516	467	473	465
329:	471	537	499	493	443	560	490	492
337:	445	562	595	449	490	488	467	461
345:	464	493	430	458	559	598	2737	20659
353:	11464	723	510	535	436	394	398	371
361:	392	372	340	380	354	346	309	348
369:	371	403	371	375	394	338	385	365
377:	368	391	372	379	356	371	384	395
385:	387	377	502	465	567	499	358	375
393:	397	395	396	383	385	386	372	365
401:	406	594	436	389	473	447	431	394
409:	408	358	383	398	426	426	371	368
417:	391	413	383	403	376	381	367	385
425:	373	378	419	380	382	379	351	315

433:	344	294	314	280	295	300	304	283
441:	286	319	290	283	298	298	287	309
449:	263	262	261	270	279	245	355	307
457:	261	267	249		279	313	284	247
				249				205
465:	238	243	247	247	242	288	240	
473:	263	262	245	235	247	229	227	291
481:	370	230	222	237	227	230	352	334
489:	245	220	241	213	196	204	200	224
497:	208	180	176	183	198	191	212	193
505:	180	224	200	168	231	270	312	279
513:	218	216	235	190	211	200	201	190
521:	200	189	173	193	216	185	195	185
529:	183	182	189	215	189	267	216	196
537:	179	187	179	185	210	194	191	191
545:	204	183	215	171	151	173	202	166
553:	168	173	170	167	196	177	202	190
561:	175	174	182	176	171	187	164	172
569:	188	178	174	196	190	210	191	205
577:	176	190	187	283	271	178	222	247
585:	187	175	170	172	180	182	185	134
593:	166	182	186	181	147	200	199	190
601:	166	157	172	175	178	179	173	785
609:	8255	12885	2136	263	214	194	166	168
617:	141	131	117	263 115	132	118	129	123
625:	105	112	115	128	116	119	131	116
633:	126	139					159	133
641:	136		128	158	123	126	121	108
	145	123	119	121	124	113		
649:		131	121	126	128	112	113	154
657:	111	133	114	128	137	121	127	135
665:	311	455	221	134	121	127	137	107
673:	110	107	136	136	131	117	107	122
681:	137	128	132	137	135	124	133	115
689:	138	120	137	110	131	122	112	118
697:	114	138	142	122	128	128	211	191
705:	131	133	133	137	120	144	132	123
713:	130	113	128	120	102	126	152	191
721:	188	123	118	126	127	97	126	133
729:	117	112	113	118		112	123	
737:	120	118	102	116		136	144	
745:	128	116	114		97	90	113	
753:	136	128	118	101		112	116	
761:	105	110	130	127	103		221	
769:	1211	363	128	132	136	95	117	
	105	107	109	124	112	99	110	124
	171	350	273	136	114	125	105	101
793:	105	109	122	117	106	95	110	137
801:	104	103	123	117	143	312	352	144
809:	120	109	115	123	123	113	117	125
817:	118	117	106	111	158	150	124	129
825:	110	135	132	119	100	116	116	149
833:	125	126	108	132	100	123	218	211
841:	124	130	113	115	93	127	116	123
849:	108	101	108	119	117	114	116	108
857:	101	124	120	117	104	118	114	112
865:	117	102	128	119	124	118	110	113
873:	104	101	98	124	121	119	125	122
881:	125	118	128	124	108	135	128	129
889:	130	137	128	121	114	109	108	125
897:	140	135	134	124	116	149	122	167
905:	139	140		110	124	121	146	168
•			± - J	110	147	14.	140	-00

913:	125	121	103	123	120	118	95	112
921:	89	103	98	112	96	115	95	117
929:	115	106	116	123	181	601	546	171
937:	113	93	126	90	86	104	105	102
945:	84	118	94	101	102	84	100	101
953:	115	90	90	91	89	92	94	108
961:	88				153	113	108	88
		102	86	156		101	96	91
969:	130	117	88	112	124	96	95	82
977:	84	104	91	95	93			98
985:	80	90	83	90	89	107	101	
993:	98	98	93	94	99	93	95 00	100
1001:	112	117	100	124	87	99	82	114
1009:	102	92	96	84	88	91	96	84
1017:	87	105	75	85	101	83	93	81
1025:	99	80	77	89	80	76	99	77
1033:	81	74	92	69	83	90	82	72
1041:	75 6.6	81	75	87	76	73	85	73
1049:	66	76	98	131	109	94	77	89
1057:	61	83	99	72	81	86	85	93
1065:	89	84	81	74	82	108	107	79 65
1073:	73	84	91	72	84	87	74	65 70
1081:	55	64	62	79	65	94	94	72
1089:	78	81	86	88	81	73	83	93
1097:	91	82	59	74	70	62	73	92
1105:	101	86	76	77	7.9	86	88	90
1113:	85	88	81	86	65	111	322	1673
1121:	2299	674	146	93	87	67	75	69
1129:	73	79	68	87	113	108	90	68
1137:	81	84	80	80	73	70	83	73
1145:	63	68	68	78	67	83	72	80
1153:	64	102	274	299	120	88	68	71
1161:	63	77	61	64	66	59	66	76
1169:	66	58	63	72	71	80	75	65
1177:	78	68	64	51	76	85	106	67
1185:	62	60	66	52	54	67	70	74
1193:	67	69	68	68	57	58	63	62
1201:	71	77	64	67	54	60	89	135
1209:	94	66	78	70	61	69	65	58
1217:	71	60	69	56	76	57	55	69
1225:	58	76	68	68	58	54	72	59
1233:	74	61	65	60	207	693	783	242
1241:	65	64	73	63	58	56	62	62
1249:	61	52	60	83	75	85	89	93
1257:	80	46	57	61	57	59	70	53
1265:	60	58	54	59	57	50	66	63
1273:	58	66	70	61	56	60	59	103
1281:	236	216	99	70	52	67	50	60
1289:	47	52	63	60	59	53	55	59
1297:	41	58	55	48	64	61	55	79
1305:	67	57	59	47	65	65	55	55
1313:	46	63	50	60	70	65	66	56
1321:	56	53	57	42	43	49	38	54
1329:	58	59	55	49	52	52	46	58
1337:	55	51	66	51	49	47	52	52
1345:	45	56	62	57	45	44	47	44
1353:	50	68	55	59	56	57	45	59
1361:	43	51	62	48	54	54	41	67
1369:	39	52	55	73	50	50	53	104
1377:	300	585	372	106	65	59	45	61
1385:	114	143	83	43	52	48	44	42

1393:	49	42	58	46	52	52	47	59
1401:	168	210	106	65	47	57	140	333
1409:	257	101	68	56	41	51	64	43
1417:	51	34	43	50	46	38	55	50
							42	46
1425:	62	61	53	60	71	71		
1433:	49	53	56	53	73	52	55	53
1441:	44	61	42	45	43	55	59	53
1449:	53	50	60	56	43	56	52	58
1457:	51	49	69	141	218	215	104	58
1465:	58	44	48	45	46	31	58	64
1473:	60	47	58	53	48	59	53	56
1481:	60	50	55	49	58	53	58	53
1489:	47	59	55	51	63	61	55	60
1497:	63	59	62	5 <i>7</i>	54	51	62	55
1505:	60	55	66	97	240	254	137	62
1513:	54	65	58	56	54	59	55	72
1521:	46			56	49	62	50	58
		58	61 43				54	64
1529:	50	59	43	72	56	53		
1537:	57	69	106	83	59	54	74	111
1545:	67	45	40	39	50	41	44	40
1553:	39	44	37	48	36	32	30	48
1561:	43	31	50	33	45	45	38	30
1569:	37	43	39	38	50	36	40	45
1577:	39	42	40	37	44	41	105	128
1585:	77	34	35	46	47	45	35	38
1593:	28	52	52	57	44	29	65	70
1601:	49	41	25	41	31	42	38	29
1609:	42	31	35	27	29	28	30	28
1617:	28	41	36	38	35	27	25	28
1625:	40	31	34	32	31	25	23	26
1633:	26	18	22	26	39	18	28	34
						17	17	21
1641:	30	22	27	21	27			
1649:	30	32	31	19	13	18	17	22
1657:	25	20	21	36	105	124	65	19
1665:	20	16	23	14	17	16	19	23
1673:	20	18	18	20	10	27	13	15
1681:	21	25	29	32	41	28	14	18
1689:	17	16	19	38	54	40	38	19
1697:	23	20	15	24	17	19	10	9
1705:	20	15	23	12	15	19	10	16
1713:	13	7	8	24	22	13	23	17
1721:		24	13	21	22	21	24	55
1729:	175	358	224	56	28	24	17	15
1737:	9	19	14	21	20	27	18	23
1745:	13	19	13	11	18	15	14	13
1753:	14	15	17	18	15	12	15	22
1761:	15	40	233	790	1499	878	209	34
1761:	19						10	
		17	12	9	13	6		14
1777:	13	10	16	7	8	16	12	14
1785:	14	15	16	9	10	9	11	8
1793:	9	14	11	13	5	9	10	13
1801:	18	13	10	13	9	11	12	12
1809:	18	14	14	11	14	7	18	10
1817:	14	12	10	9	16	12	14	12
1825:	15	14	8	13	14	8	14	18
1833:	14	8	11	19	16	41	40	25
1841:	14	19	12	9	19	44	131	213
1849:	136	28	14	10	13	15	15	16
1857:	17	18	21	16	15	9	16	9
1865:	14	9	10	10	22	19	6	18
_,,,,,	- •	_					•	

1871:									
1889: 14	1873:	42	28	1.7	19	15	19	13	18
1889: 21 20 24 25 14 11 22 23 1995: 17 13 11 14 13 18 14 10 1913: 16 4 14 10 9 22 2 8 1921: 12 13 19 14 10 20 14 18 1923: 18 32 19 16 12 12 12 16 12 1945: 14 12 8 7 13 10 14 12 1953: 10 11 17 15 19 15 11 17 1961: 12 11 14 10 22 11 8 19 1977: 10 7 8 7 13 8 12 7 1999: 16 13 16 8 9 15 10 10 1977: 10 7 8 7 13 8 12 7 1993: 10 9 8 11 7 13 14 11 1998: 9 5 6 8 14 7 13 17 1999: 10 9 8 11 7 13 14 11 1900: 9 5 9 6 13 9 7 15 2001: 10 8 11 9 7 6 8 6 2000: 9 5 9 6 13 9 7 15 2017: 16 16 9 8 11 5 6 6 2023: 10 7 7 7 7 5 11 8 9 2041: 11 12 12 9 6 6 6 6 9 2033: 9 4 10 10 7 7 7 9 2041: 11 12 12 9 6 6 6 6 9 2057: 6 3 8 9 5 4 5 5 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 9 9 8 8 2089: 8 7 4 11 6 5 4 7 2017: 17 9 7 3 3 5 10 2017: 18 19 10 10 9 5 3 2018: 6 7 8 7 10 10 9 5 3 2019: 6 7 8 7 10 10 9 5 3 2018: 6 7 8 7 8 7 7 7 7 2019: 6 7 8 7 8 7 7 7 7 2011: 17 9 7 3 2 2 7 6 3 6 2021: 17 9 7 3 3 5 10 3 3 7 2021: 17 9 7 3 3 3 5 10 2021: 3 6 2 4 3 3 3 5 10 2021: 3 6 2 4 3 3 3 3 3 2021: 3 6 2 4 3 3 3 2021: 3 6 2 4 3 3 3 2021: 3 4 4 4 4 4 4 5 3 2021: 3 6 2 4 3 3 3 2021: 3 4 4 4 4 4 4 4 2020: 13 6 6 6 6 6 6 2020: 13 6 6 6 6 6 6 2020: 13 6 6 6 6 6 6 20									
1899; 23									
1905; 17									
1913:									
1921: 12									
1929; 9									
1937; 18 32 19 16 12 12 16 12 1945; 14 12 13 10 14 13 153; 10 11 17 15 19 15 11 17 1961; 12 11 14 10 22 11 18 19 1969; 16 13 16 8 9 15 10 10 1977; 10 7 8 7 13 8 12 7 7 1993; 10 9 8 11 7 13 14 11 17 1993; 10 9 8 11 7 13 14 11 12 12 10 10 8 11 7 13 14 11 15 10 10 10 10 10 10									
1945; 14 12 8 7 13 10 14 13 1953; 10 11 17 15 19 15 11 17 17 17 18 19 15 11 17 19 19 15 11 17 17 19 19 15 11 17 19 19 19 19 19 19									
1953; 10									
1961; 12									
1969: 16									
1977: 10 7 8 7 13 8 12 7 1985: 9 5 6 8 14 7 13 14 11 2001: 10 8 11 9 7 6 8 6 2009: 9 5 9 6 13 9 7 15 2017: 16 16 16 9 8 11 5 6 8 2025: 10 7 7 7 7 5 11 18 9 2033: 9 4 10 10 7 7 7 7 9 9 2041: 11 12 12 9 10 9 12 9 10 2057: 6 3 8 9 5 4 5 5 5 2073: 4 5 7 10 10 9 9 8 8 3 7 7 4 7 2097: 6 8 8 3									
1885: 9 5 6 8 14 7 13 17 1993: 10 9 8 11 9 7 6 8 6 2001: 10 8 11 9 7 6 8 6 2007: 16 16 16 9 8 11 5 6 8 2025: 10 7 7 7 5 11 8 9 2033: 9 4 10 10 7 7 7 9 2041: 11 12 12 9 6 6 6 9 9 2049: 5 3 8 9 5 4 5 5 9 8 7 6 8 8 3 7 7 9 9 2049: 8 8 3 7 7 9 9 2040: 8 7 10 10 9 9 8 8 3 7 7 10 10			13						
2001: 10 8 11 9 7 6 8 6 2009: 9 5 9 6 13 9 7 15 2017: 16 16 9 8 11 5 6 8 2025: 10 7 7 7 7 7 7 9 2041: 11 12 12 9 6 6 6 9 2049: 5 3 9 10 9 12 9 10 2057: 6 3 8 9 5 4 5 5 5 2065: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 4 9 9 9 8 8 8 2 209: 8 8			7						
2001: 10 8 11 9 7 6 8 6 2009: 9 5 9 6 13 9 7 15 2017: 16 16 9 8 11 5 6 8 2025: 10 7 7 7 7 7 7 9 2041: 11 12 12 9 6 6 6 9 2049: 5 3 9 10 9 12 9 10 2057: 6 3 8 9 5 4 5 5 5 2065: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 4 9 9 9 8 8 8 2 209: 8 8			5						
2009: 9 5 9 6 13 9 7 15 2017: 16 16 9 8 11 5 6 8 2025: 10 7 7 7 5 11 8 9 2041: 11 12 12 9 6 6 6 9 2049: 5 3 9 10 9 12 9 10 2057: 6 3 8 9 5 4 5 5 2065: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 9 9 8 8 2089: 8 7 4 11 6 5 4 7 7 2097 6 5 3			9						
2017: 16 16 9 8 11 5 6 8 2025: 10 7 7 7 5 11 8 9 2033: 9 4 10 10 7 7 7 9 2041: 11 12 12 9 6 6 6 9 2049: 5 3 9 10 9 12 9 10 2055: 6 3 8 9 5 4 5 5 2065: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2081: 6 8 8 6 4 9 9 8 8 2097: 6 7 8 7 3 3 7 7 4 2105: 9 4			8						
2025: 10 7 7 7 5 11 8 9 2033: 9 4 10 10 7 7 7 9 2041: 11 12 12 9 6 6 6 9 2049: 5 3 8 9 5 4 5 5 2065: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 9 9 8 8 2089: 8 7 4 11 6 5 5 4 7 2097: 6 7 8 7 3 7 7 4 2113: 2 5 1 8 21 59 94 78 2129: 2 5							9		
2033: 9 4 10 10 7 7 7 9 2041: 11 12 12 9 6 6 6 9 2049: 5 3 9 10 9 12 9 10 2055: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 9 9 8 8 2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2121: 17 9 7 3 3 3 5 1 0 21229: 2 5 6 2 7 6 3 4 4 2121: 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2041: 11 12 12 9 6 6 6 9 2049: 5 3 8 9 5 4 5 5 2065: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 9 9 8 8 2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 3 7 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 6 2 7 6 3 4 2129: 2 5 6 2 7 6 1 4 5 2131: 17									
2049: 5 3 9 10 9 12 9 10 2057: 6 3 8 9 5 4 5 5 2073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 9 9 8 8 2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 3 3 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2121: 17 9 7 3 3 5 1 0 2129: 2 5 6 2 7 6 1 4 5 2121: 17									
2057: 6 3 8 9 5 4 5 7 20073: 4 5 7 10 10 9 5 3 2081: 6 8 6 4 9 9 8 8 2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 3 3 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 7 6 1 4 5 2145: 4 5 2 2 6 1 4 7 2161: 3 3 3 5 10 3 3 7 4 2161: 3			12			6			
2065: 9 8 7 6 8 8 3 7 2073: 4 5 7 10 10 9 5 3 2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 3 3 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2129: 2 5 6 2 7 6 3 4 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 3 6 3 2153: 8 8 5 7 6 1 4 7 2160: 7 <t< td=""><td></td><td>5</td><td>3</td><td></td><td></td><td>9</td><td></td><td></td><td></td></t<>		5	3			9			
2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 3 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2121: 17 9 7 3 3 5 1 0 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 6 3 6 2145: 4 5 2 9 6 3 6 3 2 2161: 3 3 5 10 3 3 7 4 4 4 4 5 3 2 4 1 1 4 1 7 2			3			5			
2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 3 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2121: 17 9 7 3 3 5 1 0 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 6 3 6 2145: 4 5 2 9 6 3 6 3 2 2161: 3 3 5 10 3 3 7 4 4 4 4 5 3 2 4 1 1 4 1 7 2			8				8		
2089: 8 7 4 11 6 5 4 7 2097: 6 7 8 7 3 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2121: 17 9 7 3 3 5 1 0 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 6 3 6 2145: 4 5 2 9 6 3 6 3 2 2161: 3 3 5 10 3 3 7 4 4 4 4 5 3 2 4 1 1 4 1 7 2			5				9		3
2097: 6 7 8 7 3 7 7 4 2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2121: 17 9 7 3 3 5 1 0 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 6 3 2153: 8 8 8 5 7 6 1 4 7 2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 4 5 3 2171: 3 4 7 6 5 3 6 6 5 5 <		6					9		
2105: 9 4 6 5 5 11 14 5 2113: 2 5 1 8 21 59 94 78 2129: 2 2 5 6 2 7 6 3 4 2137: 7 2 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 6 3 2145: 4 5 2 9 6 1 4 5 2145: 4 5 2 9 6 3 6 3 2145: 4 5 2 9 6 3 6 3 2145: 4 5 2 9 6 3 3 7 4 2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 5 3 2171:		8							
2113: 2 5 1 8 21 59 94 78 2121: 17 9 7 3 3 5 1 0 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 6 3 2153: 8 8 5 7 6 1 4 7 2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 5 3 3 2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 4 3 2 2201: 3		6				3			
2121: 17 9 7 3 3 5 1 0 2129: 2 5 6 2 7 6 3 4 2137: 7 2 2 7 6 1 4 5 2145: 4 5 2 9 6 3 6 3 2153: 8 8 5 7 6 1 4 7 2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 5 3 2171: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 5 3 3 1 3 1 2201: 8 24 135 289 322 182 27 14 2209: 13 6		9	4						
2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 4 5 3 2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2209: 13 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 2 1 3 4 2249: 1 3 4			5						
2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 4 5 3 2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2209: 13 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 2 1 3 4 2249: 1 3 4			9		3				
2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 4 5 3 2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2209: 13 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 2 1 3 4 2249: 1 3 4			5						4
2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 4 5 3 2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2209: 13 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 2 1 3 4 2249: 1 3 4			2	2		6	1		5
2161: 3 3 5 10 3 3 7 4 2169: 7 3 4 4 4 4 4 5 3 2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2209: 13 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 2 1 3 4 2249: 1 3 4			5				3		3
2169: 7 3 4 4 4 4 4 5 3 2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 2249: 1 4 5 2 3 3 2 0 2273: 2		•	8	5	•	•	_	-	7
2177: 3 4 7 8 5 8 2 4 2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2209: 13 6 6 3 1 3 1 7 2209: 13 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 2241: 2 1 3 4 5 2 3 3 2 0 2257: 5									
2185: 4 7 6 5 3 6 6 5 2193: 6 2 6 6 4 4 3 2 2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 2241: 2 1 3 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2281:			3			4		5	
2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 2241: 2 1 3 4 5 2 3 1 2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2313:						5			4
2201: 8 24 135 289 322 182 27 14 2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 2241: 2 1 3 4 5 2 3 1 2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2313:							6		5
2209: 13 6 6 3 1 3 1 7 2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 4 2241: 2 1 3 4 5 2 3 1 1 3 2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2305: 2 2 2 4 6 2 4 2 2313: 3									
2217: 3 6 2 4 1 2 3 1 2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 2241: 2 1 3 4 5 2 3 1 2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 5 3 <td></td> <td></td> <td></td> <td>135</td> <td>289</td> <td></td> <td></td> <td></td> <td></td>				135	289				
2225: 2 4 3 4 2 1 3 4 2233: 5 2 4 3 2 1 1 3 2241: 2 1 3 4 5 2 3 1 2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 5 3 0 2 1 1 2313: 3 4 1 4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		3							
2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 1 1 1 1 2329: 1 1 1 5 0 4 3 3		2				2			4
2249: 1 4 5 2 3 3 2 0 2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		5				2			3
2257: 5 2 0 7 1 3 2 4 2265: 5 5 8 5 6 2 1 3 2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 2 4 6 2 4 2 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		2		3		5	2		
2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		1					3		
2273: 2 1 4 2 2 2 5 3 2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		5	2			1	3		4
2281: 2 5 0 5 3 4 2 2 2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		5				6			3
2289: 1 4 2 3 9 31 11 3 2297: 0 2 2 4 6 2 4 2 2305: 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		2			2				3
2305: 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3						3			2
2305: 2 2 5 3 0 2 1 1 2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3						9	31		3
2313: 3 4 1 4 3 1 1 3 2321: 4 2 3 3 3 1 1 1 1 2329: 1 1 1 5 0 4 3 3									2
2321: 4 2 3 3 3 1 1 1 2329: 1 1 1 5 0 4 3 3		2							
2329: 1 1 1 5 0 4 3 3						3			
						3			
2337: 2 1 1 1 2 3 1 1 2345: 2 0 0 3 0 2 3 2		1							
2345: 2 0 0 3 0 2 3 2		2				2	3		
	2345:	2	0	0	3	0	2	3	2

2353:	2	0	2	0	3	3	0	0
2361:	ĺ	Ö	0	2	ĺ	3	2	Ö
2369:	0	2	2	1	0	1	2	2
2377:	0	0	2	0	1	4	Õ	3
						2	1	3
2385:	1	1	1	2	1		2	1
2393:	2	2	0	0	0	0		2
2401:	2	0	0	0	1 /	5	1	
2409:	5	2	1	0	1	2	0	1
2417:	1	1	4	3	1	1	1	1
2425:	1	2	0	3	1	0	2	3
2433:	0	2	1	2	0	1	3	0
2441:	1	0	3	0	0	11	50	89
2449:	95	39	9	2	3	1	3	0
2457:	0	0	1	0	0	0	0	0
2465:	1	1	0	0	1	0	0	3
2473;	0	2	0	0	2	0	3	0
2481:	0	0	1	2	Ó	0	1	1
2489:	1	0	1	0	0	0	1	2
2497:	0	0	1	2	1	0	1	1
2505:	1	1	1	0	0	1	1	0
2513:	0	0	1	0	1	0	0	0
2521:	1	0	0	1	1	2	0	0
2529:	0	2	0	0	1	0	0	0
2537:	0	0	0	1	1	0	1	0
2545:	0	1	0	0	0	1	0	1
2553:	2	0	0	0	0	0	1	0
2561:	1	0	1	1	0	0	2	0
2569:	0	0	0	0	0	0	1	0
2577:	0	0	0	0	1	0	0	0
2585:	1	1	0	0	0	0	1	0
2593:	0	0	0	0	0	0	1	1
2601:	1	1	1	0	0	0	1	0
2609:	0	1	1	Ō	4	13	10	16
2617:	3	1	1	Ö	0	0	0	0
2625:	0	0	0	Ō	0	0	2	0
2633:	0	0	1	0	0	0	0	1
2641:	0	1	0	Ō	1	0	0	0
2649:	Ō	Ō	Ō	Ō	0	0	0	1
2657:	Ō	1	Ö	Ö	ĺ	Ō	1	1
2665:	Ō	ō	2	Ö	0	Ö	0	0
2673:	Ö	ĺ	Ō	1	ĺ	Ō	1	0
2681:	Ō	ō	ĺ	1	ī	Ō	0	1
2689:	Ō	Ö	Ō	Ō	Ō	3	1	2
2697:	1	i	Ö	Ö	3	Ō	1	0
2705:	0	Ō	Ö	1	1	Ö	1	Ö
2713:	ő	Ö	Ö	1	Ō	Ö	1	2
2721:	2	Ö	ĺ	0	ĭ	ĺ	ī	0
2729:	1	ĭ	Ō	Ö	ĺ	Ō	Ō	Ö
2737:	1	Ō	í	Ö	Ō	Ö	Ö	Ö
2745:	Ō	Ö	Ō	0	ő	ĺ	Ö	1
2753:	ŏ	Ö	ĭ	Ö	ĺ	ī	í	ō
2761:	ŏ	1	Ō	0	0	ī	Ō	Ö
2769:	ŏ	2	1	Ö	ĭ	ī	ŏ	Ö
2777:	ő	ō	Ō	0	0	Ō	ĭ	Ö
2785:	Ö	Ö	0	0	0	0	Ō	0
2793:	2	Ö	1	0	Ö	í	Ö	Ö
2801:	1	Ö	1	0	Ö	0	Ö	1
2809:	Ō	Ö	2	Ö	0	Ö	Ö	0
2817:	ŏ	ĺ	0	Ö	ő	ő	ő	1
2825:	Ö	0	0	0	Ö	ő	Ö	0
	J	•	J	J	•	, •	Ŭ	J

2833:	0	0	0	0	0	0	0	0
2841:	0	1	1	0	1	0	0	0
2849:	1	0	0	0	0	0	0	0
2857:	0	0	0	3	0	1	0	0
2865:	1	0	0	0	0	0	1 1	0
2873: 2881:	1 0	1	0 2	0	0 0	0 1	0	0
2889:	0	1 0	0	0	0	0	1	1
2897:	1	0	0	0	0	Ö	0	Ō
2905:	1	Ö	0	Ö	Ö	Ö	Ö	Ö
2913:	ō	Ö	Ö	Ö	1	Ö	1	1
2921:	0	Ō	1	Ō	0	1	0	0
2929:	1	0	0	1	1	0	0	0
2937:	0	0	1	0	0	0	1	0
2945:	0	0	1	0	0	1	0	0
2953:	0	0	0	1	0	0	0	0
2961:	0	0	0	0	0	1	0	0
2969: 2977:	0 0	0 0	0	0	1 0	0 0	1 0	1 1
2985:	0	1	2 0	0 0	0	0	1	0
2993:	Ö	Ō	1	1	Ö	Ö	Ō	Ŏ
3001:	Ö	Ö	Ō	Ō	Ö	Ö	Ö	1
3009:	0	Ō	. 0	Ö	1	0	0	1
3017:	0	0	0	0	0	0	1	1
3025:	0	1	1	0	1	0	0	0
3033:	0	0	0	0	0	0	0	0
3041:	0	0	0	0	1	0	0	0
3049: 3057:	2	0	0	0	0	1	1 0	1 0
3065:	1 0	0 0	0 0	0 0	0 0	1	1	1
3073:	0	0	0	1	0	0	Ó	0
3081:	ŏ	ĺ	ő	Ō	ő	Ö	Ö	Ö
3089:	0	0	Ö	Ö	Ō	0	0	0
3097:	0	0	0	0	0	0	0	. 1
3105:	0	0	0	0	0	0	0	0
3113:	0	0	0	0	1	0	0	0
3121:	1	0	0	1	0	0	0	1
3129: 3137:	0 0	0 2	0	1 0	0	0 0	0 1	0 0
3145:	0	0	0 1	0	0 1	0	0	0
3153:		0	0	1	0	ő	ő	Ö
3161:	0 2	Ö	Ö	Ō	Ö	Ö	Ö	Ō
3169:	0	0	0	Ö	0	0	0	0
3177:	0	0	1	0	0	0	0	1
3185:	0	0	1	0 .	0	0	0	0
3193:	0	0	0	0	0	1	0	0
3201:	0	0	1	0	0	0	0	0
3209: 3217:	0 0	0	0 0	0	0 0	0 0	0 0	0 0
3225:	0	1 0	0	0 0	0	0	0	0
3233:	ő	1	Ö	Ö	Ö	ő	Ö	Ö
3241:	0	ō	Ö	Ö	Ö	Ö	Ö	1
3249:	0	1	1	0	0	0	0	0
3257:	0	0	0	1	0	0	0	0
3265:	0	1	0	0	0	0	0	0
3273: 3281:	0 1	1 0	1	0	0	0 0	0 0	0 0
3289:	0	0	0	0 0	0 0	0	0	0
3297:	Ö	0	0	0	0	0	0	0
3305:	0	ĺ	Ö	Ö	ő	Ö	1	1

3313:	1	0	0	0	1	0	0	0
3321:	0	0	0	0	1	0	0	Ö
3329:	0	0	0	0	0	0	0	0
3337:	0	0	0	0	0	0	0	0
3345: 3353:	0 0	0 0	1 0	0 0	0 0	1 0	0 1	0 0
3361:	ő	Ö	0	0	0	ő	2	Ö
3369:	0	Ö	Ö	Ö	Ö	Ö	0	0
3377:	1	0	0	0	0	0	0	0
3385:	0	1	0	0	0	0	0	0
3393: 3401:	0 0	0 0	0	0 0	0 0	0 0	0 1	О О
3409:	Ö	0	0	0	0	Ö	0	0
3417:	0	Ō	Ö	Ö	Ö	0	Ō	0
3425:	0	0	0	0	0	0	0	0
3433:	0	0	0	0	0	0	0	0
3441: 3449:	0 0	0 0	0 1	0 0	0 0	0 1	0 0	0 0
3457:	Ö	0	0	0	0	0	Ö	0
3465:	0	Ö	Ö	Ö	Ö	1	Ö	0
3473:	0	0	0	0	0	0	0	0
3481: 3489:	0 0	0	0	0	0	0	1	1 0
3497:	0	0 0	0 0	1 0	0 0	0 0	0 0	0
3505:	Ö	Ö	Ö	ő	ŏ	Ö	Ö	Ö
3513:	0	0	0	0	0	0	0	Ō
3521:	0	0	0	0	1	0	0	0
3529: 3537:	0 0	0 0	0 0	0 1	0 0	0 0	0 0	2 0
3545:	ő	Ö	0	0	0	Ö	Ö	Ö
3553:	0	0	Ö	Ō	0	1	1	0
3561:	0	0	0	0	0	0	0	0
3569: 3577:	0 0	0 1	0	0	0	0 0	0	0
3585:	0	0	0	0 0	0 0	0	0	1
3593:	0	Ö	Ö	Ö	Ö	1	Ö	0
3601:	0	0	0	0	0	0	0	0
3609: 3617:	0 0	0	0	0	1	1	1	0
3625:	0	0 1	0 0	0 1	0 0	0 0	0 0	0 0
3633:	Ö	Ō	Ö	Ō	ő	Ö	Ö	Ö
3641:	1	0	0	1	0	0	0	0
3649:	0	0	1	0	0	0	1	0
3657: 3665:	. 1 0	0 0	0 0	0 1	0 0	0 0	0	0 0
3673:	Ö	Ö	Ö	Ō	ő	í	Ö	Ö
3681:	0	0	0	0	0	0	0	0
3689:	0	0	0	1	1	0	1	0
3697: 3705:	0 0	0 1	0 0	1 0	0 0	0 1	0 1	0 0
3713:	ő	Ō	0	0	0	Ō	0	0
3721:	0	0	0	0	0	0	0	0
3729:	0	0	2	0	0	0	0	0
3737: 3745:	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 1
3753:	0	0	1	0	0	0	0	1
3761:	0	0	0	0	0	0	1	0
3769:	0	0	0	1	0	0	0	0
3777: 3785:	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0
2,33,	Ŭ	v	J	U	V	V	U	J

3793:	0	0	0	0	0	0	0	0
3801:	0	0	0	0	0	Ö	Ö	Ŏ
3809:	0	0	0	0	0	0	0	0
3817:	0	0	0	0	0	0	0	0
							0	0
3825:	1	0	0	0	0	0		0
3833:	0	0	0	0	0	1	0	
3841:	0	0	0	0	0	0	0	0
3849:	0	0	0	0	0	0	0	0
3857:	0	0	0	0	0	0	0	1
3865:	0	. 0	0	0	0	0	0	0
3873:	0	0	0	0	0	0	0	0
3881:	0	0	0	0	0	1	1	0
3889:	0	0	0	0	0	0	0	0
3897:	0	0	0	0	0	0	0	1
3905:	0	0	0	0	0	0	0	0
3913:	0	0	0	0	0	0	0	0
3921:	0	0	0	1	0	2	0	0
3929:	0	0	0	0	0	0	0	0
3937:	0	0	0	0	0	0	0	1
3945:	0	0	0	0	0	0	0	0
3953:	0	0	0	0	0	0	0	0
3961:	0	0	0	0	0	1	0	0
3969:	0	0	0	0	0	1	0	0
3977:	0	0	0	0	0	0	0	0
3985:	1	0	1	0	0	0	0	0
3993:	0	0	0	1	0	0	0	0
4001:	0	0	0	0	0	0	0	0
4009:	0	0	0	Ō	0	0	0	0
4017:	0	1	0	0	0	0	0	0
4025:	Ô	0	Ö	Ö	Ō	Ō	0	0
4033:	Ö	ĺ	Ö	Ö	Ö	Ō	Ō	Ò
4041:	1	0	ĺ	Ö	Ö	Ō	Ö	Ö
4049:	0	Ö	ō	Ö	Ö	1	Ö	Ö
4057:	Ö	Ö	Ö	Ö	Ö	ō	0 .	Ö
4065:	Ö	Ö	Ö	Ö	ĺ	ĺ	Ö	Ö
4073:	Ö	ő	ő	Ö	ĺ	0	Ö	Ö
4081:	Ö	Ö	ő	Ö	Ō	ő	í	Ö
4089:	1	Ö	Ö	1	0	0	0	1
1000.	.	U	U	1.	U	J	O .	

10B2/12

Page : Acquisition date : 22-FEB-2012 14:13:52 Sample ID : 1201163-15

VAX/VMS Peak Search Report Generated 22-FEB-2012 15:14:08.77

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_120116315_GE2_GAS1102_176271.

Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF $\overline{V}2.2$ Client ID : JMBJGD-NW-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 14:13:52

Sample ID : 1201163-15 Sample Quantity : 3.45250E+02 gram

Sample type : SOLID
Detector name : GE2 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed live time: 0 01:00:00.00 Elapsed real time: 0 01:00:01.21 0.0%

Start channel : 5 Sensitivity : 2.40000

End channel : 4096 Gaussian : 15.00000

Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
0	46.39*	87	630	1.81	46.34	43	8104.2		PB-210
0	61.79	268	1076	6.87	61.75	56	11 48.9		TH-234
0	76.17*	1222	1042	3.19	76.13	71	10 11.5		AM-243
5	84.25	80	498	1.68	84.21	82	20 83.6	3.47E+00	
5	87.42	277	471	1.77	87.38	82	20 26.2		NP-237
									SN-126
									CD-109
5	90.02	126	358	1.46	89.99	82	20 48.6		·
5	92.95*	246	582	2.18	92.91	82	20 37.8		GA-67
0	153.96	55	352	2.02	153.95	152	6111.7		
0	185.84*	165	426	1.24	185.84	183	7 46.1		RA-226
0	208.54*	121	414	1.41	208.55	204	9 64.0		GA-67
1	235.98	42	164	1.54	236.00	234		1.45E+02	
1	241.98*	219	145	1.55	242.00	234	14 23.6		RA-224
1	244.97	34	142	1.71	245.00	234	14137.9		
0	270.28	90	256	1.49	270.31	266	8 65.1		
0	276.36	60	211	4.64	276.39	274	7 85.3		
5	288.93	43	141	2.57	288.97	286		1.78E+00	
5	295.17*	433	116	1.72	295.21	286	20 12.2		PB-214
5	300.41	75	185	2.59	300.46	286	20 68.4		GA-67
0	328.56	66	160	1.42	328.62	325	7 67.7		
0	337.98*	109	221	1.62	338.04	335	8 51.9		AC-228
1	348.10	28	66	1.82	348.17	346		2.27E+00	
1	351.77*	667	102	1.52	351.83	346	11 9.2		PB-214
0	463.05	45	128	1.84	463.16	459	8 92.7		
0	486.34	61	110	5.04	486.45	482	9 67.2		
0	510.66*	63	147	2.36	510.78	506	10 83.3		
0	582.94	240	60	1.85	583.09	579	8 17.1		DT 014
0	609.05*	519	94	1.63	609.21	605	9 11.2		BI-214
0	661.64*	174	109	2.06	661.82	657	11 28.1		CS-137
0	769.23*	59 70	97	2.28	769.45	764	11 71.6		
0	800.94	79		13.56	801.17	791	18 66.4		
0	859.12 910.85*	46	55 53	2.18	859.37	854	10 67.1		7.C 220
0	910.85* 934.71	150	53	1.62	911.13	907	9 24.6		AC-228
6	963.95	28 21	44 53	4.48	934.99	930	10 93.9	5.45E+00	
O	J0J.J5	Z T	53	2.15	964.25	961	12109./	J.45E+UU	

It	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
6	968.51*	71	51	2.43 968.81	961	12 44.9		AC-228
0	1120.00*	115	40	1.81 1120.35	1116	9 27.7		BI-214
Q	1132.06	24	32	3.28 1132.42	1129	8 91.3		
0	1144.56	39	72	7.69 1144.92	1137	15 98.7		
1	1220.39	15	31	2.41 1220.78	1213		2.49E+00	
1	1224.61	28	33	2.19 1225.00	1213	17 74.0		
0	1237.03	56	60	2.66 1237.43	1231	10 58.2		
0	1376.33	40	27	3.63 1376.78	1371	12 60.9		
3	1400.97	17	7	3.03 1401.43	1397		1.58E+00	
3	1407.41	32	3	3.03 1407.87	1397	16 47.1		
0	1416.37	12	6	1.94 1416.83	1414	6 86.6		
3	1456.52	14	0	2.30 1457.00	1456		3.05E+00	
3	1460.24*	623	6	2.16 1460.72	1456	12 8.4		K-40
0	1629.00	12	4	2.32 1629.54	1626	8 81.6		
0	1643.05	10	0	2.58 1643.60	1640	7 63.2		
0	1680.66*	5	2	1.37 1681.22	1679	5132.8		
0	1685.44	.9	0	2.87 1686.00	1684	5 66.7		
0	1701.86	7	0	2.74 1702.43	1699	7 75.6		
0	1744.08	9	0	2.98 1744.67	1742	7 66.7		
0	1763.54*	76	6	3.29 1764.13	1759	11 26.8		BI-214
4	1786.68	6	3	3.57 1787.28	1786	8 77.9	2.37E+00	
4	1790.26	10	3	3.04 1790.87	1786	8 86.2		
0	1813.44	6	2	2.94 1814.05	1811	6 99.5		
0	1846.35	18	12	1.47 1846.98	1842	10 88.3		
0	1888.94	9	2	3.95 1889.58	1886	7 81.3		
0	2181.19	8	1	1.57 2181.94	2179	7 90.6		
0	2202.37	23	7	2.85 2203.13	2199	12 61.3		
0	2259.52	10	0	2.96 2260.30	2256	8 63.2		
0	2269.02	14	2	5.34 2269.81	2265	10 68.5		
0	2277.34	6	3	1.53 2278.13	2274	6122.5		
0	2403.38	6	1	2.48 2404.22	2401	6107.8		
0	2438.98	9	1	2.72 2439.83	2437	7 83.1		
0	2446.36	8	2	1.27 2447.21	2444	8 99.1		
0	2613.11*	95	3	2.60 2614.03	2609	12 22.9		

Summary of Nuclide Activity Page: 3

Acquisition date : 22-FEB-2012 14:13:52 Sample ID : 1201163-15

Total number of lines in spectrum 68 Number of unidentified lines 32

Number of lines tentatively identified by NID 36 52.94%

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	2.773E+01	2.773E+01	0.383E+01	13.82
PB-210	22.26Y	1.00	2.027E+00	2.032E+00	2.125E+00	104.56
BI-214	1602.00Y	1.00	2.737E+00	2.737E+00	0.331E+00	12.09
PB-214	1602.00Y	1.00	2.932E+00	2.932E+00	0.295E+00	10.05
RA-224	1.41E+10Y	1.00	6.691E+00	6.691E+00	1.695E+00	25.33
RA-226	1602.00Y	1.00	5.221E+00	5.222E+00	9.862E+00	188.87
AC-228	1.41E+10Y	1.00	1.668E+00	1.668E+00	0.353E+00	21.15
TH-234	4.47E+09Y	1.00	6.092E+00	6.092E+00	3.033E+00	49.79
		• .				

Wtd Mean Wtd Mean

Total Activity : 5.510E+01 5.510E+01

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
GA-67	3.26D	231.	6.389E-01	1.479E+02	3.549E+02	240.00
NB-95M	3.61D	137.	2.017E-01	2.758E+01	3.459E+01	125.38
AM-243	7380.00Y	1.00	1.549E+00	1.549E+00	0.254E+00	16.40
	Total Acti	ivity :	2.390E+00	1.770E+02		

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags	
CD-109	464.00D	1.04	6.190E+00	6.431E+00	1.972E+00	30.66	
SN-126	1.00E+05Y	1.00	6.223E-01	6.223E-01	1.869E-01	30.03	
CS-137	30.17Y	1.00	5.345E-01	5.354E-01	1.587E-01	29.63	
NP-237	2.14E+06Y	1.00	1.827E+00	1.827E+00	0.546E+00	29.90	
	Total Nat	4 4 7 4 + 4 7	0 1745.00	0 41 (17 : 00			

Total Activity: 9.174E+00 9.416E+00

Grand Total Activity: 6.666E+01 2.415E+02

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 4
Acquisition date: 22-FEB-2012 14:13:52

Nuclide	Type: NATU	RAL	_	
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff 4.582E-01	Jncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 2.773E+01 2.773E+01 13.82 OK
	Final Mean	for 1	Valid Peaks	= 2.773E+01+/-3.833E+00 (13.82%)
PB-210	46.50	4.25*	2.204E+00	2.027E+00 2.032E+00 104.56 OK
	Final Mean	for 1	Valid Peaks	= 2.032E+00+/- 2.125E+00 (104.56%)
BI-214	1120.29 1764.49	15.10 15.80	5.508E-01	2.736E+00 2.736E+00 14.93 OK 3.000E+00 3.000E+00 29.46 OK 2.561E+00 2.561E+00 28.66 OK Line Not Found Absent
	Final Mean	for 3	Valid Peaks	= 2.737E+00+/- 3.309E-01 (12.09%)
PB-214				3.116E+00 3.116E+00 15.30 OK 2.819E+00 2.819E+00 13.29 OK
	Final Mean	for 2	Valid Peaks	= 2.932E+00+/- 2.946E-01 (10.05%)
RA-224	240.98	3.95*	1.806E+00	6.691E+00 6.691E+00 25.33 OK
	Final Mear	for 1	Valid Peaks	= 6.691E+00+/- 1.695E+00 (25.33%)
RA-226	186.21	3.28*	2.099E+00	5.221E+00 5.222E+00 188.87 OK
	Final Mear	for 1	Valid Peaks	= 5.222E+00+/- 9.862E+00 (188.87%)
AC-228	338.32 911.07 969.11	11.40 27.70* 16.60	1.425E+00 6.445E-01 6.144E-01	1.456E+00 1.456E+00 52.80 OK 1.828E+00 1.828E+00 26.47 OK 1.513E+00 1.513E+00 45.94 OK
	Final Mean	for 3	Valid Peaks	= 1.668E+00+/- 3.528E-01 (21.15%)
TH-234	63.29	3.80*	2.516E+00	6.092E+00 6.092E+00 49.79 OK
	Final Mear	for 1	Valid Peaks	= 6.092E+00+/- 3.033E+00 (49.79%)
Nuclide	Type: ACTI	VATION		Turning Daniel Daniel Comp
Nuclide GA-67	93.31 208.95 300.22	35.70* 2.24 16.00	%Eff 2.610E+00 1.970E+00 1.555E+00	Incorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 5.739E-01 1.328E+02 354.50 OK 5.960E+00 1.379E+03 340.11 OK 6.543E-01 1.514E+02 359.05 OK = 1.479E+02+/- 3.549E+02 (240.00%)
	TITIOT MEGI	TOT 3	vallu reaks	- 1.4/JETUZT/ - 3.34JETUZ (Z4U.UU%)

Nuclide Line Activity Report (continued) Page: 5
Sample ID: 1201163-15 Acquisition date: 22-FEB-2012 14:13:52

Nuclide Type: ACTIVATION Uncorrected Decay Corr 2-Sigma %Eff pCi/gram pCi/gram %Error Status Nuclide Energy %Abn 25.00* 1.831E+00 2.017E-01 NB-95M 235.69 2.758E+01 125.38 OK Final Mean for 1 Valid Peaks = 2.758E+01+/-3.459E+01 (125.38%) AM-243 74.67 66.00* 2.598E+00 1.549E+00 1.549E+00 16.40 Final Mean for 1 Valid Peaks = 1.549E+00+/-2.542E-01 (16.40%)

Nuclide Type: FISSION Uncorrected Decay Corr 2-Sigma %Abn %Eff pCi/gram pCi/gram %Error Status Nuclide Energy CD-109 88.03 3.72* 2.618E+00 6.190E+00 6.431E+00 30.66 OK Final Mean for 1 Valid Peaks = 6.431E+00+/-1.972E+00 (30.66%) SN-126 87.57 37.00* 2.618E+00 6.223E-01 6.223E-01 30.03 OK Final Mean for 1 Valid Peaks = 6.223E-01+/-1.869E-01 (30.03%) CS-137 661.65 85.12* 8.333E-01 5.345E-01 5.354E-01 29.63 Final Mean for 1 Valid Peaks = 5.354E-01+/-1.587E-01 (29.63%) NP-237 86.50 12.60* 2.619E+00 1.827E+00 1.827E+00 29.90 OK

Final Mean for 1 Valid Peaks = 1.827E+00+/-5.463E-01 (29.90%)

Flag: "*" = Keyline

Page: 6 Acquisition date: 22-FEB-2012 14:13:52

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40 GA-67 NB-95M	2.773E+01 1.479E+02 2.758E+01	3.833E+00 3.549E+02 3.459E+01	8.893E-01 4.822E+01 4.337E+01	9.118E-02 1.700E+02 3.566E+00	31.183 3.067 0.636
CD-109 SN-126	6.431E+00 6.223E-01	1.972E+00 1.869E-01	2.065E+00 1.997E-01	3.186E-01 2.823E-02	3.115 3.116 4.625
CS-137 PB-210 BI-214	5.354E-01 2.032E+00 2.737E+00	1.587E-01 2.125E+00 3.309E-01	1.158E-01 1.926E+00 2.185E-01	9.998E-03 1.615E-01 1.961E-02	1.055 12.528
PB-214 RA-224 RA-226	2.932E+00 6.691E+00 5.222E+00	2.946E-01 1.695E+00 9.862E+00	2.170E-01 1.916E+00 2.473E+00	1.901E-02 1.577E-01 4.527E+00	13.512 3.492 2.112
AC-228 TH-234 NP-237	1.668E+00 6.092E+00 1.827E+00	3.528E-01 3.033E+00 5.463E-01	3.898E-01 2.294E+00 5.859E-01	3.506E-02 1.911E-01 8.122E-02	4.279 2.655 3.118
AM-243	1.549E+00	2.542E-01	1.296E-01	1.421E-02	11.952

Nuclide	<pre>Key-Line Activity K.L. (pCi/gram) Ided</pre>	Act error	MDA (pCi/gram)	MDA error	Act/MDA
BE-7 NA-22 AL-26 TI-44 SC-46 V-48 CR-51 MN-54 CO-56 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 RB-82 RB-83 KR-85 SR-85 Y-88 NB-93M NB-94 NB-95 ZR-95 RU-103	2.843E-01 -1.760E-02 7.372E-03 4.495E-02 -4.119E-03 -1.974E-03 -7.313E-01 2.593E-03 -3.993E-02 5.026E-03 3.931E-02 6.897E-02 -1.661E-02 6.345E-02 -4.197E-02 -7.062E-01 -1.805E-03 1.804E+01 1.032E-01 -2.334E-02 -5.501E+01 -4.774E-03 2.913E-01 1.004E-01	6.913E-01 7.312E-02 3.785E-02 6.637E-02 7.338E-02 2.024E-01 1.035E+00 7.428E-02 7.497E-02 5.326E-02 7.749E-02 1.905E-01 8.361E-02 1.865E-01 9.846E-02 1.116E+00 1.388E-01 1.443E+01 8.257E-02 6.546E-02 1.717E+01 5.875E-02 1.337E-01 1.465E-01 8.845E-02	1.170E+00 1.251E-01 7.509E-02 9.509E-02 9.509E-01 3.588E-01 1.462E+00 1.316E-01 1.267E-01 8.978E-02 1.335E-01 3.482E-01 1.439E-01 3.038E-01 1.444E-01 1.640E+00 2.393E-01 2.548E+01 1.458E-01 1.036E-01 5.034E+00 1.044E-01 2.492E-01 2.758E-01 1.695E-01	1.082E-01 1.233E-02 6.788E-03 8.916E-03 1.171E-02 3.284E-02 1.316E-01 1.182E-02 1.138E-02 7.615E-03 1.199E-02 3.457E-02 1.334E-02 2.822E-02 1.197E-02 1.464E-01 3.827E-02 2.359E+00 1.350E-02 9.248E-03 1.515E+00 9.368E-03 2.221E-02 2.686E-02 2.468E-02	0.243 -0.141 0.098 0.473 -0.032 -0.006 -0.500 0.020 -0.315 0.056 0.295 0.198 -0.115 0.209 -0.291 -0.431 -0.008 0.708 0.708 -0.225 -10.929 -0.046 1.169 0.369 0.592
RU-106 AG-108M AG-110M	-8.251E-02 -1.112E-01 1.152E-01	6.095E-01 7.265E-02 8.295E-02	1.080E+00 1.112E-01 1.478E-01	1.463E-01 9.801E-03 1.279E-02	-0.076 -1.000 0.780

Combined Activity-MDA Report (continued) Page: 7
Sample ID: 1201163-15 Acquisition date: 22-FEB-2012 14:13:52

	Key-Line		3	MD	MDA arrests	7 ~ ~ / MD7
Nuclide	Activity (pCi/gram)	K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
SN-113	-7.500E-02		8.786E-02	1.503E-01	1.384E-02	-0.499
TE123M	-1.895E-02		6.815E-02	1.031E-01	8.297E-03	-0.184
SB-124	-5.694E-03		8.659E-02	1.384E-01	1.247E-02	-0.041
I-125	3.779E-01		1.323E+00	2.307E+00	2.366E-01	0.164
SB-125	-8.395E-02		1.832E-01	3.206E-01	2.974E-02	-0.262
SB-126	-2.827E-01		5.016E-01	8.501E-01	7.489E-02	-0.333
SB-127	-5.092E+00		1.576E+01	2.749E+01	2.393E+00	-0.185
I-129	6.525E-02		1.831E-01	3.083E-01	3.779E-02	0.212
I-131	1.141E-01		5.067E-01	9.304E-01	8.213E-02	0.123
TE-132	-1.314E+00		1.295E+01	2.125E+01	1.745E+00	-0.062
BA-133	3.288E-02		8.857E-02	1.379E-01	1.835E-02	0.238
CS-134	3.727E-02		6.962E-02	1.171E-01	1.056E-02	0.318
CS-135	5.743E-01		3.433E-01	5.722E-01	4.704E-02	1.004
CS-136	3.007E-02		3.375E-01	6.044E-01	5.727E-02	0.050
LA-138	-3.586E-02		8.337E-02	1.398E-01	1.409E-02	-0.256
CE-139	5.455E-03		6.499E-02	1.085E-01	8.641E-03	0.050
BA-140	-4.654E-01		8.574E-01	1.457E+00	4.851E-01	-0.320
LA-140	-2.277E-01		2.416E-01	3.992E-01	3.895E-02	-0.570
CE-141	5.546E-02		1.657E-01	2.752E-01	6.283E-02	0.202
CE-144	-7.411E-02		4.304E-01	7.154E-01	5.964E-02	-0.104
PM-144	-5.667E-02		6.273E-02	1.031E-01	9.019E-03	-0.550
PM-145	-2.659E-01		3.236E-01	4.551E-01	2.971E-01	-0.584
PM-146	1.049E-01		1.491E-01	2.542E-01	2.339E-02	0.413
ND-147 EU-152	4.197E-01		1.983E+00	3.626E+00	3.351E-01	0.116
GD-153	1.008E+00 6.213E-02	+	4.917E-01	9.767E-01	1.185E-01	1.032 0.173
EU-154	-5.001E-02		2.271E-01 2.030E-01	3.584E-01 3.472E-01	4.178E-02 3.422E-02	-0.144
EU-155	7.523E-01	+	2.030E-01 2.249E-01	3.308E-01	4.586E-02	2.274
EU-156	1.765E+00	т	1.877E+00	3.335E+00	7.662E-01	0.529
HO-166M	-3.405E-02		1.074E-01	1.869E-01	1.642E-02	-0.182
HF-172	-6.716E-02		3.969E-01	6.607E-01	5.567E-02	-0.102
LU-172	2.957E-01		1.700E+00	3.039E+00	2.818E-01	0.097
LU-173	4.347E-01		3.098E-01	4.572E-01	3.755E-02	0.951
HF-175	-7.287E-02		1.036E-01	1.246E-01	1.084E-02	-0.585
LU-176	-1.422E-02		5.685E-02	8.404E-02	7.093E-03	-0.169
TA-182	1.517E+00	+	4.468E-01	7.750E-01	7.193E-02	1.957
IR-192	3.464E-02		1.430E-01	2.376E-01	2.193E-02	0.146
HG-203	-5.854E-04		1.070E-01	1.619E-01	1.369E-02	-0.004
BI-207	5.524E-02		5.597E-02	1.070E-01	9.789E-03	0.516
TL-208	1.869E+00	+	3.692E-01	6.256E-01	5.692E-02	2.987
BI-210M	-3.807E-02		1.141E-01	1.686E-01	1.387E-02	-0.226
PB-211	-5.627E-01		1.895E+00	3.349E+00	3.020E-01	-0.168
BI-212	6.860E-01		5.526E-01	1.063E+00	9.386E-02	0.645
PB-212	2.105E+00		2.676E-01	4.001E-01	3.292E-02	5.260
RN-219	3.294E-01		8.311E-01	1.523E+00	1.371E-01	0.216
RA-223	-7.636E-01		1.277E+00	1.821E+00	1.561E-01	-0.419
RA-225	-7.009E-01		6.174E-01	9.307E-01	8.639E-02	-0.753
TH-227	4.389E-01	+	5.503E-01	1.050E+00	8.631E-02	0.418

Combined Activity-MDA Report (continued) Page: 8
Sample ID: 1201163-15 Acquisition date: 22-FEB-2012 14:13:52

Nuclide	. -	(.L. [ded	Act error	MDA (pCi/gram)	MDA error	Act/MDA
TH-230	1.050E+01		1.689E+01	2.415E+01	2.253E+00	0.435
PA-231	1.917E+00		2.203E+00	3.797E+00	3.192E-01	0.505
TH-231	-2.673E-01		8.251E-01	1.410E+00	2.077E-01	-0.190
PA-233	-1.266E-02		2.444E-01	3.998E-01	8.956E-02	-0.032
PA-234	-5.418E-02		2.153E-01	3.567E-01	2.983E-02	-0.152
PA-234M	5.252E+00		7.916E+00	1.480E+01	1.358E+00	0.355
U-235	1.770E-01		4.281E-01	7.256E-01	1.256E-01	0.244
AM-241	2.670E-02		1.457E-01	2.496E-01	1.867E-02	0.107
CM-243	5.638E-01	+	4.836E-01	6.390E-01	5.241E-02	0.882

Page: 9 Summary of Nuclide Activity Acquisition date : 22-FEB-2012 14:13:52

Sample ID : 1201163-15

Total number of lines in spectrum 68 Number of unidentified lines 32

Number of lines tentatively identified by NID 36 52.94%

Nuclide Type : NATURAL

					·		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags	3
K-40	1.28E+09Y	1.00	2.773E+01	2.773E+01	0.383E+01	13.82	
PB-210	22.26Y	1.00	2.027E+00	2.032E+00	2.125E+00	104.56	
BI-214	1602.00Y	1.00	2.737E+00	2.737E+00	0.331E+00	12.09	
PB-214	1602.00Y	1.00	2.932E+00	2.932E+00	0.295E+00	10.05	
RA-224	1.41E+10Y	1.00	6.691E+00	6.691E+00	1.695E+00	25.33	
RA-226	1602.00Y	1.00	5.221E+00	5.222E+00	9.862E+00	188.87	
AC-228	1.41E+10Y	1.00	1.668E+00	1.668E+00	0.353E+00	21.15	
TH-234	4.47E+09Y	1.00	6.092E+00	6.092E+00	3.033E+00	49.79	
	Total Acti	witw .	5 510E±01	5 510E+01			

Wtd Mean Wtd Mean

Total Activity : 5.510E+01 5.510E+01

Nuclide Type : ACTIVATION

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error	Flags
GA-67	3.26D	231.	6.389E-01	1.479E+02	3.549E+02	240.00	
NB-95M	3.61D	137.	2.017E-01	2.758E+01	3.459E+01	125.38	
AM-243	7380.00Y	1.00	1.549E+00	1.549E+00	0.254E+00	16.40	
	Total Acti	ivity :	2.390E+00	1.770E+02			

Nuclide Type : FISSION

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
CD-109	464.00D	$1.0\overline{4}$	6.190E+00	6.431E+00	1.972E+00	30.66
SN-126	1.00E+05Y	1.00	6.223E-01	6.223E-01	1.869E-01	30.03
CS-137	30.17Y	1.00	5.345E-01	5.354E-01	1.587E-01	29.63
NP-237	2.14E+06Y	1.00	1.827E+00	1.827E+00	0.546E+00	29.90
	Total Acti	Lvity :	9.174E+00	9.416E+00	Į.	

Grand Total Activity: 6.666E+01 2.415E+02

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted
"A" = Nuclide specific abn. limit Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116315_GE2_GAS1102_176271.CNF; 1

Title

Sample Title: JMBJGD-NW-31-120128

Start Time: 22-FEB-2012 14:13 Sample Time: 28-JAN-2012 00:00 Energy Offset: 6.87229E-02

Live Time : 0 01:00:00.00 Sample Type: SOLID Energy Quad : 0.00000E+00

Channel

1:	0	0	0	0	0	1	0	181
9:	722	1112	1482	781	612	1628	381	186
							175	172
17:	199	161	157	171	156	167		
25:	187	188	150	185	199	177	163	135
33:	117	119	93	106	82	57	77	86
41:	64	72	80	77	83	144	158	74
49:	91	73	89	, , 89	102	94	92	75
57:	105	129	121	102	118	113	173	168
65:	140	100	123	149	119	120	101	131
73:	151	203	458	181	589	272	125	89
81:	108	99	89	148	131	99	240	184
89:	109	184	104	168	241	148	93	86
97:	82	77	81	72	70	78	70	89
105:	98	80	75	54	85	68	67	99
113:	75	72	78	75	58	84	56	63
121:	83	56	73	72	64	71	73	71
129:	90	69	63	68	60	68	71	63
							71	88
137:	62	53	68	65	62	57		
145:	59	68	65	65	66	69	55	63
153:	69	76	85	60	54	63	63	61
161:	56	60	67	69	56	64	60	49
169:	54	57	52	61	51	56	59	47
							60	71
177:	47	58	61	58	66	64		
185:	105	236	84	50	65	55	52	44
193:	54	54	41	46	52	79	51	44
201:	57	53	45	48	57	63	46	55
209:	101	67	46	56	35	56	41	63
217:	46	43	47	42	42	51	43	54
225:	41	51	46	52	36	39	37	49
233:	37	30	41	59	51	332	457	92
241:	105	167	69	35	49	33	27	29
249:	29	37	30	34	34	31	29	30
257:	33	37	32	38	28	40	31	22
265:	35	29	33			80	54	43
				38	39			
273:	30	34	44	44	44	45	40	20
281:	38	35	33	33	24	23	19	41
289:	35	36	21	30	19	81	263	146
297:	29	26	35	53	42	38	27	34
305:	18	28	24	33	31	25	33	22
313:	27							
		26	18	26	31	25	10	33
321:	29	17	22	27	17	12	39	70
329:	34	34	20	27	30	30	33	25
337:	30	108	75	22	21	18	32	20
345:	27	17	21	38	31	34	208	428
353:	99	19	35	17	22	19	25	17
361:	21	16	27	17	20	28	19	22
369:	15	24	19	20	23	22	19	19
377:	13	21	17	30	19	20	28	16
385:	23	28	18	31	25	20	20	23
393:	14	19	19	20	30	19	24	22
401:	37	24	28			32	24	37
				22	20			
409:	25	17	33	24	12	22	20	24
417:	17	16	14	21	13	24	26	18
425:	12	19	20	21	24	19	21	21

433:	29	20	28	20	19	17	16	22
441:	29	17	13	17	18	20	20	15
449:	19	22	13	24	23	26	20	18
457:	17	15	16	13	11	33	42	23
465:	21	14	19	18	17	13	17	14
473:	12	15	14	13	14	14	14	20
481:	10	15	16	15	25	19	22	24
489:	23	12	12	13	17	10	17	17
497:	13	14	23	15	10	7	12	16
505:	16	15	13	14	27	69	74	39
513:	20	17	10	18	10	14	9	15
521:	17	14	9	13	11	14	11	16
529:	7	13	15	15	18	21	11	13
537:	19	9	13	10	16	12	9	6
545:	14	11	9	14	14	14	14	18
553:	12	8	16	12	15	12	18	11
561:	9	20	20	9	15	13	20	13
569:	18	18	14	11	21	13	6	10
577:	14	9 6	6	12	13	49	128	74
585:	12		9	14	5	13	8	15
593:	12	9	9	5	13	9	15	12
601:	10	11	15	15	12	18	11	85
609:	303	152	22	13	7	9	12	13
617:	15	14	14	11	15	8	16	10
625:	9	13	9	11	11	12	9 7	12
633:	10	10	9	13	10	8		12
641:	10	11	11	11	10	9 8	11	16
649:	4	11	6	13	8		10 20	15 14
657:	7 15	9	15	29	85 10	70 8	11	14
665: 673:	10	16 5	9 10	9 3	16	13	6	8 6
681:	10	16	5	8	14	9	9	10
689:	12	6	12	12	10	11	6	11
697:	7	9	10	9	15	11	14	14
705:	12	11	10	11	10	11	9	6
713:	9	10	11	8	10	12	16	11
721:	6	12	7	10	4	17	27	18
729:	7	10	10	9	7	9	12	12
737:	9	9	13	7	8	12	15	10
745:	5	9 7	7	11	4	8	7	8
753:	6	8	13	10	10	10	15	4
761:	5	11	13	10	15	9	24	34
769:	24	6	10	15	12	1	13	8
777:	9	9	9	11	12	12	8	11
785:	12	20	13	7	6	10	8	8
793:	3	22	23	9	6	8	11	14
801:	15	7	10	4	8 8	13	16	2
809:	5	10	9 7	6	8	11	4	6
817:	8	4 9 7		9	10	10	9	10
825:	11	9	11	8	13	13	9 6	6
833:	13		9	16	10	9		13
841: 849:	8 3	11	9	9	6 4	9 9 7	5 6	9 10
849: 857:	3 9	5 7 8 8 10	8 15	9 21	13		4	7
865:	6	, Ω	6	11	9	9 3	3	
873:	8	8	6	8	7	11	8	8 5 7
881:	7	10	9	5	7	8	4	7
889:	6	7	11	4	6	8 6	7	6
897:	5	8	6	9	4	6	10	7
905:	5	10	4	8	11	41	94	38

913:	10	5	2	8	4	5	3	14
921:	7	5	2	8	5	7	7	3
929:	5	2	2	11	12	14	10	11
937:	5	3	2	8	2	3	5	7
945:	8	4	9	9	7	9	7	4 11
953:	6	8	7	5	4	6	9 14	24
961: 969:	8	7	6	20	22 8	6 3	10	6
969: 977:	62 6	18 9	5 7	4 4	10	14	4	6
985:	6	4	1	8	6	7	2	9
993:	5	3	5	8	3	5	11	6
1001:	12	8	7	11	9	5	8	10
1009:	6	2	6	4	9	9	7	7
1017:	6	4	2	9	9 2 6	7	8	6
1025:	8	12	6	11		6	5	6 5 7
1033:	7	9	6	3	8	4	7	
1041:	4	5	4	6	10	9	5	5
1049:	6	12	3	7	4	9	7	10
1057:	10	4	6	8	9	9	2	5 3
1065:	9	5	8	3	5	8	6 9	3 2
1073: 1081:	9 6	12 6	9 7	5 8	6 3	10 7	8	6
1081:	7	6	7	o 7	3 6	$\overset{\prime}{4}$	9	12
1007:	6	4	10	8	8	7	2	5
1105:	5	7	4	6	4	7	_ 5	9
1113:	10	6	7	3	5	8	26	60
1121:	32	10	10	5	3	9	6	4
1129:	4	6	10	9	12	7	5	3
1137:	5	5	6	6	8	8	10	13
1145:	7	6	5	10	9	10	3	8
1153:	7	10	12	5	8 5	5	8	5
1161: 1169:	14	10	3	6	5 8	7	13 5	5 9 5 8 8
1169:	4 11	7 8	9 6	6 4	8 4	10 9	4	2
1185:	9	5	7	6	3	6	5	8
1193:	6	4	10	7	7	8	10	7
1201:	9	.6	11	10	7	10	9	9
1209:	7	4	8	5	3	5	8	12
1217:	11	8	3	7	11	4	7	8
1225:	17	6	5	8	5	5	7	6
1233:	8	12	9	3	22	24	19	6
1241:	6	11	10	3 3 8	17	10	11	5
1249:	7	12	4		2 3 5 3 4	4	3	6
1257: 1265:	4 3	6	10	4	3	4	2 4	⊿
1203:	6	3 4	5 3	4 7	3	2 5 5		- 1
1281:		8	5	8	3 4	5	5 5	4
1289:	5	9	4	5	3	6	ĺ	5
1297:	3	9 1	6	5 7	4	4	$\overline{4}$	5
1305:	3	4	4			4	4	7
1313:	10 5 3 6 2 5 5 5 3 6		4	2 2 3 5 7	3 5 7	7	8	866565454557245124
1321:	2	5 3 3	4	3		8	2	4
1329:	5	3	12	5	5	3	1	5
1337:	5	6	4		5 1 5 4	4	4	1
1345: 1353:	2	4 0	3 7	პ ე	5 4	4	5 1	2 1
1361:	<i>5</i>	3	2	2 5	ય ૧	4 5	7	4
1369:	2	1	2	3	3 4	4	4	10
1377:	2 8	13	9	3 2 6 3 3	3	4	2	4
1385:	3	4	0	ĺ	3 2	2	3	3

1393; 2 2 2 1 1 3 1 3 1 1401; 6 5 1 1 3 2 2 2 2 4 1409; 7 2 3 0 0 0 2 2 2 2 2 4 1442; 3 4 1 2 2 2 2 2 4 3 1442; 3 4 1 2 2 2 2 2 4 3 1441; 3 1 3 3 3 2 2 3 3 4 1 4 3 0 0 1 3 1441; 3 1 3 3 3 2 2 3 3 4 4 0 0 1457; 6 4 75 205 3 266 109 10 11 1465; 4 3 2 3 2 2 2 0 1 1473; 3 1 1 2 2 2 2 2 1 4 2 2 2 1 1481; 2 2 2 2 2 1 4 2 2 2 1 1489; 1 2 2 2 2 2 3 3 4 2 5 1489; 1 2 2 2 2 3 3 4 2 5 1489; 5 1 3 3 2 3 3 4 2 5 1489; 5 1 3 3 2 3 3 4 2 5 1489; 5 1 3 3 2 3 3 4 2 5 1489; 5 1 3 3 2 3 3 4 2 5 1489; 5 1 3 3 2 3 3 4 2 5 1489; 1 2 2 2 3 3 4 1 1 1 1521; 2 3 1 1 1 2 0 2 3 3 3 3 3 3 3 3 3									
1401:	1393.	2	2	2	1	1	3	1	3
1409: 7 2 3 0 0 0 2 2 2 1 1417: 6 5 1 1 1 3 2 2 3 4 1425: 3 4 1 1 2 2 2 2 2 4 3 3 4 1433: 1 3 1 3 3 2 2 3 3 4 1441: 3 1 1 3 1 3 3 3 2 2 2 3 3 4 1441: 3 1 1 3 1 2 2 3 1 4 4 0 0 0 1457: 6 4 4 75 205 266 109 10 1 1 1473: 3 1 1 1 2 2 3 2 2 0 1 1 1473: 3 1 1 1 2 2 3 2 2 2 1 1 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1		8	2				3		
14417; 6 5 1 1 1 3 2 2 3 4 4 3 1433; 1 1 3 1 4 3 0 0 1 1 3 4 1441; 3 1 1 3 1 4 3 0 0 1 1 3 4 1441; 3 1 1 2 3 1 1 4 0 0 0 0 1 1457; 6 4 75 205 266 109 10 1 1465; 4 3 1 1 2 3 3 1 4 4 2 2 2 0 0 1 1 1473; 3 1 1 2 2 2 2 2 3 3 4 4 2 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1			2				2		
1425: 3 4 1 2 2 2 2 4 3 3 1441: 3 1 3 1 4 3 0 1 1 3 3 1441: 3 1 1 3 3 3 2 2 2 3 4 4 0 0 0 1457: 6 6 4 75 205 266 109 10 11 1465: 4 3 1 1 2 3 2 2 0 1 1473: 3 1 1 1 2 2 0 1 1 1 1 5 1481: 2 2 2 2 2 1 1 4 2 2 2 1 1489: 1 2 2 2 2 2 3 4 4 2 2 1 1489: 1 2 2 2 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			5						
1443: 1 3 1 4 3 0 1 3 1449: 3 1 4 4 0 0 1459: 6 4 75 205 266 109 10 1 1465: 4 3 2 2 2 3 4 4 2 2 0 1 1473: 3 1 2 2 2 2 3 4 4 2 2 1 1489: 5 1 3 2 2 2 2 3 4 4 2 2 2 1 1489: 5 3 2 2 5 6 4 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1						2			
1441: 3									
1449: 3 1 2 3 1 4 0 0 1 1465: 4 3 2 205 266 109 10 1 14665: 4 3 2 2 3 2 2 0 1 1473: 3 1 1 2 2 3 4 2 2 1 1481: 2 2 2 2 2 1 4 2 2 1 1489: 5 1 3 3 3 2 4 2 2 1505: 5 3 2 5 6 4 1 1505: 5 3 2 5 6 4 1 1505: 5 3 2 5 6 4 1 1505: 5 3 2 5 6 4 1 1513: 4 3 3 2 3 4 1 1521: 2 3 1 1 1 2 0 2 3 3 4 1 15221: 2 3 1 1 1 2 0 2 3 3 4 1 15221: 2 3 1 1 1 2 0 2 3 3 3 3 4 1 15221: 2 3 1 1 1 2 0 2 3 3 3 3 3 1545: 1 3 3 2 0 0 4 2 2 3 3 3 3 3 1545: 1 3 3 2 0 0 0 4 2 2 1 15561: 2 2 2 1 1 2 1 3 1 1 2 0 0 1569: 0 0 0 1 2 2 3 3 3 1 1 2 2 0 0 1569: 0 0 0 1 2 2 0 3 3 5 4 1 1587: 3 3 1 5 3 2 2 5 4 6 6 6 5 1593: 4 3 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1									
1457; 6 4 75 205 266 109 10 1 1465; 4 3 2 3 2 2 0 1 1 5 1481; 2 2 2 1 4 2 2 1 1 5 1 1 5 1 1 5 1 4 2 2 1 1 4 2 2 1 1 4 2 2 1 1 4 2 2 1 1 3 3 2 5 6 4 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 2 1 1 1 3 1 1 2		3							
1465; 4 3 2 3 2 2 0 1 1473; 3 1 1 1 2 0 0 1 1 1 5 1481; 2 2 2 2 1 1 4 2 2 2 11 1497; 5 1 1 3 3 3 2 5 6 4 1 3 1503; 5 3 3 2 5 6 4 1 3 1513; 4 3 3 3 2 3 4 1 1 1521; 2 3 1 1 2 0 0 2 3 1537; 1 2 0 1 1 2 3 3 3 4 0 1537; 1 2 0 1 1 2 3 3 3 3 3 3 3 3 1545; 1 3 3 2 0 0 0 4 2 1 15553; 2 3 0 3 1 1 2 0 0 2 3 1537; 1 2 0 0 1 2 3 3 3 3 3 3 1545; 1 3 3 2 0 0 0 4 2 1 15561; 2 2 2 1 1 2 1 3 1 1 2 0 1569; 0 0 1 1 2 0 3 3 5 4 1587; 3 1 5 3 2 2 5 6 6 4 1 1 3 1601; 2 5 2 2 1 2 1 2 1 3 1 1 2 1 1 1 1 1 1 1 1 1									
1473: 3 1 1 2 0 1 1 5 1489: 1 2 2 2 1 4 2 2 1 1497: 5 5 3 2 5 6 4 1 3 1505: 5 3 2 5 6 4 1 3 1513: 4 3 3 2 3 4 1 1 1521: 2 3 1 1 2 0 2 3 1529: 1 0 1 1 1 3 4 0 1537: 1 2 0 1 2 2 3 3 1545: 1 3 2 0 0 4 2 1 1557: 1 3 2 0 0 4 2 1 1567: 2 2 1 2 4 4 4 3 6 5 1577:									
1481: 2 2 2 1 4 2 2 1 1 2 2 1 1 2 2 5 1 1 2 5 5 1 3 3 2 4 2 5 5 6 4 1 3 3 2 3 4 1 1 1 1 2 0 2 3 3 4 1 1 1 1 1 2 0 2 3 3 4 1 1 1 1 1 2 0 2 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1489: 1 2 2 2 3 4 2 5 1497: 5 1 3 3 2 4 2 1 1513: 4 3 3 2 5 6 4 1 1 1521: 2 3 1 1 2 0 2 3 1529: 1 0 1 1 1 3 4 0 1537: 1 2 0 0 4 2 1 1537: 1 3 2 0 0 4 2 1 1553: 2 3 0 3 1 1 2 0 15661: 2 2 1 2 1 3 1 0 1569: 0 0 1 2 0 3 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
1497: 5 1 3 3 2 4 2 1 1505: 5 3 2 5 6 4 1 3 1521: 2 3 1 1 2 0 2 3 1529: 1 0 1 1 1 3 4 0 1537: 1 2 0 1 -2 3 4 1 2 1 1 3 4 3 2 1 1 3 <			2						
1505: 5									
1513: 4 3 3 2 3 4 1 3 4 0 1 1537: 1 2 0 1 1 1 1 3 4 0 1 1537: 1 2 0 0 4 2 1 1 1 2 0 0 4 2 1 1 1 2 0 0 4 2 1 1 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 1 2 1 1 1 1 1 0 1				3					
1521: 2			3						
1529: 1 0 1 1 1 3 4 0 1537: 1 2 0 1 2 3 3 3 1545: 1 3 2 0 0 4 2 1 1561: 2 2 1 2 1 3 1 0 0 1 2 0 3 5 4 1 1 0 1 1 2 0 3 5 4 4 1 0 1 1 2 0 3 5 4 4 1 6 5 1 1 8 4 3 6 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1			3			3			
1537:			3	1	1				
1545: 1 3 2 0 0 4 2 1 1561: 2 2 1 2 1 3 1 1 2 0 1569: 0 0 0 1 2 0 3 5 4 1577: 3 1 5 3 2 2 4 4 1585: 2 1 1 8 4 3 6 5 1593: 4 3 2 1 2 1 2 1 1601: 2 5 2 0 1 2 1 1 1601: 2 5 2 0 1 2 1 1 1601: 2 5 2 0 1 2 1 1 1 1 1601: 2 5 2 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	1529:	1	0	1	1	1		4	
1561: 2 2 1 2 1 3 1 0 1569: 0 0 1 2 0 3 5 4 1577: 3 1 5 3 2 2 4 4 1593: 4 3 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <td>1537:</td> <td>1</td> <td>2</td> <td>0</td> <td>1 .</td> <td>2</td> <td>3</td> <td></td> <td>3</td>	1537:	1	2	0	1 .	2	3		3
1561: 2 2 1 2 1 3 1 0 1569: 0 0 1 2 0 3 5 4 1577: 3 1 5 3 2 2 4 4 1593: 4 3 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <td>1545:</td> <td>1</td> <td>3</td> <td>2</td> <td>0</td> <td>0</td> <td>4</td> <td></td> <td>1</td>	1545:	1	3	2	0	0	4		1
1561: 2 2 1 2 1 3 1 0 1569: 0 0 1 2 0 3 5 4 1577: 3 1 5 3 2 2 4 4 1593: 4 3 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <td>1553:</td> <td>2</td> <td>3</td> <td>0</td> <td>3</td> <td>1</td> <td>1</td> <td>2</td> <td>0</td>	1553:	2	3	0	3	1	1	2	0
1569: 0	1561:	2	2	1	2	1	3	1	0
1585: 2 1 1 8 4 3 6 5 1593: 4 3 2 1 2 1 2 1 1600: 1 3 0 1 2 0 4 2 1617: 3 1 2 0 6 2 0 4 2 1625: 1 0 2 2 5 4 2 1 1633: 0 1 2 1 2 4 0 0 1641: 0 1 4 3 2 0 0 1 1649: 0 2 2 1 1 3 0 1 1649: 0 2 2 1 1 3 0 0 0 1	1569:						3	5	4
1585: 2 1 1 8 4 3 6 5 1593: 4 3 2 1 2 1 2 1 1600: 1 3 0 1 2 0 4 2 1617: 3 1 2 0 6 2 0 4 2 1625: 1 0 2 2 5 4 2 1 1633: 0 1 2 1 2 4 0 0 1641: 0 1 4 3 2 0 0 1 1649: 0 2 2 1 1 3 0 1 1649: 0 2 2 1 1 3 0 0 0 1							2	4	4
1593: 4 3 2 1 2 1 2 1 <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td>		2					3		
1601: 2 5 2 0 1 2 1 1 1609: 1 3 0 1 2 0 4 2 1617: 3 1 2 0 6 2 0 4 1625: 1 0 2 2 5 4 2 1 1641: 0 1 2 1 2 4 0 0 1 1641: 0 1 4 3 2 0 0 1						2	1		
1609: 1 3 0 1 2 0 4 2 1617: 3 1 2 0 6 2 0 4 1625: 1 0 2 2 2 5 4 2 1 1633: 0 1 2 1 2 4 0 0 1649: 0 1 4 3 2 0 0 1 1657: 2 2 2 1 1 3 0 1 1657: 2 2 0 3 4 2 4 1 1657: 2 2 0 3 4 2 4 1 1665: 2 1 2 1 1 1 2 0 0 1673: 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<							2		
1617: 3 1 2 0 6 2 0 4 1625: 1 0 2 2 5 4 2 1 1633: 0 1 2 1 2 4 0 0 1641: 0 1 4 3 2 0 0 1 1649: 0 2 2 1 1 3 0 1 1657: 2 2 2 0 3 4 2 4 1 1665: 2 1 2 1 1 2 0 0 1673: 2 2 2 2 1 <									
1625: 1 0 2 2 5 4 2 1 1633: 0 1 2 1 2 4 0 0 1641: 0 1 4 3 2 0 0 1 1649: 0 2 2 1 1 3 0 1 1657: 2 2 2 0 3 4 2 4 1 1665: 2 1 2 1 1 1 2 0 0 1673: 2 2 2 2 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1633: 0 1 2 1 2 4 0 0 1641: 0 1 4 3 2 0 0 1 1649: 0 2 2 1 1 3 0 1 1657: 2 2 2 0 3 4 2 4 1 1665: 2 1 2 1 1 1 2 0 0 1673: 2 2 2 2 1									
1641: 0 1 4 3 2 0 0 1 1649: 0 2 2 1 1 3 0 1 1657: 2 2 2 0 3 4 2 4 1 1665: 2 1 2 1 1 1 2 0 0 1673: 2 2 2 2 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td></t<>						2			
1649: 0 2 2 1 1 3 0 1 1657: 2 2 2 0 3 4 2 4 1 1665: 2 1 2 1 1 1 2 0 0 1673: 2 2 2 2 1 1 1 1 1 1681: 5 2 0 0 3 3 3 3 0 1689: 0 1 1 2 1 2 2 2 2 1697: 2 0 0 0 3 0 1 0 3 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1657: 2 2 0 3 4 2 4 1 1665: 2 1 2 1 1 2 0 0 1673: 2 2 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1								-	
1673: 2 2 2 2 1 2 1 1 1 2 1 1 1 2 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>•</td> <td></td>							2	•	
1673: 2 2 2 2 1 <td></td> <td>2</td> <td>1</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td>		2	1				2		
1681: 5 2 0 0 3 3 3 0 1689: 0 1 1 2 1 2 2 2 1697: 2 0 0 1 0 3 1 2 1705: 0 0 0 3 0 1 0 1 1713: 1 1 2 1 0 0 2 1 1721: 4 2 1 1 2 0 3 0 1729: 11 8 1 0 1 1 4 1 1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2								1	
1689: 0 1 1 2 1 2 2 2 2 1697: 2 0 0 1 0 3 1 2 1705: 0 0 0 3 0 1 0 1 1713: 1 1 2 1 0 0 2 1 1721: 4 2 1 1 2 0 3 0 1729: 11 8 1 0 1 1 4 1 1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1766: 2 5 18 24 24 11 1 1 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3<		_	_	_		-	_	3	_
1713: 1 1 2 1 0 0 2 1 1721: 4 2 1 1 2 0 3 0 1729: 11 8 1 0 1 1 4 1 1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1761: 2 5 18 24 24 11 1 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1809: 0 0 0 1<	1689.		7			1	2	2	2
1713: 1 1 2 1 0 0 2 1 1721: 4 2 1 1 2 0 3 0 1729: 11 8 1 0 1 1 4 1 1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1761: 2 5 18 24 24 11 1 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1809: 0 0 0 1<					2. 1		3		2
1713: 1 1 2 1 0 0 2 1 1721: 4 2 1 1 2 0 3 0 1729: 11 8 1 0 1 1 4 1 1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1761: 2 5 18 24 24 11 1 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1809: 0 0 0 1<					2		1		
1721: 4 2 1 1 2 0 3 0 1729: 11 8 1 0 1 1 4 1 1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1761: 2 5 18 24 24 11 1 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 2 1 1 1809: 0 0 0 1<									
1729: 11 8 1 0 1 1 4 1 1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1761: 2 5 18 24 24 11 1 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 2 1 1 1809: 0 0 0 1 2 2 3 0 1825: 1 1 1 2 1<			7					2	
1737: 1 2 2 2 0 0 2 2 1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1761: 2 5 18 24 24 11 1 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 2 1 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 3 </td <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td>			0			2			
1745: 3 1 1 0 0 1 0 0 1753: 2 0 0 0 3 0 0 1 1761: 2 5 18 24 24 11 1 1 1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 2 1 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1841: 2 1 3 1 </td <td></td> <td>1</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>		1	0						2
1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 1 2 1 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1		. T	2						
1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 1 2 1 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1		3							
1769: 0 2 0 0 1 0 2 2 1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 1 2 1 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1		2							
1777: 0 1 2 2 2 2 0 1 1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 1 2 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1			5						
1785: 2 0 3 1 1 4 3 2 1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 1 2 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1833: 1 1 3 0 0 2 0 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1									
1793: 0 0 0 0 1 2 1 1 1801: 0 1 1 0 1 1 2 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1833: 1 1 3 0 0 2 0 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1		0							Ţ
1801: 0 1 1 0 1 1 2 1 1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1833: 1 1 3 0 0 2 0 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1									
1809: 0 0 0 1 2 2 3 0 1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1 2 1833: 1 1 3 0 0 2 0 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1									
1817: 1 1 1 0 0 3 0 5 1825: 1 1 1 2 1 2 1 2 1833: 1 1 3 0 0 2 0 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1									
1833: 1 1 3 0 0 2 0 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1							2		0
1833: 1 1 3 0 0 2 0 2 1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1		1					3		5
1841: 2 1 3 1 3 4 10 4 1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1	1825:	1					2		2
1849: 1 1 2 0 0 0 2 0 1857: 0 3 0 2 0 1 2 1	1833:	1		3					
1857: 0 3 0 2 0 1 2 1				3		3			
1865: 0 1 1 0 3 2 1 2			3				1		
	1865:	0	1	. 1	0	3	2	1	2

1873:	1	2	0	0	1	0	0	1
	1	3	0	0	1			1 2
1881:	1	2	2	1	0	0	1	
1889:	2	3	3	0	1	1	1	1
1897:	3	2	0	0	1	2	0	0
1905:	1	0	2	1	1	2	1	1
1913:	0	1	1	1	1	2	1	1
1921:	2	4	0	1	1	2	1	3
1929:	1	2	0	0	0	1	2	0
1937:	1	3	0	0	0	2	2	0
1945:	1	0	2	0	1	0	1	1
1953:	1	0	2	0	1	1	0	3
1961:	1	0	0	2	1	1	1	2
1969:	0	0	1	2	3	0	1	0
1977:	1	1	2	ō	ĺ	1	0	2
1985:	1	ō	0	2	ī	_ 1	0	0
1993:	Ō	í	ő	ī	ī	Ō	Ô	ĺ
2001:	ĺ	2	Ö	2	Ō	4	2	0
2009:	1	0	0	2	0	0	0	1
2009:	0				1	3	1	0
2025:	0	1	0	1	2	0	0	0
2025:	2	0	0	0			3	1
		2	0	0	0	1		
2041:	0	0	3	0	1	1	0	3
2049:	1	0	0	1	1	1	0	0
2057:	1	1	0	0	0	1	0	1
2065:	0	1	1	0	3	3	0	0
2073:	1	0	1	2	0	2	0	2
2081:	2	1	0	3	2	0	1	0
2089:	1	0	1	1	2	1	1	0
2097:	0	1	2	2	2	0	4	1
2105:	2	1	1	1	0	0	1	0
2113:	1	3	1	0	1	1	3	0
2121:	0	0	3	0	0	0	1	1
2129:	1	0	1	0	0	1	0	0
2137:	3	0	0	1	2	1	0	4
2145:	0	1	2	1	2	1	0	2
2153:	1	1	0	1	0	2	2	2
2161:	0	1	0	1	1	1	2	1
2169:	1	0	1	0	1	0	3	1
2177:	3	1	0	1	4	2	1	1
2185:	0	0	1	1	1	3	0	0
2193:	1	0	0	0	0	0	0	2
2201:	1	5	8	7	3	1	1	1
2209:	1	0	2	0	3 2	0	0	0
2217:	0		0	0	ī	1	0	0
2225:	0	2	1	1	1 0	1	0	0
2233:	0	1	1	0	1	0	1	2
2241:	ĺ	1 2 1 2 1	ī	2	0	Ö	3	3
2249:	ī	_ 1	ī	1	0	2	ő	Ō
2257:	ĺ	1	Ō	3	2	2	ŏ	Ö
2265:	1	0	2	5	1	1	ĭ	3
2273:		ő	0	5 2	5	1 2	Ō	0
2281:	2 2	1	2	1	1	0	Ö	1
2289:	1	0	1	2	0	0	1	0
2297:	Ō	1	0	1	4	1	1	
2305:	2	0	1	1	0	1	0	2 2
2313:	1		1	0		0	1	0
2321:	0	1 1	0		3 1 2		0	
2329:	0	0		3	T	1		0
2329:		0	1	2	∠ 1	0	2	0
2345:	2 2	2 1	0 1	0 0	1 1	0	0 1	1 1
2J 1 J.	4	1	Τ.	U	Τ.	0	Τ.	Τ

2353:	3	0	1	1	1	2	1	1
2361:	2	ĺ	ī	_ 1	ī	1	4	2
2369:	<u></u>	ī	ō	Ō	0	1	1	0
2377:	ī	Ō	Ö	ĺ	Ö	2	1	1
2385:	Ō	í	ő	1	ő	1	Ō	_ 1
2393:	Ö	1	2	2	1	Ō	3	ī
2401:	0	0	4	1	2	Ö	Ö	0
2409:	0	0	0	1	2	0	2	1
2417:	0	0	0	1	0	0	1	0
2425:	0	1	0	0	0	Ö	2	0
2423:	0	3	1	1	0	2	3	3
2441:	1	3 1	0	0	1	2	5	0
2441:	1	1	0	1	1	1	0	1
2449:	0	2		0	0	2	0	0
2465:	0	0	1		1	0	0	1
2473:	0	0	0	0 2	0	1	1	1
2473:	1	1	0		1	1	0	1
2489:	1		1	1	0	1	0	1
2489: 2497:	0	0	0	0	0	1	1	0
		1	0	1		0	0	1
2505:	0	0	0	0	0		0	3
2513:	0	1	0	1	1	1 0	0	0
2521:	0	0	0	1	0		0	
2529: 2537:	0	0	1	1	1	2	•	0
	0	0	0	0	1	0	0	0
2545:	1	1	0	0	2	0	0	1
2553:	0	0	0	0	0	0	1	0
2561:	0	0	0	0	0	0	0	0
2569:	0	0	0	0	0	0	0	0
2577:	2	1	0	0	0	0	0	0
2585:	0	1	1	1	0	0	0	0
2593:	1	0	1	0	0	0	0	0
2601:	0	1	0	0	0	0	0	0
2609:	0	1	4	9	22	34	19	11
2617:	3	2	1	0	1	0	0	1
2625:	0	1	0	0	0	1	0	0
2633:	O	0	2	0	0	Ū	U	U
2641:	0	0	1	0	0	0	0	1
2649:	0	1	0	1	1	0	0	0
2657:	1	0	0	1	1	0	0	0
2665:	0	0	0	0	1	0	0	0
2673:	0	0	0	0	0	0	1	0
2681:	0	0	1	0	0	0	1	0
2689:	0	0	0	1	2	0	1	1
2697:	0	0	0	0	0	0	0	0
2705:	0	0	0	0	1	0	1	0
2713:	0	1	1	0	1	0	1	1
2721:	0	0	0	1	1	0	1	0
2729: 2737:	0	0	0	0	0	0	0	0
2737: 2745:	0 0	0	0	0	0	1	0	1 0
2745: 2753:	0	1 0	0	0	2	0 0	0 0	
2753: 2761:	0	0	0	0	0	0	0	0 1
2761:	0	0	0	0	0	1	2	0
2769: 2777:	0	0	1 0	0	0	0	0	0
2777:	0	0		1	0	0	0	0
2765: 2793:	0	0	0	0 1	1 0	0	0	0
2/93:	0	0	1 0	0	0	0	0	1
2809:	0	2	0	1	0	0	1	0
2817:	0	0	0	0	0	0	3	0
2825:	0	0	0	0	0	0	1	1
2025:	U	U	U	U	U	U	Τ.	

2833:	0	1	0	0	0	1	0	0
2841:	Ö	1	Ö	Ö	ŏ	0	Ö	1 '
2849:	Ö	Ō	0	Ö	1	ő	Ö	1
2857:	0	0	0	0	1	Ö	ő	Ō
							0	Ö
2865:	0	1	0	2	1	1	-	
2873:	0	1	0	0	1	0	1	0
2881:	1	0	1	0	0	1	0	0
2889:	0	0	0	1	0	0	0	0
2897:	0	1	0	0	0	0	1	1
2905:	0	1	0	0	0	0	0	0
2913:	0	0	1	0	2	0	0	0
2921:	1	0	1	0	0	0	0	0
2929:	0	0	0	0	0	0	0	0
2937:	0	1	0	0	0	0	2	0
2945:	0	0	0	0	0	0	0	0
2953:	0	0	1	0	0	0	0	0
2961:	0	0	2	0	0	0	0	1
2969:	1	0	0	0	1	0	0	0
2977:	0	0	0	0	0	0	0	Q
2985:	1	0	0	0	0	1	2	0
2993:	. 1	0	0	0	0	0	0	0
3001:	0	0	0	0	0	0	0	0
3009:	0	0	1	0	0	0	0	1
3017:	1	0	0	0	0	1	0	0
3025:	0	0	0	0	0	0	0	0
3033:	0	0	0	2	2	1	1	0
3041:	0	0	0	0	0	0	0	0
3049:	0	0	0	0	0	0	1	0
3057:	0	0	0	1	0	0	0	0
3065:	0	0	0	0	0	0	0	0
3073:	0	0	0	1	0	0	0	0
3081:	1	0	0	0	0	0	0	1
3089:	0	1	0	1	0	0	2	0
3097:	0	0	0	0	0	0	0	0
3105:	0	0	1	0	1	0	0	0
3113:	0	1	1	1	0	0	0	0
3121:	1	0	0	0	0	0	1	0
3129:	0	0	0	0	1	0	1	0
3137:	1	0	0	0	0	0	0	1
3145:	0	0	0	0	0	1	0	0
3153:	0	0	0	0	0	1	0	0
3161:	0	0	1	0	0	0	0	0
3169:	2	0	0	1	0	0	1	1
3177:	1	0	0	0	0	0	0	0
3185:	0	1	0	0	0	1	0	0
3193:	1	0	0	1	1	0	0	1
3201:	1	1	0	1	0	0	0	1
3209:	0	0	0	0	1	0	0	0
3217:	0	0	0	0	0	0	0	0
3225:	0	0	0	Ō	Ō	0	0	0
3233:	1	0	Ō	Ō	Ō	0	0	0
3241:	0	O	Ō	Ō	Ō	0	0	0
3249:	0	0	Ō	Ō	Ō	1	1	0
3257:	0	Ō	1	Ö	Ō	ō	0	0
3265:	0	Ö	ō	1	Ö	Ö	Ö	2
3273:	0	Ō	Ō	0	Ō	Ö	Ō	0
3281:	0	O ·	Ō	Ö	Ō	Ō	Ō	0
3289:	1	1	Ō	1	Ō	Ō	1	0
3297:	0	0	Ö	ī	1	Ö	1	0
3305:	0	Ö	1	ō	Ō	Ö	0	Ö
		-	_	· ·	-	-	-	-

3313:	0	1	0	0	0	1	0	0
3321:	Ö	0	Ö	Ö	1	0	0	0
3329:	Ō	Ö	Ö	Ö	0	Ō	0	0
3337:	ĺ	Ö	Ö	Ö	1	Ö	0	0
3345:	Ō	Ö	Ö	Ö	Ō	ĺ	Ö	Ŏ
3353:	Ö	Ö	Ö	Ö	ő	Ō	Ö	Ö
3361:	Ö	0	0	1	Ö	ő	Ö	Ö
3369:	Ö	Ö	0	Ō	Ö	Ő	Ö	Ö
3377:	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö
3385:	ő	Ö	0	Ö	ĺ	Ö	Ŏ	Ö
3393:	Ö	Ö	Ö	Ö	Ō	ő	Ö	Ö
3401:	2	Ö	Ö	Ö	ő	Ö	Ö	Ö
3409:	Ō	Ö	Ö	1	ő	Ö	Ö	Ö
3417:	ĭ	i	2	Ō	ő	Ö	Ö	1
3425:	Ō	Ō	ō	Ö	Ö	Ö	Ō	0
3433:	Ö	Ö	Ö	Ö	Ö	Ö	Ō	0
3441:	Ö	Ö	i	Ö	0	Ō	0	0
3449:	0	Ö	Ō	Ō	0	0	0	1
3457:	0	0	Ō	Ō	0	0	0	0
3465:	0	0	Ö	Ō	0	0	0	0
3473:	0	1	0	0	0	0	0	1
3481:	0	0	0	1	0	0	0	0
3489:	0	0	0	0	0	0	0	0
3497:	0	0	0	0	1	0	0	0
3505:	0	0	0	0	0	0	0	0
3513:	0	0	0	0	0	0	0	1
3521:	0	0	0	0	0	1	1	0
3529:	0	0	0	.0	0	0	0	0
3537:	0	0	0	1	0	0	1	0
3545:	0	1	1	0	0	0	0	0
3553:	0	0	0	0	0	0	1	0
3561:	0	0	0	0	0	0	0	1
3569:	1	0	0	0	0	0	1	0
3577:	0	1	0	1	0	0	1	0
3585:	0	1	0	1	0	0	0	1
3593:	0	0	1	0	1	0	0	0
3601:	0	0	1	0	0	0	0	0
3609:	0	0	0	1	0	0	0	0
3617: 3625:	0	0	0	0	0	0	0	0
3625: 3633:	0 0	0	1	1	0	0	0 0	0
3641:	0	0 0	0	0	0 1	0 0	1	1 0
3649:	0	0	0 0	0 0	0	0	0	0
3657:	0	0	0	0	0	0	0	0
3665:	Ö	0	1	0	0	0	1	1
3673:	0	0	1	0	0	0	1	0
3681:	Ö	Ö	0	0	0	Ö	Ō	0
3689:	ŏ	Ö	Ö	Ö	Ö	ő	Ö	Ö
3697:	Ö	Ö	Ö	ő	1	ŏ	Ö	Ö
3705:	ĭ	ő	Ö	Ö	1 0	ĭ	ŏ	Ö
3713:	0	Ö	Ö	Ö	Ö	Ō	Ö	Ō
3721:	Ö	Ö	Ö	ő	1	ő	ő	Ŏ
3729:	Ō		Ö	Ö	ī	Ö	Ö	Ö
3737:	1	2 1 1	Ö	Ö	0	Ö	Ō	0
3745:	0	1	0	0	0	0	0	1
3753:	0	0	0	0	1	0	0	0
3761:	0	0	0	0	0	0	0	0
3769:	0	0	0	1	1	0	0	0
3777:	0	1	0	0	0	0	0	0
3785:	0	0	0	0	0	1	0	0

3793:	0	0	0	0	0	0	0	0
3801:	Ö	Ö	Ö	Ö	Ö	Ö	Ō	0
3809:	Ō	Ö	Ö	Ö	Ö	Ō	Ó	0
3817:	Ö	Ö	Ö	Ö	Ō	Ö	Ō	0
3825:	Ö	Ö	Ö	Ö	Ö	Ö	Ō	0
3833:	í	ő	ĭ	ő	Ŏ	ŏ	ĺ	ĺ
3841:	Ō	Ö	Ō	Ö	Ö	ŏ	Ō	Ō
3849:	Ö	ő	ĺ	Ö	ő	í	Ö	Ö
3857:	ŏ	Ö	0	Ö	Ö	Ō	Ŏ	Ö
3865:	ĭ	ő	Ö	Ö	ő	ŏ	Ö	Ö
3873:	Ō	Ö	Ö	2	í	ő	ŏ	Ö
3881:	Ö	Ö	0	0	Ō	ő	ő	0
3889:	Õ	Ö	0	0	0	ő	Ö	0
3897:	Ö	Ö	0	0	0	Ö	Ő	0
3905:	ő	Ö	0	Ö	Ö	Ŏ	Ö	Ö
3913:	Ö	0	1	Ö	0	Ö	ő	Ö
3921:	Ö	Ö	0	Ö	0	Ö	ő	Ö
3929:	0	0	0	0	0	Ö	ő	Ö
3937:	0	0	0	0	0	0	Ö	0
3945:	0	0	0	0	1	1	Ö	0
3953:	0	0	0	0	0	0	1	0
3961:	0	1	0	0	0	0	0	0
3969:	1	1	0	0	0	0	Ö	0
3977:	0	0	0	0	0	0	0	1
3985:	0	0	1	0	2	1	Ö	0
3993:	0	0	0	1	0	1	1	0
4001:	0	0	0	0	0	0	0	0
4009:	0	0	0	0	0	0	1	0
4017:	0	0	0	0	0	1	. 0	0
4025:	1	0	1	0	0	0	0	0
4023:	0	0	0	0	1	0	0	0
4041:	0	0	1	0	0	0	0	0
4049:	0	0	0	0	0	0	0	0
4057:	0	0	0	0	0	0	0	0
4065:	0	0	1		0	0	0	0
4073:	1	0	0	0 1	1	0	0	1
4073:	0	0	0	0	0	0	0	0
4081:	0	0	0	0	0	0	0	0
せいロン:	U	U	U	U	U	U	U	U

Page :

Acquisition date : 22-FEB-2012 14:26:56 Sample ID : 1201163-16

VAX/VMS Peak Search Report Generated 22-FEB-2012 15:27:10.95

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_120116316_GE4_GAS1102_176272.
Analyses by : PEAK V16.9 ENBACK V1.6 PEAKEFF V2.2
Client ID : JMBKGD-NE-31-120128

Deposition Date :

Sample Date : 28-JAN-2012 00:00:00 Acquisition date : 22-FEB-2012 14:26:56

Sample Quantity : 3.69000E+02 gram Sample ID : 1201163-16

Sample type : SOLID
Detector name : GE4 Sample Geometry : 0

Detector Geometry: GAS-1102

Elapsed live time: 0 01:00:00.00 Elapsed real time: 0 01:00:01.26 0.0%

Start channel : 5 Sensitivity : 2.40000

End channel : 4096
Gaussian : 15.00000

Critical level : Yes

Post-NID Peak Search Report

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw %Err	Fit	Nuclides
1	43.82	50	135	1.80	43.15	41	9 65.4	6.84E+00	
1	46.79*	88	288	2.10	46.13	41	9 67.4		PB-210
0	63.35*	82	498	2.03	62.71	59	8 98.4		TH-234
0	76.33*	496	689	3.82	75.69	71	10 21.9		
0	93.43*	68	387	2.02	92.81	90	7104.8		
0	100.23	39	196	1.18	99.61	98	5114.5		
0	128.21	75	363	6.31	127.61	123	10 97.3		
0	186.29*	79	284	1.98	185.73	182	8 79.5		RA-226
0	240.59*	352	385	5.18	240.07	233	19 29.0		RA-224
0	295.40	166	182	1.84	294.92	291	8 32.2		PB-214
0	352.56	343	190	2.26	352.12	347	16 21.0		PB-214
0	424.35	51	93	8.32	423.96	417	11 78.9		
0	463.47	30	68	2.17	463.11	459	9106.1		
0	480.80	47	98	8.08	480.45	474	15 96.8		
0	594.40	22	32	2.67	594.14	591	7 96.7		
0	609.51*	247	87	2.50	609.26	604	13 20.4		BI-214
0	661.60*	47	33	1.84	661.38	659	6 50.4		CS-137
1	726.40	22	17	2.61	726.24	723		5.15E+00	BI-212
1	729.07	20	17	2.61	728.91	723	10 93.4		
0	747.50	22	24	3.52	747.34	742	9 91.2		
0	753.08	20	17	1.44	752.93	751	7 80.8		
0	769.54	39	41	4.51	769.40	766	11 70.0		
0	806.51	19	27	2.57	806.40	801	10110.0		
0	862.97	22	23	1.38	862.90		12 97.0		
1	910.79	47	20	2.67	910.76			2.73E+00	AC-228
1	916.03	12	18	2.43	916.00	905	18136.3		
0	968.56	38	22	4.74	968.57	963	11 57.7		AC-228
0	1121.04	38	41		1121.16	1116	11 72.8		BI-214
0	1238.42	28	15		1238.63	1234	10 64.1		
0	1377.56	15	7		1377.87	1374	7 76.6		
0	1460.55	152	18		1460.91	1455	12 19.7		K-40
0	1546.29	5	4		1546.71	1544	5146.4		
0	1587.40	5	2		1587.85	1585	6113.5		
0	1637.18	12	0		1637.67	1634	8 57.7		
0	1660.55	12	2		1661.06	1657	9 75.7		
0	1730.62	12	5	1.81	1731.18	1725	11 94.5		

Post-NID Peak Search Report (continued) Page: 2 Sample ID: 1201163-16 Acquisition date: 22-FEB-2012 14:26:56

Ιt	Energy	Area	Bkgnd	FWHM Channel	Left	Pw %Err	Fit	Nuclides
0	1764.30	30	5	3.00 1764.88	1759	10 45.9		BI-214
0	2205.47	17	10	2.43 2206.37	2200	10 84.3		BI-214
0	2297.83	5	0	2.40 2298.80	2294	8 89.4		
0	2614.84	16	2	2.09 2616.04	2611	9 61.1		

Summary of Nuclide Activity Page: 3

Acquisition date : 22-FEB-2012 14:26:56 Sample ID : 1201163-16

Total number of lines in spectrum 40 Number of unidentified lines 18

Number of lines tentatively identified by NID 22 55.00%

Nuclide Type : NATURAL

	-71-0 1 -111-1		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.614E+01	1.614E+01	0.358E+01	22.16
PB-210	22.26Y	1.00	2.979E+00	2.986E+00	2.032E+00	68.06
BI-212	1.41E+10Y	1.00	1.122E+00	1.122E+00	0.807E+00	71.96
BI-214	1602.00Y	1.00	2.638E+00	2.638E+00	0.522E+00	19.79
PB-214	1602.00Y	1.00	2.406E+00	2.406E+00	0.480E+00	19.93
RA-224	1.41E+10Y	1.00	1.805E+01	1.805E+01	0.555E+01	30.74
RA-226	1602.00Y	1.00	3.974E+00	3.975E+00	7.937E+00	199.69
AC-228	1.41E+10Y	1.00	1.410E+00	1.410E+00	0.516E+00	36.59
TH-234	4.47E+09Y	1.00	2.695E+00	2.695E+00	2.662E+00	98.79
	Total Acti	ivity :	5.142E+01	5.143E+01		

Nuclide Type : FISSION

			Wtd Mean Uncorrected	Wtd Mean Decav Corr	Decay Corr	2-Sigma	
Nuclide CS-137	Hlife 30.17Y	Decay	pCi/gram 3.004E-01		2-Sigma Error		

Total Activity: 3.004E-01 3.009E-01

Grand Total Activity: 5.172E+01 5.173E+01

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Page : 4
Acquisition date : 22-FEB-2012 14:26:56

Nuclide	Type: NATU	RAL		
Nuclide K-40	Energy 1460.81	%Abn 10.67*	%Eff 1.798E-01	Uncorrected Decay Corr 2-Sigma pCi/gram pCi/gram %Error Status 1.614E+01 1.614E+01 22.16 OK
	Final Mean	for 1	Valid Peaks	= 1.614E+01+/- 3.577E+00 (22.16%)
PB-210	46.50	4.25*	1.407E+00	2.979E+00 2.986E+00 68.06 OK
	Final Mean	for 1	Valid Peaks	= 2.986E+00+/- 2.032E+00 (68.06%)
BI-212				1.122E+00 1.122E+00 71.96 OK Line Not Found Absent
	Final Mean	for 1	Valid Peaks	= 1.122E+00+/- 8.071E-01 (71.96%)
BI-214	1120 29	15 10	2 230E-01	2.691E+00 2.691E+00 23.47 OK 2.301E+00 2.302E+00 73.80 OK 2.443E+00 2.443E+00 46.93 OK 4.978E+00 4.978E+00 84.89 OK
	Final Mean	for 4	Valid Peaks	= 2.638E+00+/- 5.219E-01 (19.79%)
PB-214	295.21 351.92	19.19 37.19*	8.368E-01 7.067E-01	2.103E+00 2.103E+00 33.95 OK 2.656E+00 2.656E+00 24.38 OK
	Final Mean	for 2	Valid Peaks	= 2.406E+00+/- 4.796E-01 (19.93%)
RA-224	240.98	3.95*	1.004E+00	1.805E+01 1.805E+01 30.74 OK
	Final Mean	for 1	Valid Peaks	= 1.805E+01+/- 5.550E+00 (30.74%)
RA-226	186.21	3.28*	1.229E+00	3.974E+00 3.975E+00 199.69 OK
	Final Mean	for 1	Valid Peaks	= 3.975E+00+/- 7.937E+00 (199.69%)
AC-228	911.07	27.70*	2.695E-01	Line Not Found Absent 1.287E+00 1.287E+00 45.55 OK 1.834E+00 1.834E+00 59.27 OK
	Final Mean	for 2	Valid Peaks	= 1.410E+00+/- 5.160E-01 (36.59%)
TH-234	63.29	3.80*	1.639E+00	2.695E+00 2.695E+00 98.79 OK
	Final Mean	for 1	Valid Peaks	= 2.695E+00+/- 2.662E+00 (98.79%)

Nuclide Line Activity Report (continued) Page: 5

Acquisition date: 22-FEB-2012 14:26:56 Sample ID : 1201163-16

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma %Abn %Eff pCi/gram pCi/gram %Error Status 85.12* 3.702E-01 3.004E-01 3.009E-01 51.41 OK Nuclide Energy CS-137 661.65

Final Mean for 1 Valid Peaks = 3.009E-01+/-1.547E-01 (51.41%)

Flag: "*" = Keyline

Page: 6
Acquisition date: 22-FEB-2012 14:26:56

---- Identified Nuclides ----

Nuclide	Activity (pCi/gram)	Act error	MDA (pCi/gram)	MDA error	Act/MDA
K-40	1.614E+01	3.577E+00	2.105E+00	1.979E-01	7.669
CS-137	3.009E-01	1.547E-01	2.067E-01	1.915E-02	1.455
PB-210	2.986E+00	2.032E+00	2.884E+00	2.401E-01	1.035
BI-212	1.122E+00	8.071E-01	1.560E+00	1.616E-01	0.719
BI-214	2.638E+00	5.219E-01	3.711E-01	4.018E-02	7.107
PB-214	2.406E+00	4.796E-01	3.638E-01	4.246E-02	6.615
RA-224	1.805E+01	5.550E+00	3.139E+00	2.901E-01	5.752
RA-226	3.975E+00	7.937E+00	3.882E+00	7.109E+00	1.024
AC-228	1.410E+00	5.160E-01	7.587E-01	1.005E-01	1.859
TH-234	2.695E+00	2.662E+00	3.087E+00	2.341E-01	0.873

---- Non-Identified Nuclides ----

Non-Identified Nuclides									
Nuclide		K.L. Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA			
BE-7	6.467E-01		1.239E+00	2.205E+00	2.861E-01	0.293			
NA-22	-6.538E-02		1.189E-01	2.066E-01	1.992E-02	-0.316			
AL-26	5.232E-02		7.425E-02	1.846E-01	1.574E-02	0.283			
TI-44	2.978E-02		1.029E-01	1.255E-01	1.002E-02	0.237			
SC-46	1.263E-02		1.535E-01	2.853E-01	3.755E-02	0.044			
V-48	-1.067E-01		3.385E-01	6.096E-01	7.762E-02	-0.175			
CR-51	-1.027E-01		1.469E+00	2.482E+00	2.730E-01	-0.041			
MN-54	4.144E-02		1.177E-01	2.258E-01	2.757E-02	0.183			
CO-56	3.581E-03		1.393E-01	2.594E-01	3.221E-02	0.014			
CO-57	-5.449E-02		8.309E-02	1.203E-01	1.108E-02	-0.453			
CO-58	6.971E-02		1.361E-01	2.441E-01	2.883E-02	0.286			
FE-59	-1.392E-01		2.829E-01	4.982E-01	5.961E-02	-0.279			
CO-60	7.428E-02		1.355E-01	2.677E-01	2.757E-02	0.278			
ZN-65	-1.841E-01		3.206E-01	4.711E-01	5.280E-02	-0.391			
GA-67	5.327E+01	+	1.959E+02	8.142E+01	2.870E+02	0.654			
SE-75	-1.989E-01		1.536E-01	2.366E-01	2.218E-02	-0.841			
RB-82	9.688E-03		1.705E+00	2.814E+00	3.152E-01	0.003			
RB-83	1.161E-01		2.395E-01	4.295E-01	7.77TE-02	0.270			
KR-85	2.887E+01		2.738E+01	4.934E+01	6.236E+00	0.585			
SR-85	1.653E-01		1.567E-01	2.824E-01	3.569E-02	0.585			
Y-88	6.252E-02		8.888E-02	2.208E-01	1.864E-02	0.283			
NB-93M	1.145E+01		5.677E+00	6.249E+00	2.566E+00	1.832			
NB-94	-5.598E-02		1.155E-01	1.748E-01	2.245E-02	-0.320			
NB-95	2.449E-01		2.206E-01	4.021E-01	4.431E-02	0.609			
NB-95M	1.112E+02		4.986E+01	8.362E+01	7.705E+00	1.329			
ZR-95	-1.288E-02		2.670E-01	4.360E-01	5.042E-02	-0.030			
RU-103	-4.142E-02		1.574E-01	2.625E-01	4.474E-02	-0.158			
RU-106	-1.283E-01		1.123E+00	1.693E+00	2.478E-01	-0.076			
AG-108M	3.589E-02		1.172E-01	2.015E-01	2.072E-02	0.178			
CD-109	2.074E+00		2.324E+00	3.604E+00	4.230E-01	0.575			
AG-110M	1.508E-01		1.321E-01	2.422E-01	2.271E-02	0.623			
SN-113	-2.460E-01		1.559E-01	2.230E-01	2.943E-02	-1.103			
TE123M	-6.768E-02		9.321E-02	1.515E-01	1.314E-02	-0.447			

Combined Activity-MDA Report (continued) Page: 7
Sample ID: 1201163-16 Acquisition date: 22-FEB-2012 14:26:56

---- Non-Identified Nuclides ----

,	Key-Line				
	Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/gram) Ided	ACC CITOI	(pCi/gram)	1.51. 01101	1100, 1121
11002200	(100, 100)		(101, 310)		
SB-124	-4.917E-02	2.205E-01	2.485E-01	2.733E-02	-0.198
I-125	2.467E-01	1.912E+00	3.133E+00	3.331E-01	0.079
SB-125	5.573E-01	3.121E-01	5.583E-01	7.388E-02	0.998
SB-126	-3.815E-03	8.113E-01	1.338E+00	1.370E-01	-0.003
SN-126	2.441E-01	2.262E-01	3.530E-01	3.559E-02	0.691
SB-127	-2.619E+00	2.689E+01	4.944E+01	4.767E+00	-0.053
I-129	2.960E-02	1.901E-01	3.273E-01	4.337E-02	0.090
I-131	-7.512E-02	9.597E-01	1.445E+00	1.748E-01	-0.052
TE-132	3.636E+00	2.226E+01	3.384E+01	3.102E+00	0.107
BA-133	3.964E-01	1.730E-01	3.106E-01	4.807E-02	1.276
CS-134	1.949E-01	1.467E-01	2.498E-01	2.738E-02	0.780
CS-135	1.982E-01	5.129E-01	8.819E-01	8.224E-02 1.278E-01	0.225 0.068
CS-136 LA-138	7.081E-02 1.304E-01	5.455E-01	1.043E+00 3.352E-01	1.278E-01 3.077E-02	0.389
CE-139	6.844E-02	1.487E-01 9.779E-02	1.695E-01	1.449E-02	0.404
BA-140	-4.344E-02	1.528E+00	2.608E+00	8.944E-01	-0.017
LA-140	1.764E-01	4.002E-01	8.324E-01	7.516E-02	0.212
CE-141	3.797E-02	2.358E-01	3.999E-01	9.232E-02	0.095
CE-144	3.338E-01	6.878E-01	1.065E+00	9.636E-02	0.314
PM-144	-6.833E-03	1.120E-01	2.051E-01	2.018E-02	-0.033
PM-145	3.358E-02	4.277E-01	6.562E-01	4.286E-01	0.051
PM-146	-2.651E-02	2.459E-01	3.688E-01	4.827E-02	-0.072
ND-147	-2.261E+00	3.621E+00	5.785E+00	7.182E-01	-0.391
EU-152	-1.223E-01	8.431E-01	1.564E+00	1.777E-01	-0.078
GD-153	-9.410E-03	3.172E-01	4.787E-01	4.623E-02	-0.020
EU-154	-1.019E-01	3.155E-01	5.724E-01	5.518E-02	-0.178
EU-155	5.760E-01	2.937E-01	4.347E-01	4.326E-02	1.325
EU-156	9.530E-01	3.267E+00	5.672E+00	1.374E+00	0.168
HO-166M	-9.031E-02	1.794E-01	3.159E-01	3.188E-02	-0.286
HF-172	1.493E-01	6.128E-01	9.376E-01	8.584E-02	0.159
LU-172	-2.992E-01	2.188E+00	4.119E+00	4.739E-01	-0.073
LU-173	5.217E-01	4.133E-01	7.373E-01	6.876E-02	0.708
HF-175	-5.553E-02	1.537E-01	2.232E-01	2.542E-02	-0.249 -0.337
LU-176 TA-182	-4.679E-02 1.164E+00 +	8.544E-02	1.390E-01 1.273E+00	1.417E-02 1.415E-01	0.914
IR-102 IR-192	1.164E+00 + 1.425E-01	8.589E-01 2.820E-01	4.183E-01	5.449E-02	0.341
HG-203	-1.087E-01	1.500E-01	2.412E-01	2.304E-02	-0.451
BI-207	-9.481E-02	1.030E-01	1.578E-01	1.854E-02	-0.601
TL-208	4.479E-01	3.689E-01	6.886E-01	7.891E-02	0.651
BI-210M	-1.540E-01	1.689E-01	2.683E-01	2.499E-02	-0.574
PB-211	-5.015E-01	3.030E+00	5.080E+00	6.643E-01	-0.099
PB-212	1.047E+00	2.418E-01	4.307E-01	3.976E-02	2.431
RN-219	2.912E-02	1.323E+00	2.255E+00	2.946E-01	0.013
RA-223	-8.796E-01	2.064E+00	3.389E+00	3.643E-01	-0.260
RA-225	-4.079E-01	9.313E-01	1.387E+00	1.306E-01	-0.294
TH-227	2.108E+00	8.152E-01	1.378E+00	1.270E-01	1.530
TH-230	8.770E+00	2.629E+01	3.215E+01	2.560E+00	0.273
PA-231	1.358E+00	3.872E+00	6.007E+00	6.045E-01	0.226

Combined Activity-MDA Report (continued) Page: 8
Sample ID: 1201163-16 Acquisition date: 22-FEB-2012 14:26:56

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/gram) Ided	Act error	MDA (pCi/gram)	MDA error	Act/MDA
TH-231	-7.547E-01	9.554E-01	1.569E+00	2.613E-01	-0.481
PA-233	3.936E-02	4.022E-01	6.850E-01	1.588E-01	0.057
PA-234	9.426E-02	3.501E-01	5.350E-01	4.860E-02	0.176
PA-234M	5.518E+00	1.209E+01	2.360E+01	2.967E+00	0.234
U-235	4.527E-02	6.185E-01	1.046E+00	1.847E-01	0.043
NP-237	1.398E+00	7.132E-01	1.056E+00	1.051E-01	1.325
AM-241	2.839E-01	2.141E-01	3.410E-01	2.487E-02	0.832
AM-243	7.175E-01	1.486E-01	2.511E-01	2.168E-02	2.857
CM-243	-2.606E-02	5.753E-01	9.682E-01	9.028E-02	-0.027

Page: 9 Summary of Nuclide Activity

Acquisition date : 22-FEB-2012 14:26:56 Sample ID : 1201163-16

40 Total number of lines in spectrum Number of unidentified lines 18 Number of lines tentatively identified by NID 22 55.00%

Nuclide Type : NATURAL

	-76- 1		Wtd Mean	Wtd Mean	_	
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/gram	pCi/gram	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.614E+01	1.614E+01	0.358E+01	22.16
PB-210	22.26Y	1.00	2.979E+00	2.986E+00	2.032E+00	68.06
BI-212	1.41E+10Y	1.00	1.122E+00	1.122E+00	0.807E+00	71.96
BI-214	1602.00Y	1.00	2.638E+00	2.638E+00	0.522E+00	19.79
PB-214	1602.00Y	1.00	2.406E+00	2.406E+00	0.480E+00	19.93
RA-224	1.41E+10Y	1.00	1.805E+01	1.805E+01	0.555E+01	30.74
RA-226	1602.00Y	1.00	3.974E+00	3.975E+00	7.937E+00	199.69
AC-228	1.41E+10Y	1.00	1.410E+00	1.410E+00	0.516E+00	36.59
TH-234	4.47E+09Y	1.00	2.695E+00	2.695E+00	2.662E+00	98.79
	Total Acti	vity:	5.142E+01	5.143E+01		

Nuclide Type : FISSION

Nuclide CS-137	Hlife 30.17Y	-	Wtd Mean Uncorrected pCi/gram 3.004E-01	Decay Corr 2-Sigma Error 1.547E-01	

Grand Total Activity : 5.172E+01 5.173E+01

Total Activity : 3.004E-01 3.009E-01

Flags: "K" = Keyline not found "M" = Manually accepted
"A" = Nuclide specific abn. limit

"E" = Manually edited

Spectrum : DKA100: [GAMMA.SCUSR.ARCHIVE]SMP_120116316_GE4_GAS1102_176272.CNF; 1

Title :

Sample Title: JMBKGD-NE-31-120128

Start Time: 22-FEB-2012 14:26 Sample Time: 28-JAN-2012 00:00 Energy Offset: 6.91748E-01 Real Time: 0 01:00:01.26 Sample ID : 1201163-16 Energy Slope: 9.99279E-01

Live Time : 0 01:00:00.00 Sample Type: SOLID Energy Quad : 0.00000E+00

Channel

1:	0	0	0	0	0	0	0	0
		-						
9:	0	0	0	0	0	1	62	82
17:	69	61	66	64	48	36	49	44
25:	40	57	50		56	45	42	49
				46				
33:	56	44	50	45	55	37	49	49
41:	39	46	75	64	60	112	61	46
49:								49
	40	61	54	63	46	52	48	
57:	64	68	61	68	85	83	114	95
65:	60	59	62	75	71	78	67	78
73:	93	156	188	188	195	90	65	73
81:	59	66	90	98	69	94	105	82
89:	77	69	76	93	106	66	60	40
97:	48	49	53	50	60	23	45	40
105:	51	52	41	47	48	43	51	47
113:	41	47	43	43	52	51	38	43
121:	46	35	26	37	43	50	51	53
129:	38	51	51	38	45	40	42	43
137:	44	34	37	50	38	46	42	47
145:	40	34	50	45	39	42	46	49
153:	46	39	42	42	38	37	37	33
161:	34	45	42	43	35	34	41	56
169:	44	34	39	28	48	23	41	34
177:	37	30	47	40	45	27	43	38
185:	72	88	51	29	34	36	32	41
193:	34	24	40	30	37	25	33	22
201:	34	50	35	34	28	30	31	39
209:	32	26	28	29	25	24	22	35
217:	28	26	27	33	29	24	32	18
225:	27	35	35		19	26	23	26
				34				
233:	18	24	33	34	59	80	95	53
241:	69	64	32	22	23	19	14	28
249:	33	27					25	
			18	20	28	24		27
257:	19	28	28	21	12	26	20	10
265:	18	26	24	27	33	25	35	35
273:	19	32						
			21	16	25	23	23	20
281:	13	13	21	20	13	24	20	23
289:	20	27	24	25	23	72	111	52
297:	23	18	23	16	16	30	20	16
305:	18	17	17	19	13	24	20	19
313:	17	18	10	17	17	20	13	9
321:								
	19	11	17	14	15	18	19-	18
329:	13	23	19	12	15	13	14	12
337:	24	27	16	19	15	21	17	18
345:	11	17	8	12	9	38	134	146
353:	59	13	11	19	15	11	19	11
361:	20	8	15	11	10	5	13	10
369:	11	11	10	9	15	15	9	8
377:	17	13	13	14	15	15	10	16
385:	20	13	16	19	8	9	8	9
393:	7	7	9	10	17	16	9	10
401:	17	10	11	14	11	13	11	. 12
409:	20	13	8	8	11	9	10	15
417:	9	18	15	7	6	19	22	15
425:	12	17	4	7	19	18	10	4

433:	6	7	11	12	10	15	10	6
441:	9	11	9	12	13	14	9	10
449:	12	9	6	6	10	9	14	10
457:	8	7	5	7	9	18	17	11
465:	10	12	9	9	8	11	12	6
473:	9	2	9	10	15	16	7	12
481:	7	8	8	13	11	11	8	8
489:	7	8	10	9	10	9	12	4
497:	7	7	3	13	10	4	10	5
505:	14	5	12	14	14	12	41	24
513:	15	7	5	5	8	6	10	10
521:	7	12	4	7	7	9 4	7 9	6 10
529: 537:	10 10	9 8	8	3 9	6 14	4	12	9
545:	3	6	4 2 6	9	5	2	8	7
553:	8	8	5	7	7	9	6	4
561:	9	4	7	14	6	6	5	4
569:	8	8		6	6	10	11	4 5
577:	7	8 8	6	5	8	18	25	10
585:	3	7	5 6 5	8	8	4	5	7
593:	8	12	9	8	4	5	8	7
601:	3	6	12	5	10	11	15	75
609:	108	71	8	8	11	3	8	2
617:	9	2	7	5	4	6	5	2 3 1
625:	9	4	3 9 5 4	6	4	2 3 8 2	7	1
633:	7	0	9	6	7	3	4	6 5
641:	5	6	5	4	3	8	8	5
649:	6	8	4	7	2		6	10
657: 665:	6 _. 9	4	3	11	33	23	9 4	5 2 2
673:	6	8 2	4	4 2	5 4	7 5	6	2
681:	8	2	3 8	5	5	7	5	
689:	3	10	3	4	9	8	5 3	4 8 3 6
697:	6	8	3	4	7	12	9	3
705:	. 8	4	3 3 7	i	4	5	7	6
713:	3	5	2	9	4	3	7	6
721:	3		4	6		10	8	7
729:	10	3 2	7	1	3 2 2 8	10 7	6	6
737:	2	4	7	4	2	6	3	4
745:	3	7	5 5	9	8	1	2	12
753:	7	4	5	4	3	3	5	7
761:	5	3 8	7	5	4	5	13	12
769: 777:	14 4	8 7	9	6	4	3 5 3 3	5	
785:	.7	4	9	3 2	5 3 3	3 1	3 4	6
793:	3	2	9	4	3	1 3 8	4	3
801:	4	2	6	4	6	8	8	3
809:	$\frac{1}{4}$	1	3	7	5	4	3	2
817:	5	2	9 6 3 9 6 3 4	$\overset{\cdot}{4}$	1	4	3	ī
825:	6	2 2 1 2 5 6	4	$\overset{-}{4}$	4	1	6	1 6 3 3 2 1 5
833:	1	6	5	4	8	6	4	10
841:	4	3 6 3 4	4 5 1 5 5 5 6	4	3	6	3	10 5 3 5 2 0
849:	5 2	6	1	5	4	5	9 2	3
857:	2	3	5	4	9	5 4 2	2	5
865:	1	4	5	2 2	1	2	3	2
873:	6	4 6	5	2	5	6	5 3	0
881: 889:	3 5	6	6	1	8	4 5	3 7	8 5
897:	2	1 3 4	8 3 4	8	8 3 3	5 5	3	5 1
905:	4	3 4	3 ∆	6	3 5	5 11	21	12
J U J .	-3	7	**	O	5	4.4	~ L	14

913:	1	5	2	7	3	2	4	5
921:	$\overset{\perp}{4}$	0	5	7	5	3	5	5
								3
929:	2	4	1	2	6	10	6	
937:	1	4	2	1	5	8	7	5
945:	6	4	3	3	2	4	6	6
953:	5	4	4	5	6	4	3	3
961:	6	1	1	2	5	6	4	14
969:	9	5	2	10	2	4	4	4
977:	2	3	4	3	5	3	2	3
985:	5	1	2	3	4	4	5	5
993:	5 1	2	3	4	8	1	4	6
1001:	5	1	2	5	3		3	2
1009:	2	4	2	9	4	3 2	3	2
1017:	ī	3	2	1	5	2	1	2
1025:	0	3	3	5	2	${f 4}$	3	5
1033:	4	ő	3	2	2	2	ī	4
1041:	$\overset{\mathtt{1}}{4}$	2	1	4	1	2 3 3 3	3	1
1041:	4		$\frac{1}{4}$	5	6	3	3	Ō
1057:	6	5 5 1	7	5	4	3	3	5
	9					1	3	2
1065: 1073:	3		6	3	4		3	1
		3	4	1	2	2	3	2
1081:	4	3	1.	1	0	4	3	1
1089:	1	3	1	2	1	3 2 3	1	
1097:	4	1	4	2	0	2	3	5
1105:	3	1	7	5	3	3	5	0
1113:	0	2	5	3	1	3	9	22
1121:	22	5	3	4	4	3	4	3
1129:	3	3	0	3	3	3	4	3
1137:	2	3	3	4	3	2	1	. 0
1145:	7	5	3	3	2	2	2	4
1153:	1	1	4	2	0	5	2	0
1161:	2	2	6	1	4	2	1	2
1169:	3	4	5	1	4	5	5	2
1177:	6	5	5	0	5	5	3	2
1185:	1	3	1	2	6	. 2	5	3
1193:	3	4	3	1	1	4	3	3
1201:	3	4	4	3	4	3	6	2
1209:	1	7	2	1	1	2	3	2 3 3 2 7
1217:		8	4		4	3	3	3
1225:	3	1		3 2 5	4	3	1	2
1233:	3	0	2	5	7	8	7	7
1241:	5 3 3 3	2	1 2 2	1		3	5	3
1249:	6	4	Õ	$\frac{1}{4}$	4 2 3 2 4 1 5 1 3 2 2 7	3 2 3 3 8 3 0	3	Ō
1257:	3	4 6 3 1 1 1 1 3 2 2 3 3 4 3 8	1	1	3		4	4
1265:	2	3		2	2	4		1
1273:	3 2 1 3 3	1	1 2 5 3 1 5 2 2 2 2	2 2	4	3 4 2 5 4 5 1 1 3 2 0	1 2 2	1 3 4 6 1 0
1281:	3	1	5	0	1	5	2	4
1289:	3	1	3	ĺ	1	4	4	6
1297:	4	1	3	1	5	5	2	1
1305:	1	1	1	i	1	1	3	Ô
1313:	4	2		1	2	1	3 3	3
1321:	.a.	ა ე	ວ າ		<i>3</i> 1	3 T	0	
1321:	3 3 4	2	2	4 5 3 2	7	ა ე	2	ე #
1329:	. A	2	2	ວ າ	2	2	1	∠ ⊑
1345:	2	ى ت	2	ა ე	<u> </u>	4	$\frac{1}{4}$	5
1345:	3 2 2	.> ∧		∠ 1			$\frac{4}{4}$	ວ າ
1353:	2	4 3	0	1	1	U C		ے 1
1361: 1369:	2 4	<i>3</i>	.5 1	2 1	7	∠ 1	4 2	Т
1369:	4 6	ے 0	T .		∠ 1	1	2	∠ 1
	1	8 4	3 1 3 2	0	1 1 2 1 3	0 2 1 1 0	2 2	4 2 5 2 1 2 1
1385:	±.	4	2	3	3	U	2	1

1393:	1	4	2	0	3	3	. 2	5
1401:	2	2	4	1	1	5	3	2
1409:	2	ō	2	1	1	3	Ō	_ 1
1417:	ī	Ö	2	Ō	5	Ö	4	1
1425:	3	3	5	0	0	Ö	2	0
1433:	1	1	3	1	2	1	4	1
1441:	1		1	0	0	3	2	2
1441:		2				3 2	2	1
1449:	2 5	1	0	4	3 58	33	8	4
1465:	1	2	12	43			° 1	1
1465:	1	1	1	1	3	0 3	0	0
14/3:		1	1	0	0		0	2
1481:	0 2	1	1	1	1	1		1
1469:	2	2	0	0	1	3 0	2 3	1
1505:	0	3	3	1	3	1	4	1
1513:	1	3	0	1	3	0	2	2
1521:	1	3	0	0	0		0	1
1521: 1529:	0	0	1	1	1	1		1
1529:		1	1	2	3	0	2 1	
1537: 1545:	1 2	0	3	3	2	1 2		0
1545:	1	4 0	3 2	0	2 1	2	0	1 0
1561:	2			1	3	2	2 2	
1569:	1	2 1	0	1			3	0
1577:	0		1	0	3	1	0	0
1577:	0	1	1	1	3	1		0
1505:	2	0	3	3	1	0	1	2 1
1601:	2	0	2 0	2	0	2	0 1	2
1601:	0	1 0		0	0	0	1	0
1617:	2		0	1	1	1	1	
1625:	1	0 3	0	1	2	0 2	1	1 1
1633:	0	0	0 2	0	3 3	3	3	1
1641:	0	0	0	0	0	3 1	3 1	1
1649:	0	2		4	0	2	0	0
1657:	0	1	1	0	-	1	3	1
1665:	0	1	. 1 1	4 0	3 0	1	3 1	2
1673:	0	1	1	0	0	0	2	0
1681:	1		-	_	•	-		-
1689:	0	2 0	2 0	0	1 0	0 1	1 1	0 1
1697:	0	1	1	1 0	0	0	0	0
1705:	i 1	2	0	0	3 1	1	0	3
1713:	Ō	1	0	0		1	1	1
1721:	í	1	1	1	2 1	1	0	1
1729:	3		2	1	2	1	0	0
1737:	í	5 0	2	1	1	1	2	1
1745:	2	1	3	2	0	0	0	0
1753:	Ō	0	0	1	0	1	0	1
1761:	1	0	4	12	7	8	2	0
1769:	ī	1	0	0	2	1	0	1
1777:	î	Ō	0	0	1	Ō	0	0
1785:	0	1	1	0	0	1	2	0
1793:	ĺ	Ō	1	2	1	1	2	0
1801:	Ō	1	0	0	0	2	0	0
1809:		0	1	1	0	0	0	0
1817:	2 1	0	1	0	3	Ö	0	2
1825:	Ō	1	0	0	0	0	Ö	0
1833:	Ö	1	0	1	1	0	2	1
1841:	Ö	1	0	0	1	0	2	2
1849:	2	Ō	1	1	0	1	0	1
1857:	1	Ö	Ō	1	ő	Ō	Ö	1
1865:	0	ŏ	2	0	ĺ	Ö	ĺ	ī
	=	-	-	J		ŭ	_	_

	_				_	_		
1873: 1881:	0 3	0 1	0 2	1 0	0 0	1 1	0 0	1 1
1889:	0	ī	0	2	1	ī	ĭ	0
1897:	0	0	0	3	1	0	0	0
1905:	2	0	2	1	0	2	1	1
1913:	1	1	0	1	0	1	1	1
1921: 1929:	1 0	0 1	0 0	1	1 0	0 1	1 0	0 1
1937:	1	0	0	1 0	0	0	0	0
1945:	ī	Ö	ő	ő	2	1	Ö	Ö
1953:	0	2	0	1	0	2	1	0
1961:	2	1	0	0	1	1	0	0
1969:	0	1	1	1	0	1	0	1
1977: 1985:	0 2	1 1	1 1	1 0	0 0	1 0	0 0	0 1
1993:	1	1	0	0	0	ŏ	Ö	0
2001:	0	0	Ō	0	1	2	1	0
2009:	0	1	0	1	1	1	3	1
2017:	0	0	0	0	0	1	0	0
2025: 2033:	1 0	1	1 0	1 0	0 0	0 0	0 0	0 1
2041:	Ö	Ö	0	0	0	Ö	Ö	1
2049:	0	0	0	Ö	0	1	0	1
2057:	0	1	0	0	0	1	0	3
2065:	0	2	0	0	0	0	0	0
2073: 2081:	0 0	0 0	0 0	0 0	0 1	1 1	1 0	0 0
2089:	Ö	Ö	Ö	1	1	1	ĭ	Ö
2097:	1	1	2	2	1	0	1	1
2105:	0	1	0	0	0	2	1	2
2113: 2121:	0 0	0 0	0	2	0	2 2	2 0	0
2129:	0	0	4 0	2 0	0 0	0	1	1 1
2137:	Ö	Ö	Ö	Ö	Ö	ĺ	ō	Ō
2145:	0	1	1	0	0	0	0	0
2153:	0	0	1	0	0	0	0	0
2161: 2169:	0 0	2 1	0 1	0 0	0 0	0 0	1 1	1 1
2177:	Ö	0	0	0	0	2	0	1
2185:	0	1	Ö	Ö	Ö	2 0	3	1
2193:	0	0	0	0	1	0	2 1	1
2201: 2209:	0 0	0	1 2	9	8 1	5 0	1 1	2
2217:	0	1 2	0	0 1	0	0	1	0 0
2225:	1	Ō	ĺ	Ō	Ö	ŏ	Ō	Ö
2233:	0	1	0	0	1	0	0	0
2241:	0	0	0	0	0	0	0	0
2249: 2257:	0 0	0	0 1	0 1	0 0	1 0	3 1	1 0
2265:	Ö	1 2	Ō	0	0	1	1	0
2273:	1	1	Ö	Ö	0	Ō	Ō	Ö
2281:	0	0	0	0	0	0	0	0
2289: 2297:	0 0	0 2	0	0	0	0	0	0
2305:	0	1	2 0	1 0	0 0	0 1	0 1	0 0
2313:	0	0	Ö	Ö	1	0	0	1
2321:	1	0	0	0	0	0	0	1
2329: 2337:	1 1	0	1	1	0	0	0	0
2345:	1	0 0	0	0 0	0 0	0 0	0 0	1 1
- - -	_	ŭ		J	J	J	v	

2353:	0	0	1	1	1	1	1	1
2361:	0	0	0	0	0	0	1	0
2369:	2	1	0	0	0	0	0	1
2377:	0	0	0	0	1	0	0	0
2385:	0	0	0	0	0	0	0	0
2393:	0	1	0	Ō	0	0	. 0	1
2401:	0	0	0	Ö	1	2	0	0
2409:	1	Ō	Ō	ĺ	0	0	1	0
2417:	0	0	Ö	Ō	1	0	2	0
2425:	0	Ō	Ō	Ō	0	0	0	0
2433:	0	Ō	Ö	Ö	Ō	1	0	0
2441:	0	1	Ō	ĺ	0	0	0	0
2449:	0	0	Ō	0	Ō	0	0	0
2457:	0	0	Ō	Ō	1	0	0	1
2465:	0	0	0	0	1	0	0	0
2473:	0	0	0	0	0	0	0	0
2481:	0	0	0	0	0	0	0	0
2489:	0	0	1	1	0	0	0	0
2497:	0	0	0	0	0	2	1	1
2505:	2	0	0	0	0	0	0	0
2513:	0	0	0	0	1	0	2	2
2521:	0	0	1	0	0	0	0	0
2529:	1	0	0	0	1	0	0	1
2537:	0	0	0	0	0	2	1	0
2545:	0	0	1	0	0	0	0	1
2553:	0	1	0	1	1	1	0	0
2561:	0	0	0	1	0	0	0	2
2569:	0	0	0	0	2	0	0	0
2577:	0	0	0	0	0	0	0	0
2585:	0	0	0	0	0	0	0	0
2593:	0	0	0	0	0	0	1	0
2601:	0	0	0	0	1	1	0	0
2609:	0	1	0	0	0	2	7	7
2617:	1	1	0	0	1	0	1	0
2625:	0	0	0	0	0	0	2	0
2633:	0	1	0	0	0	0	0	0
2641:	0	0	0	0	0	0	0	0
2649:	1	0	0	0	2	. 1	0	0
2657:	0	0	0	0	0	0	0	0
2665:	0	1	1	0	0	0	1	0
2673:	0	1	1	0	0	0	0	1
2681:	1	0	0	1	0	0	0	0
2689:	1	0	0	0	0	0	0	1
2697:	0	1	0	0	0	0	0	0
2705:	1	0	0	1	0	1 1	0	0
2713:	0	0	0	0	0	1	0	0
2721:	0	1	0	0	0	0	0	0
2729:	0	0	0	1	1	0	0	0
2737:	0	0	1	0	0	0	0	0
2745:	0	0	0	1	0	0	0	0
2753:	0	0	0	0	1	0	0	0
2761:	0	0	0	0	0	0	0	0
2769:	0	0	2	0	0	0	0	1
2777:	0	0	0	0	0	0	1	1
2785:	0	0	0	0	1	1	2	1
2793:	1	0	1	0	0	1	0	0
2801: 2809:	0	0	0	0	0	0	0	0
2809: 2817:	0	0	0	0	1	0	0	0
2817: 2825:	0 1	0 1	0	0	0	1	0	1
2025.	.	T	0	0	0	0	1	0

2833:	0	0	1	2	1	0	0	0
2841:	1	0	0	1	0	1	0	1
2849:	0	0	0	0	0	0	0	1
2857:	0	0	0	0	0	0	0	0
2865:	1	0	0	0	0	0	0	0
2873:	0	0	0	0	0	0	0	0
2881:	0	0	0	0	0	0	1	0
2889:	0	0	1	0	0	0	1	0
2897:	0	0	1	0	0	0	0	0
2905:	0	0	0	3	0	1	0	0
2913:	0	0	0	0	0	0	0	0
2921:	0	0	0	0	1	0	0	0
2929:	0	0	0	0	0	0	0	0
2937: 2945:	1 0	0	0	0	0	0	0 1	0
2953:	0	0 0	1 0	1 1	0 0	0	1	0
2961:	Ö	0	0	1	Ö	Ö	0	0
2969:	Ö	1	0	0	Ö	Ö	Ö	Ö
2977:	ő	0	0	0	1	2	1	1
2985:	Ö	Ö	Ö	Ö	Ō	ī	Ō	ī
2993:	ĺ	Ö	Ö	o ·	Ö	Ō	1	0
3001:	0	Ö	Ö	Ö	Ö	Ö	ō	Ö
3009:	0	0	Ō	1	0	1	0	1
3017:	0	0	0	0	0	0	0	0
3025:	0	0	0	0	0	0	0	0
3033:	0	0	0	0	0	1	0	0
3041:	0	0	0	0	0	0	0	0
3049:	0	0	0	0	1	1	0	0
3057:	0	0	0	0	2	0	0	0
3065:	0	0	0	0	1	0	0	0
3073:	0	0	0	0	0	0	1	0
3081:	0	1	0	Ö	0	0	0	0
3089:	0	1	0	0	1	0	0	0
3097:	0	2	0	0	0	0	0	0
3105: 3113:	0 0	0	0	0	0	0	1	,0
3121:		O	0	0	0	0	0	0
3121:	0 0	0 1	0 0	0	0 0	0 1	0 0	0
3137:	0	0	0	0 0	0	0	1	1 0
3145:	Ö	Ö	0	0	0	0	0	1
3153:	Ö	Ö	Ö	Ö	0	Ö	Ö	0
3161:	Ö	Ö	ő	ő	Ö	Ö	Ö	Ö
3169:	0	Ö	Ö	í	ĺ	Ö	Ö	Ö
3177:	0	0	1	0	1	ĺ	Ō	1
3185:	0	0	0	0	0	0	0	0
3193:	0	0	0	0	0	0	0	0
3201:	0	0	0	0	1	1	1	0
3209:	0	0	0	1	0	0	0	0
3217:	0	0	0	0	0	0	0	0
3225:	0	1	0	0	0	0	0	0
3233:	0	0	0	0	1	0	0	2
3241:	0	0	1	0	0	0	0	0
3249:	0	0	0	0	0	0	1	0
3257: 3265:	0	0	0	0	1	0	1	0
3265: 3273:	0 0	0 0	0	0	0	0	0	0
3281:	0	0	0 0	1 1	0 0	1 0	0 1	1 0
3289:	Ö	0	0	0	0	0	0	0
3297:	Ö	Ö	0	0	0	0	0	0
3305:	1	i	Ö	Ö	0	0	1	0
	_	_	Ŭ	v	J	J	-	J

							•	•
3313:	0	0	0	0	0	0	0	2
3321:	0	0	0	0	0	0	0	0
3329:	0	0	0	0	0	0	1	0
3337:	0	0	0	0	0	1	0	0
3345:	0	0	1	1	0	0	1	0
3353:	0	0	0	0	0	0	0	0
3361:	0	0	0	0	0	0	0	1
3369:	0	0	1	0	0	0	0	0
3377:	0	0	0	0	1	0	1	0
3385:	0	0	0	0	0	0	0	0
3393:	0	0	0	0	1	0	0	0
3401:	0	1	0	0	0	0	1	0
3409:	0	0	0	0	0	0	0	0
3417:	1	0	0	0	1	0	0	0
3425:	0	0	0	0	0	0	1	0
3433:	0	0	0	0	0	0	0	0
3441:	1	0	0	1	0	1	0	1
3449:	0	1	0	0	0	0	0	1
3457:	0	0	0	0	0	0	0	0
3465:	0	0	Ō	Ō	0	0	0	0
3473:	1	Ō	0	Ō	0	0	0	0
3481:	0	0	ĺ	Ö	Ō	0	0	0
3489:	0	Ō	Ō	Ö	Ö	0	. 0	0
3497:	0	0	Ō	1	0	0	0	0
3505:	0	Ö	1	0	Ō	0	0	0
3513:	1	0	0	Ō	0	0	0	0
3521:	0	Ō	Ö	ĺ	Ō	Ō	Ö	1
3529:	1	Ō	Ö	0	1	1	Ö	0
3537:	0	Ō	Ö	Ö	0	0	Ö	1
3545:	0	Ō	ĺ	Ö	Ö	Ö	Ö	1
3553:	0	1	ō	Ö	Ö	Ö	Ö	0
3561:	Ō	Ō	Ö	Ö	Ö	Ö	Ö	Ö
3569:	0	Ö	0	Ö	Ö	Ö	Ö	Ö
3577:	0	1	Ō	Ō	Ö	Ō	Ö	Ö
3585:	0	0	Ö	Ö	0	Ö	ĺ	Ö
3593:	1	0	Ō	Ö	Ō	Ō	0	Ō
3601:	0	0	Ö	Ö	Ō	1	Ö	Ö
3609:	0	0	0	1	Ō	0	Ō	0
3617:	0	0	Ō	0	Ö	Ō	Ō	1
3625:	0	0	Ō	Ö	2	Ō	1	0
3633:	1	0	0	1	Ō	0	Ō	Ō
3641:	0	0	0	Ō	0	0	Ō	0
3649:	0	1	Ō	Ö	1	0	Ö	1
3657:	0	0	0	0	0	0	0	0
3665:	0	0	0	1	0	1	0	0
3673:	0	0	0	0	0	0	0	0
3681:	0	0	0	0	0	0	0	0
3689:	1	0	0	0	0	0	0	0
3697:	0	0	0	0	0	0	0	0
3705:	0	0	1	0	0	0	0	0
3713:	0	0	0	0	0	1	1	0
3721:	0	0	1	0	0	0	0	0
3729:	0	0	0	Ō	0	0	Ō	0
3737:	0	0	0	0	0	0	0	0
3745:	0	0	0	0	0	0	1	0
3753:	0	0	1	1	0	0	0	0
3761:	1	0	0	0	0	0	0	0
3769:	0	0	0	0	0	0	0	0
3777:	0	0	1	0	0	0	0	0
3785:	0	0	0	0	1	0	0	0

3793: 3801:	0 0	0	0	0	0	1	0 0	0
3809:	0	0 0	0	0	1	0 0	0	0 0
3817:	0	0	0	0	0		0	0
3825:	1		0	0	0	0		
3833:	0	0	0	1	0	0	1	1
		0	0	0	0	0	0	0
3841:	0	0	0	0	0	0	0	0
3849:	0	0	0	0	0	0	0	0
3857:	0	0	1	0	0	0	0	0
3865:	1	0	0	0	0	0	0	0
3873:	0	0	0	0	1	0	0	0
3881:	0	0	0	0	0	0	0	0
3889:	0	0	0	0	0	0	0	0
3897:	0	0	0	0	0	0	0	0
3905:	0	. O	0	0	0	0	0	0
3913:	0	0	0	0	1	0	0	0
3921:	0	0	0	0	1	0	0	0
3929:	0	0	1	1	1	1	0	0
3937:	0	0	0	0	0	0	0	1
3945:	0	0	0	0	0	0	0	1
3953:	0	1	0	0	0	0	0	0
3961:	1	0	0	0	0	0	1	0
3969:	1	0	0	0	0	0	0	0
3977:	0	0	0	0	0	0	0	0
3985:	0	0	0	0	0	0	0	0
3993:	0	0	0	0	0	0	0	0
4001:	0	0	0	0	0	0	1	0
4009:	0	0	0	0	0	0	0	0
4017:	0	0	0	0	0	0	0	0
4025:	0	1	0	0	0	0	1	0
4033:	0	0	0	Ō	Ö	Ō	0	Ö
4041:	0	0	0	Ö	Ō	Ō	ĺ	Ö
4049:	0	0	0	Ö	Ö	Ö	0	Ö
4057:	0	1	0	Ö	0	0	ĺ	Ö
4065:	0	0	0	Ō	Ö	Ö	ī	Ö
4073:	0	Ō	Ö	Ö	Ö	Ö	Ō	Ŏ
4081:	0	Ō	Ö	Ö	Ŏ	Ö	ő	Ö
4089:	Ō	Ö	Ö	ő	ő	Ö	Ö	0
	-	-	•	•	•	•	•	J

QA filename : DKA100:[GAMMA.SCUSR.QA]QCB_GE4.QAF;1

Sample ID

Sample ID : Bkgrnd Check Sample quantity : 1.00 EACH Sample date : 22-FEB-2012 05:15:01

Out-of-range Test: N-SIGMA

Parameter Description Value Deviation Flag [Mean+/-Stdev] Background Counts 1487 1.33 [1424+/-47]Background Rate 1.652 1.33 [1.583+/-0.052]

Flags: "*" means the out-of-range test is parameter-dependent

Approved by: ______Approval Date: __/ ___/

QA filename : DKA100:[GAMMA.SCUSR.QA]QCB_GE3.QAF;1

Sample ID : Bkgrnd Check Sample quantity : 1.00 EACH Sample date : 22-FEB-2012 06:23:43 Acquisition date : 22-FEB-2012 06:23:43

Out-of-range Test: N-SIGMA

Parameter Description Value Deviation Flag

[Mean+/-Stdev]

Background Counts 1.76E+03 -0.03

[2.96E+03+/-4.23E+04]

*Background Rate 2.0 -0.03

[3.3+/-47]

Flags: "*" means the out-of-range test is parameter-dependent

Approval Date: Approved by: ____

QA filename : DKA100:[GAMMA.SCUSR.QA]QCB_GE2.QAF;1

Sample ID : Bkgrnd Check Sample quantity : 1.00 EACH Sample date : 22-FEB-2012 06:01:29 Acquisition date : 22-FEB-2012 06:01:29

Out-of-range Test: N-SIGMA

Parameter Description Value Deviation Flag [Mean+/-Stdev]

*Background Counts 2203 -0.22

[3039+/-3853]

*Background Rate 2.4 -0.05

[33+/-558]

Flags: "*" means the out-of-range test is parameter-dependent

Approved by: _____ Approval Date: __/ __/ __ QA filename : DKA100:[GAMMA.SCUSR.QA]QCB GE1.QAF;1

Sample ID : Bkgrnd Check Sample quantity : 1.00 EACH Sample date : 22-FEB-2012 05:37:49 Acquisition date : 22-FEB-2012 05:37:49

Out-of-range Test: N-SIGMA

. Deviation Flag Parameter Description Value [Mean+/-Stdev] Background Counts 1890 0.23 [1838+/-225]

Background Rate 2.10 0.23

[2.05+/-0.24]

Flags: "*" means the out-of-range test is parameter-dependent

Approval Date: __/__/_ Approved by: _____

QA filename : DKA100: [GAMMA.SCUSR.QA]QCC_GE4_GAS1102.QAF;1

Sample ID

Sample ID : Calib Check Sample quantity : 736. GRAM Sample date : 1-JAN-2011 00:00:00 Acquisition date : 22-FEB-2012 06:02:25

Elapsed live time: 0 00:15:00.00 Elapsed real time: 0 00:15:15.28

Out-of-range Test: BOUNDARY

Parameter Description	Lower	Upper	, Value	Flag
*Peak Centroid 59.54 kev	58	61	59 `	-
*Peak Centroid 661.65 kev	660	663	661	
*Peak Centroid 1173.22 kev	1172	1175	1173	
*Peak Centroid 1332.49 kev	1331	1334	1333	
*Peak Centroid 1836.01 kev	1835	1838	1836	
*Peak FWHM Am-241 59.54 kev	0.5	3.0	2.3	
*Peak FWHM Cs-137 661.65 kev	0.5	3.0	2.1	
*Peak FWHM Co-60 1173.22 kev	0.5	3.0	2.4	
*Peak FWHM Co-60 1332.49 kev	0.5	3.0	2.4	
*Peak FWHM Y-88 1836.01 kev	0.5	3.0	2.8	
*DC Activity Am-241 59.54 kev	180	244	213	
*DC Activity Cs-137 661.65 kev	68	92	82	
*DC Activity Co-60 1173.22 kev	112	152	138	
*DC Activity Co-60 1332.49 kev	112	152	138	
*DC Activity Y-88 1836.01 kev	236	319	279	

Flags: "*" means the out-of-range test is parameter-dependent

, , , , , , , , , , , , , , , , , , ,			
Approved by:	- Approxal	Date.	-X-X/2
E E =	AMITOVAL	Date:	- L X/2

QA filename : DKA100: [GAMMA.SCUSR.QA]QCC_GE3_GAS1102.QAF;1

Sample ID : Calib Check Sample quantity : 736. GRAM
Sample date : 1-JAN-2011 00:00:00 Acquisition date : 22-FEB-2012 05:38:59
Elapsed live time: 0 00:15:00.00 Elapsed real time: 0 00:15:43.21

Out-of-range Test: BOUNDARY

Parameter Description *Peak Centroid 59.54 key	Lower 58	Upper 61	Value	Flag
*Peak Centroid 661.65 kev	660	663	662	
*Peak Centroid 1173.22 kev	1172	1175	1174	
*Peak Centroid 1332.49 kev	1331	1334	1333 %	
*Peak Centroid 1836.01 kev	1835	1838	1837	
*Peak FWHM Am-241 59.54 kev	0.5	3.0	1.5	
*Peak FWHM Cs-137 661.65 kev	0.5	3.0	1.7	
*Peak FWHM Co-60 1173.22 kev	0.5	3.0	2.0	
*Peak FWHM Co-60 1332.49 kev	0.5	3.0	2.1	
*Peak FWHM Y-88 1836.01 kev	0.5	3.0	2.5	
*DC Activity Am-241 59.54 kev	180	244	194	
*DC Activity Cs-137 661.65 kev	68	92	79	
*DC Activity Co-60 1173.22 kev	112	152	134	
*DC Activity Co-60 1332.49 kev	112	152	132	
*DC Activity Y-88 1836.01 kev	236	319	275	

Flags: "*" means the out-of-range test is parameter-dependent

Approval Date: 7 24/ Approved by:

QA filename : DKA100:[GAMMA.SCUSR.QA]QCC_GE2_GAS1102.QAF;1

Sample ID : Calib Check Sample quantity : 736. GRAM Sample date : 1-JAN-2011 00:00:00 Acquisition date : 22-FEB-2012 05:13:59

Elapsed live time: 0 00:15:00.00 Elapsed real time: 0 00:15:14.17

Out-of-range Test: BOUNDARY

Parameter Description *Peak Centroid 59.54 kev *Peak Centroid 661.65 kev *Peak Centroid 1173.22 kev *Peak Centroid 1332.49 kev *Peak Centroid 1836.01 kev *Peak FWHM Am-241 59.54 kev *Peak FWHM Cs-137 661.65 kev *Peak FWHM Co-60 1173.22 kev *Peak FWHM Co-60 1332.49 kev *Peak FWHM Y-88 1836.01 kev	Lower 58 660 1172 1331 1835 0.5 0.5 0.5	Upper 61 663 1175 1334 1838 3.0 3.0 3.0 3.0	Walue 60 662 1173 1332 1836 1.6 1.7 2.1 2.2	Flag ~
*DC Activity Am-241 59.54 kev *DC Activity Cs-137 661.65 kev	180	244	214	
*DC Activity Co-60 1173.22 kev	68 112	92 152	81 135	
*DC Activity Co-60 1332.49 kev *DC Activity Y-88 1836.01 kev	112 236	152 319	134 276	

Flags: "*" means the out-of-range test is parameter-dependent

Approved by:	Approval	Date:	~/	へ大ル	7
					_

QA filename : DKA100: [GAMMA.SCUSR.QA] QCC_GE1_GAS1102.QAF;1

Sample ID Sample quantity : 736. GRAM : Calib Check

Sample 1D : Callb Check Sample quantity : 736. GRAM

Sample date : 1-JAN-2011 00:00:00 Acquisition date : 22-FEB-2012 06:41:14

Elapsed live time: 0 00:15:00.00 Elapsed real time: 0 00:15:18.89

Out-of-range Test: BOUNDARY

Parameter Description	Lower	Upper	, Value	Flag
*Peak Centroid 59.54 kev	58	61	59	•
*Peak Centroid 661.65 kev	660	663	662	•••
*Peak Centroid 1173.22 kev	1172	1175	1174	
*Peak Centroid 1332.49 kev	1331	1334	1333	
*Peak Centroid 1836.01 kev	1835	1838	1837	
*Peak FWHM Am-241 59.54 kev	0.5	3.0	1.7	
*Peak FWHM Cs-137 661.65 kev	0.5	3.0	1.7	
*Peak FWHM Co-60 1173.22 kev	0.5	3.0	2.0	
*Peak FWHM Co-60 1332.49 kev	0.5	3.0	2.1	
*Peak FWHM Y-88 1836.01 kev	0.5	3.0	2.5	
*DC Activity Am-241 59.54 kev	180	244	178	Below
*DC Activity Cs-137 661.65 kev	68	92	79	
*DC Activity Co-60 1173.22 kev	112	152	130	
*DC Activity Co-60 1332.49 kev	112	152	129	
*DC Activity Y-88 1836.01 kev	236	319	288	

Flags: "*" means the out-of-range test is parameter-dependent

Approval Date: ーノー ル Approved by: _____

February 10, 2012

Ms. Kristie Warr Weston Solutions, Inc. 5599 San Felipe, Ste. 700 Houston, TX 77056

Re:

ALS Workorder:

12-01-354

Project Name:

Johnny M ORS

Project Number:

TO 0035111101-120130-0002

Dear Ms. Warr:

Thirteen soil samples were received from Weston Solutions, Inc. on January 21, 2012. The samples were scheduled for the following analysis:

Metals

pages 1-195

Contrary to the samples received previously, these contained notable moisture. Thus the samples were aliquotted as-received and corrected for %moisture.

The results for this analysis are contained in the enclosed report.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely,

ALS Environmental
Lance Steere

Senior Project Manager

LRS/djf

Enclosure (s): Report

ALS is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

Addreditation Body :: 200	<u> </u>
Washington	C1280
Utah	CO00078
Arizona	AZ0742
Alaska	UST-086
Alaska	CO00078
Florida	E87914
Missouri	175
North Dakota	R-057
New Jersey	CO003
Nevada	CO000782008A
California	06251CA
Kansas	E-10381
Maryland	285
Pennsylvania	68-03116
Texas	T104704241-09-1
Colorado	CO00078
Connecticut	PH-0232
ldaho	CO00078
Tennessee	2976
Kentucky	90137
L-A-B (DoD ELAP/ISO 17025)	L2257

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1201354

Client Name: Weston Solutions, Inc.

Client Project Name: Johnny M ORS

Client Project Number: TO0035111101-120130-0002

Client PO Number: 0077655

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
JM-54-31-120128	1201354-1		SOIL	28-Jan-12	17:12
JM-55-31-120128	1201354-2		SOIL	28-Jan-12	17:10
JM-65-31-120128	1201354-3		SOIL	28-Jan-12	17:02
JM-66-31-120128	1201354-4		SOIL	28-Jan-12	17:05
JM-70-31-120128	1201354-5		SOIL	28-Jan-12	17:00
JM-70-32-120128	1201354-6		SOIL	28-Jan-12	17:00
JM-73-31-120128	1201354-7		SOIL	28-Jan-12	16:57
JM-77-31-120128	1201354-8		SOIL	28-Jan-12	16:55
JM-82-31-120128	1201354-9		SOIL	28-Jan-12	16:45
JM-84-31-120128	1201354-10		SOIL	28-Jan-12	16:39
JM-88-31-120128	1201354-11		SOIL	28-Jan-12	16:34
JMBKGD-NE-31-120128	1201354-12		SOIL	28-Jan-12	9:41
JMBKGD-NW-31-120128	1201354-13		SOIL	28-Jan-12	9:10

Page 1 of 1

DateShipped:

CarrierName:

USEPA

AirbillNo:

CHAIN OF CUSTODY RECORD

No: TO0035111101-120130-0002

Cooler #: 1

Lab: ALS Laboratory Group Lab Phone: 970-490-1511

Johnny M ORS

Contact Name: Kristie Warr Contact Phone: 713-985-6600

Lab#	Sample #	Analyses	Matrix	Collected	Sample Time	Container	Preservative	MS/ MSD	Samp_Concent ration
(I)	JM-54-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:12	Jar	Ice	N	251,115 cpm
<u> </u>	JM-55-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:10	Jar	Ice	N	156,052 cpm
(3)	JM-65-31-120128 '	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:02	Jar	Ice	N	342,018 cpm
(4)	JM-66-31-120128 ·	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:05	Jar	Ice	N	269,876 cpm
(S)	JM-70-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
(6)	JM-70-32-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
(7)	JM-73-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:57	Jar	Ice	N	209,993 cpm
	JM-77-31-120128 ·	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:55	Jar	Ice	N	282,248 cpm
(9)	JM-82-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:45	Jar	Ice	N	228,461 cpm
(0)	JM-84-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:38	Jar	Ice	N	117,322 cpm
(11)	JM-88-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:34	Jar	Ice	N	265,129 cpm
(12)	JMBKGD-NE-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:41	Jar	Ice	N	9,938 cpm
<u> </u>	JMBKGD-NW-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:10	Jar	Ice	N	13,502 cpm
			-						

Special Instructions: Standard TAT, SW846 6010/6020

SW846 7470/7471

SAMPLES TRANSFERRED FROM

CHAIN OF CUSTODY #

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
>/samples	7=4	בנליבלי	Snightswhau	1/31/12	0925						·
			0.4								
44-4800						4,5,35					

CONDITION OF SAMPLE UPON RECEIPT FORM

Client: Weston Solutions Workorder No: 1201	354		
Project Manager: LRS Initials: SMb	Date:	1/31/12	- =
1. Does this project require any special handling in addition to standard Paragon procedures?		YES	NO
2. Are custody seals on shipping containers intact?	NONE	YES) NO
3. Are Custody seals on sample containers intact?	NONE	YES	NO
4. Is there a COC (Chain-of-Custody) present or other representative documents?		YES) NO
5. Are the COC and bottle labels complete and legible?		YES	NO
6. Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)		YES	NO
7. Were airbills / shipping documents present and/or removable?	DROP OFF	YES	NO
8. Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	N/A	YES	NO
9. Are all aqueous non-preserved samples pH 4-9?	N/A	YES	NO
10. Is there sufficient sample for the requested analyses?		(YES)	NO
11. Were all samples placed in the proper containers for the requested analyses?		YES	NO
12. Are all samples within holding times for the requested analyses?		YES	NO
13. Were all sample containers received intact? (not broken or leaking, etc.)		(YES)	NO
14. Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea > green pea	N/A	YES	NO
15. Do perchlorate LCMS-MS samples have headspace? (at least 1/3 of container required)	N/A	YES	NO
16. Were samples checked for and free from the presence of residual chlorine? (Applicable when PM has indicated samples are from a chlorinated water source; note if field preservation with sodium thiosulfate was not observed.)	N/A)	YES	NO
17. Were the samples shipped on ice?		YES	NO
18. Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: #2	RAD ONLY	(YES)	NO
Cooler #: / Temperature (°C): 6 No. of custody seals on cooler: 2 DOT Survey/Acceptance Information External μR/hr reading: 13 Were external μR/hr readings ≤ two times background and within DOT acceptance criteria? (VES) NO / NA (If no, see Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EX		ND #16.	
If applicable, was the client contacted? YES / NO / NA Contact: Project Manager Signature / Date:	_ Date/Tir	ne:	

Form 201r22.xls (6/1/09)

From: (903) 348-3917 Patrick Buster Weston Solutions 825 E Santa Fe. Ave

Grants, NM 87020

Origin ID: GUPA

BILL SENDER

Ship Date: 30JAN12 ActWgt: 40.0 LB CAD: 2557564/INET3250

Delivery Address Bar Code

Ref# Invoice# PO#

Dept #

20406.012.035.0694. for approval expense reports

SHIP TO: (970) 490-1511 Lance Steere

ALS Laboratory Group 225 Commerce Drive

Fort Collins, CO 80524

TUE - 31 JAN A2
PRIORITY OVERNIGHT

TRK# 7931 6811 **2930**

XH FTCA

80524 co-us DEN

512G1/9F59/A278

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Ft. Collins, Colorado

Invoice: 50626

Invoice Date: 2/10/2012 Terms: Net 30

Due Date: 3/11/2012

Project Manager: Lance R. Steere

BILL TO

Weston Solutions, Inc. 5599 San Felipe, Ste. 700

Houston, TX 77056 Attn: Kristie Warr

CLIENT REFERENCE INFORMATION

Project ID: TO0035111101-120130-0002

Project Name: Johnny M ORS

PO: 0077655

Cost Code: NA

	ItemCode:	Description:	Matrix:	Qty:	ItemPrice:	ExtPrice:
SDG 1201354	3		***************************************			
Group 1						
_		ICP MetalsTAL suite + Mo, Sn	SOIL	13	\$85.00	\$1,105.00
		ICPMS MetalsU	SOIL	13	\$15.00	\$195.00
					Group Total	\$1,300.00
					SDG Total:	\$1,300.00

Comments: NA

Client agrees to pay delinquency charges on past due accounts at a rate of 1 1/2% per month (18% Annual). Client also agrees to pay collection costs and attorney fees if placed for collection.

Calculated Invoice Total:

\$1,300.00

REMIT TO: ALS Group USA, Corp

Page 1 of 1

LIMS Version: 6.560

Date Printed: Friday, February 10, 2012

ALS Group USA, Corp

Part of the ALS Group

P.O. Box 975444 Dallas, TX 75397

Phone (970) 490-1511 Fax (970) 490-1522 www.alsenviro.com

A Campbell Brothers Limited Company

If you wish to remit via credit card, please call us at (970) 490-1511

Emplomation 3

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Metals Case Narrative

Weston Solutions, Inc.

Johnny M ORS – TO0035111101-120130-002

Work Order Number: 1201354

- 1. This report consists of 13 soil samples.
- 2. The samples were received cool and intact by ALS on 1/31/12.
- 3. The samples were prepared and analyzed based on SW-846, 3rd Edition procedures.

For analysis by Trace ICP and ICP-MS, the samples were digested following method 3050B and SOP 806 Rev. 15.

For analysis by Cold Vapor AA (CVAA), the samples were digested following method 7471A and SOP 812 Rev. 15.

4. Analysis by Trace ICP followed method 6010B and SOP 834 Rev. 8.

Analysis by ICP-MS followed method 6020A and SOP 827 Rev. 8.

Analysis by CVAA followed method 7471A and SOP 812 Rev. 15.

- 5. All standards and solutions are NIST traceable and were used within their recommended shelf life.
- 6. The samples were prepared and analyzed within the established hold times.

All in house quality control procedures were followed, as described below.

- 7. General quality control procedures.
 - A preparation (method) blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.

- The preparation (method) blank associated with each digestion batch was below the practical quantitation limit for the requested analytes, with the exception of uranium in the method blank associated with the ICP-MS batch. The associated samples contained more than ten times the concentration of uranium in the method blank, so no further action was taken.
- All laboratory control sample criteria were met.
- All initial and continuing calibration blanks were below the practical quantitation limit for the requested analytes, with the exception of CCB6 for aluminum. The samples bracketed by this CCB contained more than ten times the concentration of aluminum that was detected in the CCB.
- All initial and continuing calibration verifications were within the acceptance criteria for the requested analytes.
- The high standard readbacks associated with Method 6010B were within acceptance criteria.
- The interference check samples associated with Method 6010B were within acceptance criteria.
- The interference check samples associated with Method 6020A were analyzed.
- 8. Matrix specific quality control procedures.

Sample 1201354-1 was designated as the quality control sample for the Trace ICP and ICP-MS analyses. Sample 1201354-13 was designated as the quality control sample for the mercury analysis.

Similarity of matrix and therefore relevance of the QC results should not be automatically inferred for any sample other than the native sample selected for QC.

A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met, with the following exceptions:

<u>Analyte</u>	Sample ID
Antimony	1201354-1MS & MSD
Barium	1201354-1MS & MSD
Calcium	1201354-1MS & MSD
Vanadium	1201354-1MS & MSD
Zinc	1201354-1MS & MSD

The native sample results are flagged for matrix spike failure and an analytical post spike was performed. The results of the spike were acceptable indicating that the matrix was not significantly affecting quantitation of these analytes.

Matrix spike recoveries could not be evaluated for the following analytes:

<u>Analyte</u>	Sample ID
Aluminum	1201354-1
Iron	1201354-1
Uranium	1201354-1

The concentrations of these analytes in the native sample were greater than four times the concentration of matrix spike added during the digestion. When sample concentration is that much greater than the spike added, spike recoveries may not be accurate. The laboratory control sample indicates that the digestion and analysis were in control.

A sample duplicate and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met, with the following exceptions:

<u>Analyte</u>	Sample ID
Barium	1201354-1D
Potassium	1201354-1D
Selenium	1201354-1D
Sodium	1201354-1D
Zinc	1201354-1D

The native sample results are flagged for duplicate failure.

A serial dilution was analyzed with each ICP batch. All acceptance criteria were met, with the following exceptions:

<u>Analyte</u>	Sample ID
Barium	1201354-1L
Potassium	1201354-1L
Zinc	1201354-1L

The native sample results are flagged for serial dilution failure.

9. Sample 1201354-13 required dilutions to bring iron into the analytical range of the Trace ICP. Accurate quantitation of iron is necessary to correct for spectral interferences on lead, selenium, thallium, and vanadium. The lead, selenium, thallium, and vanadium results were determined from the diluted sample.

It is a standard practice that samples for ICP-MS are analyzed at a dilution. Samples 1201354-2, -3, -5, -6, -7, -8, -9, and -11 required further dilutions to bring uranium into the analytical range of the ICP-MS.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Jill Latelle

Inorganics Primary Data Reviewer

Date

Inorganics Final Pata Reviewer

Date

Inorganic Data Reporting Qualifiers

The following qualifiers are used by the laboratory when reporting results of inorganic analyses.

- Result qualifier -- If the analyte was analyzed for but not detected a "U" is entered.
- QC qualifier -- Specified entries and their meanings are as follows:
 - E The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.
 - M Duplicate injection precision was not met.
 - N Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.
 - Z Spiked recovery not within control limits. An explanatory note may be included in the narrative.
 - * Duplicate analysis (relative percent difference) not within control limits.
 - S SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Chain of Custody

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1201354

Client Name: Weston Solutions, Inc.

Client Project Name: Johnny M ORS

Client Project Number: TO0035111101-120130-0002

Client PO Number: 0077655

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
JM-54-31-120128	1201354-1		SOIL	28-Jan-12	17:12
JM-55-31-120128	1201354-2		SOIL	28-Jan-12	17:10
JM-65-31-120128	1201354-3		SOIL	28-Jan-12	17:02
JM-66-31-120128	1201354-4		SOIL	28-Jan-12	17:05
JM-70-31-120128	1201354-5		SOIL	28-Jan-12	17:00
JM-70-32-120128	1201354-6		SOIL	28-Jan-12	17:00
JM-73-31-120128	1201354-7		SOIL	28-Jan-12	16:57
JM-77-31-120128	1201354-8		SOIL	28-Jan-12	16:55
JM-82-31-120128	1201354-9		SOIL	28-Jan-12	16:45
JM-84-31-120128	1201354-10		SOIL	28-Jan-12	16:39
JM-88-31-120128	1201354-11		SOIL	28-Jan-12	16:34
JMBKGD-NE-31-120128	1201354-12		SOIL	28-Jan-12	9:41
JMBKGD-NW-31-120128	1201354-13		SOIL	28-Jan-12	9:10

Page 1 of 1

DateShipped:

CarrierName:

AirbillNo:

USEPA CHAIN OF CUSTODY RECORD

Johnny M OPS

Johnny M ORS
Contact Name: Kristie Warr
Contact Phone: 713-985-6600

201354

No: TO0035111101-120130-0002

Cooler #: 1 Lab: ALS Laboratory Group Lab Phone: 970-490-1511

Lab#	Sample #	Analyses	Matrix	Collected	Sample Time	Container	Preservative	MS/ MSD	Samp_Concent ration
$\overline{(I)}$	JM-54-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:12	Jar	Ice	N	251,115 cpm
(2)	JM-55-31-120128 ·	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:10	Jar	Ice	N	156,052 cpm
(2) (3)	JM-65-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:02	Jar	Ice	N	342,018 cpm
(A)	JM-66-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:05	Jar	Ice	N	269,876 cpm
1900	JM-70-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
(6)	JM-70-32-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
	JM-73-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:57	Jar	Ice	N	209,993 cpm
(8)	JM-77-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:55	Jar	Ice	N	282,248 cpm
	JM-82-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:45	Jar	Ice	N	228,461 cpm
(10)	JM-84-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:38	Jar	Ice	N	117,322 cpm
m	JM-88-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:34	Jar	Ice	N	265,129 cpm
(12)	JMBKGD-NE-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:41	Jar	Ice	N	9,938 cpm
	JMBKGD-NW-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:10	Jar	Ice	N	13,502 cpm
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			to the second se
-									

Special Instructions: Standard TAT, SW846 6010/6020

SW846 7470/7471

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
1>/ sample	TES	1/50/13	Eng/Menhay	1/31/12	0925						
			10-0-7								
	PP WWW.										
•						The state of the s	V.000000 - N.00000		And Andrew Community of the Community of		†

CONDITION OF SAMPLE UPON RECEIPT FORM

Client: Weston Solutions Workorder No: 120	1354		
Project Manager: LRS Initials: SMF	Date:	1/31/12	=
Does this project require any special handling in addition to standard Paragon procedures?	-	YES	NO
Are custody seals on shipping containers intact?	NONE	YES) NO
3. Are Custody seals on sample containers intact?	NONE	YES	NO
4. Is there a COC (Chain-of-Custody) present or other representative documents?		YES	NO NO
5. Are the COC and bottle labels complete and legible?		YES	NO
6. Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)		YES	NO
Were airbills / shipping documents present and/or removable?	DROP OFF	YES	NO
8. Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	N/A	YES	NO
9. Are all aqueous non-preserved samples pH 4-9?	(N/A)	YES	NO
10. Is there sufficient sample for the requested analyses?		YES	NO
Were all samples placed in the proper containers for the requested analyses?		(YES)	NO
12. Are all samples within holding times for the requested analyses?		(YES)	NO
Were all sample containers received intact? (not broken or leaking, etc.)		YES)	NO
Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea > green pea	N/A)	YES	NO
15. Do perchlorate LCMS-MS samples have headspace? (at least 1/3 of container required)	N/A	YES	NO
16. Were samples checked for and free from the presence of residual chlorine? (Applicable when PM has indicated samples are from a chlorinated water source; note if field preservation with sodium thiosulfate was not observed.)	(N/A)	YES	NO
17. Were the samples shipped on ice?		YES	NO
18. Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: #2	RAD ONLY	(YES)	NO
Cooler #: / Temperature (°C): ذ No. of custody seals on cooler: 2 DOT Survey/Acceptance Information External μR/hr reading: 13 Were external μR/hr readings ≤ two times background and within DOT acceptance criteria? ▼ES NO / NA (If no, so Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE.		ND #16.	
If applicable, was the client contacted? YES / NO / NA Contact: Project Manager Signature / Date:	Date/Tin	ne:	

From: (903) 348-3917 Patrick Buster Weston Solutions 825 E Santa Fe. Ave

Grants, NM 87020

Origin ID: GUPA

J12101112190225

BILL SENDER

SHIP TO: (970) 490-1511 Lance Steere ALS Laboratory Group 225 Commerce Drive

Fort Collins, CO 80524

Ship Date: 30JAN12 ActWgt 40.0 LB CAD: 2557564/INET3250

Delivery Address Bar Code

Ref# Invoice # PO# Dept#

for approval expense reports

TUE - 31 JAN A2 PRIORITY OVERNIGHT

TRK# 6201

7931 6811 2930

XH FTCA

80524 CO-US

DEN

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Sample Results

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight

File Name: 120202A.

Sample Aliquot: 1.027 G Final Volume: 100 ML

Result Units: MG/KG Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier	
7429-90-5	ALUMINUM	1	6600	22			
7440-36-0	ANTIMONY	1	2.2	2.2	U	N	
7440-38-2	ARSENIC	1	6.5	1.1			
7440-39-3	BARIUM	1	330	11		*EN	
7440-41-7	BERYLLIUM	1	0.56	0.56	U		
7440-43-9	CADMIUM	1	0.56	0.56	U		
7440-70-2	CALCIUM	1	9600	110		N	
7440-47-3	CHROMIUM	1	5	1.1			
7440-48-4	COBALT	1	3.9	1.1			
7440-50-8	COPPER	1	7.4	1.1			
7439-89-6	IRON	1	13000	11			
7439-92-1	LEAD	1	16	0.33			
7439-95-4	MAGNESIUM	1	2500	110		-	
7439-96-5	MANGANESE	1	180	1.1			
7439-98-7	MOLYBDENUM	1	3.9	1.1			
7440-02-0	NICKEL	1	4.4	2.2			
7440-09-7	POTASSIUM	1	1400	110		*E	
7782-49-2	SELENIUM	1	11	0.56		*	
7440-22-4	SILVER	1	1.1	1.1	U		
7440-23-5	SODIUM	1	810	110		*	
7440-28-0	THALLIUM	1	2.1	1.1			
7440-31-5	TIN	1	5.6	5.6	U		
7440-62-2	VANADIUM	1	90	1.1		N	
7440-66-6	ZINC	1	120	2.2		⁺EN	

Data Package ID: it1201354-1

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-55-31-120128

Lab ID: 1201354-2

Sample Matrix: SOIL

% Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.041 G Final Volume: 100 ML

Result Units: MG/KG Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4300	21		
7440-36-0	ANTIMONY	1	2.1	2.1	U	
7440-38-2	ARSENIC	1	9.7	1		
7440-39-3	BARIUM	1	93	10		
7440-41-7	BERYLLIUM	1	0.52	0.52	U	
7440-43-9	CADMIUM	1	0.52	0.52	U	
7440-70-2	CALCIUM	1	11000	100		
7440-47-3	CHROMIUM	1	2.9	1		
7440-48-4	COBALT	1	2.7	1		
7440-50-8	COPPER	1	5	1		
7439-89-6	IRON	1	9700	10		
7439-92-1	LEAD	1	12	0.31		
7439-95-4	MAGNESIUM	1	1800	100		
7439-96-5	MANGANESE	1	200	1		
7439-98-7	MOLYBDENUM	1	7.3	1		
7440-02-0	NICKEL	1	2.6	2.1		
7440-09-7	POTASSIUM	1	620	100		
7782-49-2	SELENIUM	1	25	0.52		
7440-22-4	SILVER	1	1	1	U	
7440-23-5	SODIUM	1	100	100	U	
7440-28-0	THALLIUM	1	1.6	1		
7440-31-5	TIN	1	5.2	5.2	U	
7440-62-2	VANADIUM	1	99	1		
7440-66-6	ZINC	1	18	2.1		

Data Package ID: it1201354-1

ALS Environmental -- FC LIMS Version: 6,560

Page 3 of 26

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-65-31-120128

Lab ID: 1201354-3

Sample Matrix: SOIL

% Moisture: 12.7

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12
Prep Method: SW3050 Rev

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.001 G Final Volume: 100 ML

Result Units: MG/KG Clean DF: 1

	Prep Method: SW30	50 Rev B	File Name: 1	20202
CASNO	Target Analyte	Dilution	Result	R

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4300	23		
7440-36-0	ANTIMONY	1	2.3	2.3	U	
7440-38-2	ARSENIC	1	12	1.1		
7440-39-3	BARIUM	1	120	11		
7440-41-7	BERYLLIUM	1	0.57	0.57	U	
7440-43-9	CADMIUM	1	0.57	0.57	U	
7440-70-2	CALCIUM	1	11000	110		
7440-47-3	CHROMIUM	1	2.8	1.1		
7440-48-4	COBALT	1	2.3	1.1		
7440-50-8	COPPER	1	6.9	1.1		
7439-89-6	IRON	1	7500	11		
7439-92-1	LEAD	1	20	0.34		
7439-95-4	MAGNESIUM	1	1800	110		
7439-96-5	MANGANESE	1	160	1.1		
7439-98-7	MOLYBDENUM	1	13	1.1		
7440-02-0	NICKEL	1	2.3	2.3	U	
7440-09-7	POTASSIUM	1	640	110		
7782-49-2	SELENIUM	1	59	0.57		
7440-22-4	SILVER	1	1,1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.1	1.1	U	
7440-31-5	TIN	1	5.7	5.7	U	
7440-62-2	VANADIUM	1	190	1.1		
7440-66-6	ZINC	1	14	2.3		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-66-31-120128

Lab ID: 1201354-4

Sample Matrix: SOIL

% Moisture: 15.6 Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12 Prep Method: SW3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.041 G Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier		
7429-90-5	ALUMINUM	1	3300	23				
7440-36-0	ANTIMONY	1	2.3	2.3	U			
7440-38-2	ARSENIC	1	4.3	1.1				
7440-39-3	BARIUM	1	66	11				
7440-41-7	BERYLLIUM	1	0.57	0.57	U			
7440-43-9	CADMIUM	1	0.57	0.57	U			
7440-70-2	CALCIUM	1	13000	110				
7440-47-3	CHROMIUM	1	2.5	1.1				
7440-48-4	COBALT	1	3.7	1,1				
7440-50-8	COPPER	1	3.2	1.1				
7439-89-6	IRON	1	6600	11				
7439-92-1	LEAD	1	10	0.34				
7439-95-4	MAGNESIUM	1	1300	110				
7439-96-5	MANGANESE	1	170	1.1				
7439-98-7	MOLYBDENUM	1	3.7	1.1				
7440-02-0	NICKEL	1	3.1	2.3				
7440-09-7	POTASSIUM	1	560	110				
7782-49-2	SELENIUM	1	15	0.57				
7440-22-4	SILVER	1	1.1	1.1	U			
7440-23-5	SODIUM	1	110	110	U			
7440-28-0	THALLIUM	1	1.1	1.1	U			
7440-31-5	TIN	1	5.7	5.7	U			
7440-62-2	VANADIUM	1	75	1.1				
7440-66-6	ZINC	1	16	2.3				

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 7 of 26

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-70-31-120128

Lab ID: 1201354-5

Sample Matrix: SOIL

% Moisture: 14.2

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.034 G Final Volume: 100 ML

Result Units: MG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4100	23		
7440-36-0	ANTIMONY	1	2.3	2.3	U	
7440-38-2	ARSENIC	1	14	1.1		
7440-39-3	BARIUM	1	170	11		
7440-41-7	BERYLLIUM	1	0.56	0.56	U	
7440-43-9	CADMIUM	1	0.56	0.56	U	
7440-70-2	CALCIUM	1	9700	110		
7440-47-3	CHROMIUM	1	3.6	1.1		
7440-48-4	COBALT	1	2.9	1.1		
7440-50-8	COPPER	1	5.3	1.1		
7439-89-6	IRON	1	11000	11		
7439-92-1	LEAD	1	16	0.34		
7439-95-4	MAGNESIUM	1	1700	110		
7439-96-5	MANGANESE	1	150	1.1		
7439-98-7	MOLYBDENUM	1	11	1.1		
7440-02-0	NICKEL	1	3.1	2.3		
7440-09-7	POTASSIUM	1	670	110		
7782-49-2	SELENIUM	1	43	0.56		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.1	1.1	U	
7440-31-5	TIN	1	5.6	5.6	U	
7440-62-2	VANADIUM	1	130	1.1		
7440-66-6	ZINC	1	18	2.3		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JM-70-32-120128

Lab ID: 1201354-6

Sample Matrix: SOIL

% Moisture: 14.2 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.004 G Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4000	23		
7440-36-0	ANTIMONY	1	2.3	2.3	U	
7440-38-2	ARSENIC	1	6.1	1.2		
7440-39-3	BARIUM	1	170	12		
7440-41-7	BERYLLIUM	1	0.58	0.58	U	
7440-43-9	CADMIUM	1	0.58	0.58	U	
7440-70-2	CALCIUM	1	14000	120		
7440-47-3	CHROMIUM	1	3	1.2		
7440-48-4	COBALT	1	3.1	1.2		
7440-50-8	COPPER	1	4.6	1.2	_	
7439-89-6	IRON	1	8000	12		
7439-92-1	LEAD	1	15	0.35		
7439-95-4	MAGNESIUM	1	1700	120		
7439-96-5	MANGANESE	1	160	1.2		
7439-98-7	MOLYBDENUM	1	9.9	1.2		
7440-02-0	NICKEL	1	3.2	2.3		
7440-09-7	POTASSIUM	1	650	120		
7782-49-2	SELENIUM	1	45	0.58		
7440-22-4	SILVER	1	1.2	1.2	U	
7440-23-5	SODIUM	1	130	120		
7440-28-0	THALLIUM	1	1.2	1.2	U	
7440-31-5	TIN	1	5.8	5.8	U	
7440-62-2	VANADIUM	1	120	1.2		
7440-66-6	ZINC	1	18	2.3		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-73-31-120128

Lab ID: 1201354-7

Sample Matrix: SOIL % Moisture: 11.6

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.031 G Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4400	22		
7440-36-0	ANTIMONY	1	2.2	2.2	U	
7440-38-2	ARSENIC	1	8.5	1.1		
7440-39-3	BARIUM	1	130	11		
7440-41-7	BERYLLIUM	1	0.55	0.55	U	
7440-43-9	CADMIUM	1	0.55	0.55	U	
7440-70-2	CALCIUM	1	33000	110		
7440-47-3	CHROMIUM	1	3.7	1,1		
7440-48-4	COBALT	1	3.3	1.1		
7440-50-8	COPPER	1	5.3	1.1		
7439-89-6	IRON	1	9100	11		
7439-92-1	LEAD	1	14	0.33		
7439-95-4	MAGNESIUM	1	1900	110		
7439-96-5	MANGANESE	1	200	1.1		
7439-98-7	MOLYBDENUM	1	4.7	1.1		
7440-02-0	NICKEL	1	4.8	2.2		
7440-09-7	POTASSIUM	1	820	110		
7782-49-2	SELENIUM	1	33	0.55		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.3	1.1		
7440-31-5	TIN	1	5.5	5.5	υ	
7440-62-2	VANADIUM	1	93	1.1		
7440-66-6	ZINC	1	22	2.2		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

18 of 195

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-77-31-120128

Lab ID: 1201354-8

Sample Matrix: SOIL

% Moisture: 21.6 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2 QCBatchID: IP120202-2-1

Run ID: IT120202-241

Cleanup: NONE Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.012 G Final Volume: 100 ML Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	6500	25		
7440-36-0	ANTIMONY	1	2.5	2.5	U	
7440-38-2	ARSENIC	1	8.7	1.3		
7440-39-3	BARIUM	1	91	13		
7440-41-7	BERYLLIUM	1	0.63	0.63	U	
7440-43-9	CADMIUM	1	0.63	0.63	U	
7440-70-2	CALCIUM	1	10000	130		
7440-47-3	CHROMIUM	1	5.9	1.3		
7440-48-4	COBALT	1	5.9	1.3		
7440-50-8	COPPER	1	9.9	1.3		
7439-89-6	IRON	1	14000	13		
7439-92-1	LEAD	1	17	0.38		
7439-95-4	MAGNESIUM	1	2500	130		
7439-96-5	MANGANESE	1	200	1,3		
7439-98-7	MOLYBDENUM	1	13	1.3		
7440-02-0	NICKEL	1	7	2.5		
7440-09-7	POTASSIUM	1	1400	130		
7782-49-2	SELENIUM	1	18	0.63		
7440-22-4	SILVER	1	1.3	1.3	υ	
7440-23-5	SODIUM	1	130	130		
7440-28-0	THALLIUM	1	2.1	1.3		
7440-31-5	TIN	1	6.3	6.3	U	
7440-62-2	VANADIUM	1	68	1.3		
7440-66-6	ZINC	1	36	2.5		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC
LIMS Version: 6.560

Page 15 of 26

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-82-31-120128

Lab ID: 1201354-9

Sample Matrix: SOIL

% Moisture: 9.2 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.031 G Final Volume: 100 ML Result Units: MG/KG

Result Units: MG/KG
Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4700	21		
7440-36-0	ANTIMONY	1	2.1	2.1	U	
7440-38-2	ARSENIC	1	10	1.1		
7440-39-3	BARIUM	1	78	11		
7440-41-7	BERYLLIUM	1	0.53	0.53	U	
7440-43-9	CADMIUM	1	0.53	0.53	U	
7440-70-2	CALCIUM	1	16000	110		
7440-47-3	CHROMIUM	1	3.8	1.1		
7440-48-4	COBALT	1	3.2	1.1		
7440-50-8	COPPER	1	4.9	1.1		
7439-89-6	IRON	1	12000	11		
7439-92-1	LEAD	1	13	0.32		
7439-95-4	MAGNESIUM	1	2100	110		
7439-96-5	MANGANESE	1	200	1.1		
7439-98-7	MOLYBDENUM	1	7.6	1.1		
7440-02-0	NICKEL	1	4	2,1		
7440-09-7	POTASSIUM	1	820	110		
7782-49-2	SELENIUM	1	26	0.53		
7440-22-4	SILVER	1	1,1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.1	1.1	ت د	
7440-31-5	TIN	1	5.3	5.3	U	
7440-62-2	VANADIUM	1	160	1.1		
7440-66-6	ZINC	1	24	2.1		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-84-31-120128

Lab ID: 1201354-10

Sample Matrix: SOIL

% Moisture: 27.2 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.022 G
Final Volume: 100 ML

Result Units: MG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	9000	27		
7440-36-0	ANTIMONY	1	2.7	2.7	U	
7440-38-2	ARSENIC	1	6.5	1.3		
7440-39-3	BARIUM	1	100	13		
7440-41-7	BERYLLIUM	1	0.77	0.67		
7440-43-9	CADMIUM	1	0.67	0.67	U	
7440-70-2	CALCIUM	1	18000	130		
7440-47-3	CHROMIUM	1	8.3	1.3		
7440-48-4	COBALT	1	7.9	1.3		***************************************
7440-50-8	COPPER	1	15	1.3		
7439-89-6	IRON	1	19000	13		
7439-92-1	LEAD	1	17	0.4		
7439-95-4	MAGNESIUM	1	3000	130		
7439-96-5	MANGANESE	1	270	1.3		***************************************
7439-98-7	MOLYBDENUM	1	1.3	1.3	U	
7440-02-0	NICKEL	1	11	2.7		
7440-09-7	POTASSIUM	1	2000	130		
7782-49-2	SELENIUM	1	1.7	0.67		
7440-22-4	SILVER	1	1.3	1.3	U	
7440-23-5	SODIUM	1	130	130	υ	
7440-28-0	THALLIUM	1	2.2	1.3		
7440-31-5	TIN	1	6.7	6.7	U	
7440-62-2	VANADIUM	1	29	1.3		
7440-66-6	ZINC	1	50	2.7		····

Data Package ID: it1201354-1

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-88-31-120128

Lab ID: 1201354-11

Sample Matrix: SOIL

% Moisture: 15.7

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12
Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.007 G Final Volume: 100 ML Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	5600	24		
7440-36-0	ANTIMONY	1	2.4	2.4	U	
7440-38-2	ARSENIC	1	20	1.2		
7440-39-3	BARIUM	1	87	12		
7440-41-7	BERYLLIUM	1	0.59	0.59	U	
7440-43-9	CADMIUM	1	0.59	0.59	U	
7440-70-2	CALCIUM	1	8500	120		
7440-47-3	CHROMIUM	1	4	1.2		
7440-48-4	COBALT	1	4.5	1.2		
7440-50-8	COPPER	1	8.6	1.2		
7439-89-6	IRON	1	13000	12		
7439-92-1	LEAD	1	19	0.35		
7439-95-4	MAGNESIUM	1	2300	120		
7439-96-5	MANGANESE	1	230	1.2		
7439-98-7	MOLYBDENUM	1	22	1.2		
7440-02-0	NICKEL	1	5.1	2.4		
7440-09-7	POTASSIUM	1	1100	120		
7782-49-2	SELENIUM	1	76	0.59		
7440-22-4	SILVER	1	1,2	1.2	U	
7440-23-5	SODIUM	1	120	120	U	
7440-28-0	THALLIUM	1	2.9	1.2		
7440-31-5	TIN	1	5.9	5.9	U	
7440-62-2	VANADIUM	1	160	1.2		
7440-66-6	ZINC	1	31	2.4		

Data Package ID: it1201354-1

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JMBKGD-NE-31-120128

Lab ID: 1201354-12

Sample Matrix: SOIL % Moisture: 11.2

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2 QCBatchID: IP120202-2-1

Run ID: IT120202-2-1

Cleanup: NONE Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.033 G Final Volume: 100 ML Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifie
7429-90-5	ALUMINUM	1	3000	22		
7440-36-0	ANTIMONY	1	2.2	2.2	U	
7440-38-2	ARSENIC	1	1.8	1.1		
7440-39-3	BARIUM	1	51	11		
7440-41-7	BERYLLIUM	1	0.54	0.54	U	
7440-43-9	CADMIUM	1	0.54	0.54	U	
7440-70-2	CALCIUM	1	1100	110		
7440-47-3	СНКОМІИМ	1	3.5	1.1		
7440-48-4	COBALT	1	2.2	1.1		
7440-50-8	COPPER	1	3.5	1.1		
7439-89-6	IRON	1	7800	11		
7439-92-1	LEAD	1	6.5	0.33		
7439-95-4	MAGNESIUM	1	970	110		
7439-96-5	MANGANESE	1	130	1.1		
7439-98-7	MOLYBDENUM	1	1.1	1.1	U	
7440-02-0	NICKEL	1	4	2.2		
7440-09-7	POTASSIUM	1	770	110		
7782-49-2	SELENIUM	1	0.81	0.54		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.7	1.1		
7440-31-5	TIN	1	5.4	5.4	U	
7440-62-2	VANADIUM	1	8.9	1.1		
7440-66-6	ZINC	1	19	2.2		

Data Package ID: it1201354-1

ALS Environmental -- FC
LIMS Version: 6.560

Page 23 of 26

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JMBKGD-NW-31-120128

Lab ID: 1201354-13

Sample Matrix: SOIL % Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.014 G 100 ML Final Volume: Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	6100	21		
7440-36-0	ANTIMONY	1	2.1	2.1	U	
7440-38-2	ARSENIC	1	7	1.1		
7440-39-3	BARIUM	1	100	11		
7440-41-7	BERYLLIUM	1	0.64	0.53		
7440-43-9	CADMIUM	1	0.53	0.53	U	
7440-70-2	CALCIUM	1	4600	110		
7440-47-3	CHROMIUM	1	7.4	1.1		
7440-48-4	COBALT	1	7	1.1		***************************************
7440-50-8	COPPER	1	9.9	1.1		
7439-89-6	IRON	5	27000	53		
7439-92-1	LEAD	5	11	1.6		
7439-95-4	MAGNESIUM	1	2800	110		
7439-96-5	MANGANESE	1	270	1.1		
7439-98-7	MOLYBDENUM	1	1.1	1.1	U	
7440-02-0	NICKEL	1	7.7	2.1		
7440-09-7	POTASSIUM	1	2300	110		
7782-49-2	SELENIUM	5	2.7	2.7	U	
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	130	110		
7440-28-0	THALLIUM	5	5.3	5.3	U	
7440-31-5	TIN	1	5.3	5.3	U	
7440-62-2	VANADIUM	5	19	5.3		
7440-66-6	ZINC	1	40	2.1		

Data Package ID: it1201354-1

Total URANIUM

Method SW6020 Revision A

Sample Results

Lab Name: ALS Environmental -- FC Client Name: Weston Solutions, Inc.

Client Project ID: Johnny M ORS T00035111101-120130-0002

Work Order Number: 1201354 Reporting Basis: Dry Weight Final Volume: 100 ml

porting Basis: Dry Weight Matrix: SOIL
Prep Method: SW3050B Result Units: UG/KG

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Reporting Limit	Flag	Sample Aliquot
JM-54-31-120128	1201354-1	01/28/2012	02/02/2012	02/03/2012	12.5	10	38000	11		1.027 g
JM-55-31-120128	1201354-2	01/28/2012	02/02/2012	02/03/2012	7.4	100	140000	100		1.041 g
JM-65-31-120128	1201354-3	01/28/2012	02/02/2012	02/03/2012	12.7	100	440000	110		1.001 g
JM-66-31-120128	1201354-4	01/28/2012	02/02/2012	02/03/2012	15.6	10	43000	11		1.041 g
JM-70-31-120128	1201354-5	01/28/2012	02/02/2012	02/03/2012	14.2	100	250000	110		1.034 g
JM-70-32-120128	1201354-6	01/28/2012	02/02/2012	02/03/2012	14.2	100	290000	120		1.004 g
JM-73-31-120128	1201354-7	01/28/2012	02/02/2012	02/03/2012	11.6	100	140000	110		1.031 g
JM-77-31-120128	1201354-8	01/28/2012	02/02/2012	02/03/2012	21.6	100	330000	130		1.012 g
JM-82-31-120128	1201354-9	01/28/2012	02/02/2012	02/03/2012	9.2	100	150000	110		1.031 g
JM-84-31-120128	1201354-10	01/28/2012	02/02/2012	02/03/2012	27.2	10	32000	13		1.022 g
JM-88-31-120128	1201354-11	01/28/2012	02/02/2012	02/03/2012	15.7	100	330000	120		1.007 g
JMBKGD-NE-31-120128	1201354-12	01/28/2012	02/02/2012	02/03/2012	11.2	10	2100	11		1.033 g
JMBKGD-NW-31-120128	1201354-13	01/28/2012	02/02/2012	02/03/2012	7.4	10	1200	11		1.014 g

Comments:

1. ND or U = Not Detected at or above the client requested detection limit.

Data Package ID: im1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 1 of 1

LIMS Version: 6.560

Total MERCURY

Method SW7471 Revision A

Sample Results

Lab Name: ALS Environmental -- FC Client Name: Weston Solutions, Inc.

Client Project ID: Johnny M ORS TO0035111101-120130-0002

Work Order Number: 1201354 Reporting Basis: Dry Weight Final Volume: 100 g Matrix: SOIL

porting Basis: Dry Weight Matrix: SOIL
Prep Method: METHOD Result Units: MG/KG

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Reporting Limit	Flag	Sample Aliquot
JM-54-31-120128	1201354-1	01/28/2012	02/06/2012	02/07/2012	12.5	1	0.037	0.037	U	0.614 g
JM-55-31-120128	1201354-2	01/28/2012	02/06/2012	02/07/2012	7.4	1	0.035	0.035	U	0.616 g
JM-65-31-120128	1201354-3	01/28/2012	02/06/2012	02/07/2012	12.7	1	0.053	0.038		0.603 g
JM-66-31-120128	1201354-4	01/28/2012	02/06/2012	02/07/2012	15.6	1	0.039	0.039	C	0.613 g
JM-70-31-120128	1201354-5	01/28/2012	02/06/2012	02/07/2012	14.2	1	0.039	0.039	υ	0.605 g
JM-70-32-120128	1201354-6	01/28/2012	02/06/2012	02/07/2012	14.2	1	0.039	0.039	Ü	0.6 g
JM-73-31-120128	1201354-7	01/28/2012	02/06/2012	02/07/2012	11.6	1	0.037	0.037	U	0.615 g
JM-77-31-120128	1201354-8	01/28/2012	02/06/2012	02/07/2012	21.6	1	0.046	0.042		0.604 g
JM-82-31-120128	1201354-9	01/28/2012	02/06/2012	02/07/2012	9.2	1	0.036	0.036	υ	0.608 g
JM-84-31-120128	1201354-10	01/28/2012	02/06/2012	02/07/2012	27.2	1	0.045	0.045	U	0.61 g
JM-88-31-120128	1201354-11	01/28/2012	02/06/2012	02/07/2012	15.7	1	0.072	0.039		0.602 g
JMBKGD-NE-31-120128	1201354-12	01/28/2012	02/06/2012	02/07/2012	11.2	1	0.037	0.037	U	0.614 g
JMBKGD-NW-31-120128	1201354-13	01/28/2012	02/06/2012	02/07/2012	7.4	1	0.036	0.036	U	0.608 g

Comments:

1. ND or U = Not Detected at or above the client requested detection limit.

Data Package ID: hg1201354-1

ALS Environmental -- FC

LIMS Version: 6.560

Page 1 of 1

Summary Report Forms

ICP Metals

Method SW6010B Method Blank

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: IP120202-2MB

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1 Cleanup: NONE

Basis: N/A File Name: 120202A. Sample Aliquot: 1 g Final Volume: 100 ml Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	20	20	U	
7440-36-0	ANTIMONY	1	2	2	U	
7440-38-2	ARSENIC	1	1	1	U	
7440-39-3	BARIUM	1	10	10	U	
7440-41-7	BERYLLIUM	1	0.5	0.5	U	***************************************
7440-43-9	CADMIUM	1	0.5	0.5	U	
7440-70-2	CALCIUM	1	100	100	U	
7440-47-3	CHROMIUM	1	1	1	U	
7440-48-4	COBALT	1	1	1	U	
7440-50-8	COPPER	1	1	1	U	
7439-89-6	IRON	1	10	10	U	
7439-92-1	LEAD	1	0.3	0.3	U	
7439-95-4	MAGNESIUM	1	100	100	U	***************************************
7439-96-5	MANGANESE	1	1	1	U	
7439-98-7	MOLYBDENUM	1	1	1	U	
7440-02-0	NICKEL	1	2	2	U	
7440-09-7	POTASSIUM	1	100	100	U	
7782-49-2	SELENIUM	1	0.5	0.5	U	
7440-22-4	SILVER	1	1	1	U	
7440-23-5	SODIUM	1	100	100	U	
7440-28-0	THALLIUM	1	1	1	U	
7440-31-5	TIN	1	5	5	U	
7440-62-2	VANADIUM	1	1	1	U	
7440-66-6	ZINC	1	2	2	U	

Data Package ID: it1201354-1

ICP Metals

Method SW6010B **Laboratory Control Sample**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: IP120202-2LCS

Sample Matrix: SOIL

Prep Batch: IP120202-2

Sample Aliquot:

1 g

% Moisture: N/A

QCBatchID: IP120202-2-1

Final Volume: 100 ml

Date Collected: N/A

· Run ID: IT120202-2A1

Result Units: MG/KG

Date Extracted: 02/02/2012

Cleanup: NONE

Clean DF:

Date Analyzed: 02/02/2012

Basis: N/A

Prep Method: SW3050B File Name: 120202A.

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
7429-90-5	ALUMINUM	200	218	20	***************************************	109	80 - 120%
7440-36-0	ANTIMONY	50	45.6	2		91	80 - 120%
7440-38-2	ARSENIC	200	190	1		95	80 - 120%
7440-39-3	BARIUM	200	208	10		104	80 - 120%
7440-41-7	BERYLLIUM	5	4.74	0.5		95	80 - 120%
7440-43-9	CADMIUM	5	4.97	0.5		99	80 - 120%
7440-70-2	CALCIUM	4000	3720	100		93	80 - 120%
7440-47-3	CHROMIUM	20	19.5	1		97	80 - 120%
7440-48-4	COBALT	50	47.6	1		95	80 - 120%
7440-50-8	COPPER	25	25.7	1		103	80 - 120%
7439-89-6	IRON	100	104	10		104	80 - 120%
7439-92-1	LEAD	50	48.5	0.3		97	80 - 120%
7439-95-4	MAGNESIUM	4000	3620	100		90	80 - 120%
7439-96-5	MANGANESE	50	49.5	1		99	80 - 120%
7439-98-7	MOLYBDENUM	100	96.3	1		96	80 - 120%
7440-02-0	NICKEL	50	48.2	2		96	80 - 120%
7440-09-7	POTASSIUM	4000	3760	100		94	80 - 120%
7782-49-2	SELENIUM	200	179	0.5		90	80 - 120%
7440-22-4	SILVER	10	9.34	1		93	80 - 120%
7440-23-5	SODIUM	4000	3590	100		90	80 - 120%
7440-28-0	THALLIUM	200	198	1		99	80 - 120%
7440-31-5	TIN	50	49.2	5		98	80 - 120%
7440-62-2	VANADIUM	50	48.9	1		98	80 - 120%
7440-66-6	ZINC	50	46.5	2		93	80 - 120%

Data Package ID: it1201354-1

ALS Environmental - FC

Page 1 of 2

ICP Metals

Method SW6010B Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

LabID: 1201354-1MS

Sample Matrix: SOIL

% Moisture: 12.5 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Method: SW3050 Rev B Prep Batch: IP120202-2

QCBatchiD: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.018 g

Final Volume: 100 ml Result Units: MG/KG File Name: 120202A.

CASNO	Target Analyte	Sample Result	Samp Qual	MS Result	MS Qual	Reporting Limit	Spike Added	MS % Rec.	Control Limits
7429-90-5	ALUMINUM	6600		9990		22.5	225	1490	80 - 120%
7440-36-0	ANTIMONY	2.2	U	28.8	Ν	2.25	56.2	51	80 - 120%
7440-38-2	ARSENIC	6.5		222		1.12	225	96	80 - 120%
7440-39-3	BARIUM	330		379	N	11,2	225	20	80 - 120%
7440-41-7	BERYLLIUM	0.56	U	6.02		0.562	5.62	107	80 - 120%
7440-43-9	CADMIUM	0.56	U	5.89		0.562	5.62	105	80 - 120%
7440-70-2	CALCIUM	9600		12500	N	112	4490	65	80 - 120%
7440-47-3	CHROMIUM	5		28.9		1.12	22.5	106	80 - 120%
7440-48-4	COBALT	3.9		58.2		1.12	56.2	97	80 - 120%
7440-50-8	COPPER	7.4		37.8		1.12	28.1	108	80 - 120%
7439-89-6	IRON	13000		14200		11.2	112	954	80 - 120%
7439-92-1	LEAD	16		69.7		0.337	56.2	96	80 - 120%
7439-95-4	MAGNESIUM	2500		7090		112	4490	102	80 - 120%
7439-96-5	MANGANESE	180		232		1.12	56.2	85	80 - 120%
7439-98-7	MOLYBDENUM	3.9		110		1.12	112	95	80 - 120%
7440-02-0	NICKEL	4.4		59.8		2.25	56.2	99	80 - 120%
7440-09-7	POTASSIUM	1400		6030		112	4490	104	80 - 120%
7782-49-2	SELENIUM	11		213		0.562	225	90	80 - 120%
7440-22-4	SILVER	1.1	U	10.8		1.12	11.2	96	80 - 120%
7440-23-5	SODIUM	810		4490		112	4490	82	80 - 120%
7440-28-0	THALLIUM	2.1		225		1.12	225	99	80 - 120%
7440-31-5	TIN	5.6	U	57.5		5.62	56.2	102	80 - 120%
7440-62-2	VANADIUM	90		170	N	1.12	56.2	142	80 - 120%
7440-66-6	ZINC	120		85.2	N	2.25	56.2	-70	80 - 120%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 1 of 2

Method SW6010B Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

LabID: 1201354-1MSD

Sample Matrix: SOIL

% Moisture: 12.5
Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.015 g Final Volume: 100 ml

> Result Units: MG/KG File Name: 120202A.

Prep Method: SW3050 Rev B

CASNO	Target Analyte	MSD Result	MSD Qual	Spike Added	MSD % Rec.	Reporting Limit	RPD Limit	RPD
7429-90-5	ALUMINUM	10300		225	1611	22.5	20	3
7440-36-0	ANTIMONY	29	N	56.3	52	2.25	20	1
7440-38-2	ARSENIC	222		225	96	1.13	20	0
7440-39-3	BARIUM	388	Z	225	24	11.3	20	2
7440-41-7	BERYLLIUM	6.02		5.63	107	0.563	20	0
7440-43-9	CADMIUM	5.87		5.63	104	0.563	20	0
7440-70-2	CALCIUM	13100	N	4510	78	113	20	4
7440-47-3	CHROMIUM	29		22.5	106	1.13	20	0
7440-48-4	COBALT	58.1		56.3	96	1.13	20	0
7440-50-8	COPPER	38.4		28.2	110	1.13	20	1
7439-89-6	IRON	14600		113	1279	11.3	20	3
7439-92-1	LEAD	71.1		56.3	98	0.338	20	2
7439-95-4	MAGNESIUM	7190		4510	104	113	20	2
7439-96-5	MANGANESE	240		56.3	99	1.13	20	3
7439-98-7	MOLYBDENUM	110		113	95	1.13	20	0
7440-02-0	NICKEL	60.3		56.3	99	2.25	20	1
7440-09-7	POTASSIUM	6140		4510	106	113	20	2
7782-49-2	SELENIUM	213		225	90	0.563	20	0
7440-22-4	SILVER	10.9	***************************************	11.3	97	1.13	20	1
7440-23-5	SODIUM	4560		4510	83	113	20	1
7440-28-0	THALLIUM	223		225	98	1.13	20	0
7440-31-5	TIN	56.5	:	56.3	100	5.63	20	2
7440-62-2	VANADIUM	176	N	56.3	154	1.13	20	4
7440-66-6	ZINC	84.7	N	56.3	-71	2.25	20	1

Data Package ID: it1201354-1

ALS Environmental - FC

Page 2 of 2

Method SW6010 Analytical Spike Sample Recovery

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JM-54-31-120128

VANADIUM

ZINC

LabID: 1201354-1A

Run ID: IT120202-2A1

Date Analyzed: 02-Feb-12 Result Units: mg/l

0.806

1.12

Target Analyte	Sample Result	Samp Qual	PS Result	PS Qual	Spike Added	PS % Rec.	Control Limits
ANTIMONY	0.0200	U	0.478		0.5	96	75 - 125%
BARIUM	3.01		5.03		2	101	75 - 125%
CALCIUM	86.2		122		40	89	75 - 125%

1.26

1.54

0.5

0.5

75 - 125%

75 - 125%

85

Method SW6010 **Duplicate Sample Results**

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1D

Sample Matrix: SOIL

% Moisture: 12.5 Date Collected: 01/28/2012

Date Extracted: 02/02/2012

Date Analyzed: 02/02/2012

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.023 g Final Volume: 100 ml

Result Units: MG/KG Clean DF:

RPD

RPD

				_					
-	CASNO	Target Analyte	Sample Result	Samp Qual	Duplicate Result	Dup Qual	Reporting Limit	Dilution Factor	
7	429-90-5	ALUMINUM	6600		6190		22.4	1	
7	440-36-0	ANTIMONY	2.2	U	2.24	U	2.24	1	

CASHO	raiget Analyte	Result	Qual	Result	Qual	Limit	Factor	IXI D	Limit
7429-90-5	ALUMINUM	6600		6190		22.4	1	7	20
7440-36-0	ANTIMONY	2.2	U	2.24	U	2.24	1		20
7440-38-2	ARSENIC	6.5		5.98		1.12	1	9	20
7440-39-3	BARIUM	330		154	*	11.2	1	74	20
7440-41-7	BERYLLIUM	0.56	U	0.559	U	0.559	1		20
7440-43-9	CADMIUM	0.56	U	0.559	U	0.559	1		20
7440-70-2	CALCIUM	9600		8100		112	1	17	20
7440-47-3	СНКОМІИМ	5		4.71	"	1.12	1		20
7440-48-4	COBALT	3.9		3.63		1.12	1		20
7440-50-8	COPPER	7.4		6.8		1.12	1	9	20
7439-89-6	IRON	13000		12700		11.2	1	4	20
7439-92-1	LEAD	16		14.8		0.335	1	8	20
7439-95-4	MAGNESIUM	2500		2320		112	1	8	20
7439-96-5	MANGANESE	180		166		1.12	1	10	20
7439-98-7	MOLYBDENUM	3.9		3.79		1.12	1		20
7440-02-0	NICKEL	4.4		4.26		2.24	1		20
7440-09-7	POTASSIUM	1400		1050	*	112	1	25	20
7782-49-2	SELENIUM	11		15.3	*	0.559	1	33	20
7440-22-4	SILVER	1.1	U	1.12	U	1.12	1		20
7440-23-5	SODIUM	810		148	*	112	1	138	20
7440-28-0	THALLIUM	2.1		1.77		1.12	1		20
7440-31-5	TIN	5.6	υ	5.59	U	5.59	1		20
7440-62-2	VANADIUM	90		90.3		1.12	1	1	20
7440-66-6	ZINC	120		59	*	2.24	1	71	20

Method SW6010 Serial Dilution

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1L

Run ID: IT120202-2A1

Date Analyzed: 02-Feb-12

Result Units: mg/l

CASNO	Target Analyte	Sample Result	Samp Qual	SD Result	SD Qual	EPA Qualifier	%D
7429-90-5	ALUMINUM	59.7		57.9			3
7440-36-0	ANTIMONY	0.0200	U	0.100	Ų		
7440-38-2	ARSENIC	0.0588		0.0657			
7440-39-3	BARIUM	3.01		2.56		E	15
7440-41-7	BERYLLIUM	0.00500	U	0.0250	U		
7440-43-9	CADMIUM	0.00500	U	0.0250	U		
7440-70-2	CALCIUM	86.2		85.6			1
7440-47-3	CHROMIUM	0.0452		0.0500	U		
7440-48-4	COBALT	0.0353		0.0500	U		
7440-50-8	COPPER	0.0665		0.0500	U		
7439-89-6	IRON	118		114			4
7439-92-1	LEAD	0.144		0.140	***		3
7439-95-4	MAGNESIUM	22.5		21.8			3
7439-96-5	MANGANESE	1.65		1.66			0
7439-98-7	MOLYBDENUM	0.0349		0.0500	U		
7440-02-0	NICKEL	0.0396		0.100	U		
7440-09-7	POTASSIUM	12.1		7.58		Е	38
7782-49-2	SELENIUM	0.0988		0.0898			9
7440-22-4	SILVER	0.0100	U	0.0500	U		
7440-23-5	SODIUM	7.31		5.00	Ų		
7440-28-0	THALLIUM	0.0190		0.0500	U		
7440-31-5	TIN	0.0500	U	0.250	U		
7440-62-2	VANADIUM	0.806		0.811			1
7440-66-6	ZINC	1.12		0.973		E	13

Data Package ID: it1201354-1

Page 1 of 1

Prep Batch ID: IP120202-2

Start Date: 02/02/12 Start Time: 7:00

End Date: 02/02/12

Concentration Method: NONE

Batch Created By: bas

Prep Analyst: Brent A. Stanfield

End Time: 17:00

Extract Method: SW3050B

Date Created: 02/02/12 Time Created: 7:00

Comments:

Initial Volume Units: 9 Final Volume Units: ml

Validated By: bas

Date Validated: 02/02/12 Time Validated: 7:35

QC Batch ID: IP120202-2-1

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Number
IP120202-2	MB	XXXXXX	SOIL	XXXXXX	1	100	NONE	1	1201354
IP120202-2	LCS	XXXXXX	SOIL	XXXXXX	1	100	NONE	1	1201354
1201354-1	MS	JM-54-31-120128	SOIL	1/28/2012	1.018	100	NONE	1	1201354
1201354-1	MSD	JM-54-31-120128	SOIL	1/28/2012	1.015	100	NONE	1	1201354
1201354-1	DUP	JM-54-31-120128	SOIL	1/28/2012	1.023	100	NONE	1	1201354
1201354-1	SMP	JM-54-31-120128	SOIL	1/28/2012	1.027	100	NONE	1	1201354
1201354-10	SMP	JM-84-31-120128	SOIL	1/28/2012	1.022	100	NONE	1	1201354
1201354-11	SMP	JM-88-31-120128	SOIL	1/28/2012	1.007	100	NONE	1	1201354
1201354-12	SMP	JMBKGD-NE-31-1201	SOIL	1/28/2012	1.033	100	NONE	1	1201354
1201354-13	SMP	JMBKGD-NW-31-120	SOIL	1/28/2012	1.014	100	NONE	1	1201354
1201354-2	SMP	JM-55-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	1201354
1201354-3	SMP	JM-65-31-120128	SOIL	1/28/2012	1.001	100	NONE	1	1201354
1201354-4	SMP	JM-66-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	1201354
1201354-5	SMP	JM-70-31-120128	SOIL	1/28/2012	1.034	100	NONE	1	1201354
1201354-6	SMP	JM-70-32-120128	SOIL	1/28/2012	1.004	100	NONE	1	1201354
1201354-7	SMP	JM-73-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	1201354
1201354-8	SMP	JM-77-31-120128	SOIL	1/28/2012	1.012	100	NONE	1	1201354
1201354-9	SMP	JM-82-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	1201354

QC Types

CAR	Carrier reference sample	DUP	Laboratory Duplicate
LCS	Laboratory Control Sample	LCSD	Laboratory Control Sample Duplicat
MB	Method Blank	MS	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate	REP	Sample replicate
RV\$	Reporting Level Verification Standar	SMP	Field Sample
SYS	Sample Yield Spike		

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: ICV

QC Type: Initial Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 15:07

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	25	25.5	0.2		102	90 - 110%
7440-36-0	ANTIMONY	0.25	0.246	0.02		98	90 - 110%
7440-38-2	ARSENIC	0.25	0.259	0.01		104	90 - 110%
7440-39-3	BARIUM	0.5	0.528	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.25	0.250	0.005		100	90 - 110%
7440-43-9	CADMIUM	0.25	0.253	0.005	***************************************	101	90 - 110%
7440-70-2	CALCIUM	25	25.1	1		100	90 - 110%
7440-47-3	CHROMIUM	0.5	0.510	0.01		102	90 - 110%
7440-48-4	COBALT	0.25	0.249	0.01		100	90 - 110%
7440-50-8	COPPER	0.5	0.512	0.01		102	90 - 110%
7439-89-6	IRON	10	10.2	0.1		102	90 - 110%
7439-92-1	LEAD	0.5	0.509	0.003		102	90 - 110%
7439-95-4	MAGNESIUM	25	24.8	1		99	90 - 110%
7439-96-5	MANGANESE	0.5	0.513	0.01		103	90 - 110%
7439-98-7	MOLYBDENUM	0.5	0.499	0.01		100	90 - 110%
7440-02-0	NICKEL	0.5	0.497	0.02		99	90 - 110%
7440-09-7	POTASSIUM	25	23.5	1		94	90 - 110%
7782-49-2	SELENIUM	0.5	0.510	0.005		102	90 - 110%
7440-22-4	SILVER	0.1	0.104	0.01		104	90 - 110%
7440-23-5	SODIUM	25	22.9	1		92	90 - 110%
7440-28-0	THALLIUM	0.25	0.266	0.01		106	90 - 110%
7440-31 - 5	TIN	0.5	0.521	0.05		104	90 - 110%
7440-61-1	URANIUM	2.5	2.55	0.2		102	90 - 110%
7440-62-2	VANADIUM	0.25	0.251	0.01		100	90 - 110%
7440-66-6	ZINC	0.5	0.492	0.02		98	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental - FC

Page 1 of 7

LIMS Version: 6.560

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCV1

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012
Time Analyzed: 15:22
Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.6	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.495	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.517	0.01		103	90 - 110%
7440-39-3	BARIUM	1	1.07	0.1		107	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.488	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.507	0.005		101	90 - 110%
7440-70-2	CALCIUM	50	50.5	1		101	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.494	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.04	0.01		104	90 - 110%
7439-89-6	IRON	20	20.4	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	50.1	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.00	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.01	0.02		101	90 - 110%
7440-09-7	POTASSIUM	50	51.5	1		103	90 - 110%
7782-49-2	SELENIUM	1	1.02	0.005		102	90 - 110%
7440-22-4	SILVER	0.2	0.208	0.01		104	90 - 110%
7440-23-5	SODIUM	50	48.2	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.520	0.01		104	90 - 110%
7440-31-5	TIN	1	1.03	0.05		103	90 - 110%
7440-61-1	URANIUM	5	5.14	0.2		103	90 - 110%
7440-62-2	VANADIUM	0.5	0.499	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.966	0.02		97	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental - FC

Page 2 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCV2

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 15:26

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51,5	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.489	0.02		98	90 - 110%
7440-38-2	ARSENIC	0.5	0.513	0.01		103	90 - 110%
7440-39-3	BARIUM	1	1.06	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.486	0.005		97	90 - 110%
7440-43-9	CADMIUM	0.5	0.505	0.005		101	90 - 110%
7440-70-2	CALCIUM	50	50.2	1		100	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.492	0.01		98	90 - 110%
7440-50-8	COPPER	1	1.04	0.01		104	90 - 110%
7439-89-6	IRON	20	20.3	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.00	0.003		100	90 - 110%
7439-95-4	MAGNESIUM	50	49.9	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	0.985	0.01		99	90 - 110%
7440-02-0	NICKEL	1	0.991	0.02		99	90 - 110%
7440-09-7	POTASSIUM	50	51.4	1		103	90 - 110%
7782-49-2	SELENIUM	1	1.00	0.005		100	90 - 110%
7440-22-4	SILVER	0.2	0.209	0.01		104	90 - 110%
7440-23-5	SODIUM	50	48.1	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.517	0.01		103	90 - 110%
7440-31-5	TIN	1	1.02	0.05		102	90 - 110%
7440-61-1	URANIUM	5	5.14	0.2		103	90 - 110%
7440-62-2	VANADIUM	0.5	0.497	0.01		99	90 - 110%
7440-66-6	ZINC	1	0.953	0.02		95	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 3 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCV3

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 15:55

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.8	0.2		104	90 - 110%
7440-36-0	ANTIMONY	0.5	0.494	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.518	0.01		104	90 - 110%
7440-39-3	BARIUM	1	1.07	0.1		107	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.486	0.005		97	90 - 110%
7440-43-9	CADMIUM	0.5	0.508	0.005		102	90 - 110%
7440-70-2	CALCIUM	50	50.4	1		101	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.493	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.05	0.01		105	90 - 110%
7439-89-6	IRON	20	20.3	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	49.9	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	0.996	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.01	0.02		101	90 - 110%
7440-09-7	POTASSIUM	50	51.8	1		104	90 - 110%
7782-49-2	SELENIUM	1	1.01	0.005		101	90 - 110%
7440-22-4	SILVER	0.2	0.210	0.01		105	90 - 110%
7440-23-5	SODIUM	50	48.4	1		97	90 - 110%
7440-28-0	THALLIUM	0.5	0.523	0.01		105	90 - 110%
7440-31-5	TIN	1	1.03	0.05		103	90 - 110%
7440-61-1	URANIUM	5	5.18	0.2		104	90 - 110%
7440-62-2	VANADIUM	0.5	0.499	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.949	0.02		95	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental - FC

Page 4 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCV4

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 16:19

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	52.2	0.2		104	90 - 110%
7440-36-0	ANTIMONY	0.5	0.500	0.02		100	90 - 110%
7440-38-2	ARSENIC	0.5	0.530	0.01		106	90 - 110%
7440-39-3	BARIUM	1	1.08	0.1		108	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.490	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.509	0.005		102	90 - 110%
7440-70-2	CALCIUM	50	50.4	1		101	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.495	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.06	0.01		106	90 - 110%
7439-89-6	IRON	20	20.4	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	50.4	1		101	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.00	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.01	0.02		101	90 - 110%
7440-09-7	POTASSIUM	50	52.0	1		104	90 - 110%
7782-49-2	SELENIUM	1	1.01	0.005		101	90 - 110%
7440-22-4	SILVER	0.2	0.212	0.01		106	90 - 110%
7440-23-5	SODIUM	50	48.7	1		97	90 - 110%
7440-28-0	THALLIUM	0.5	0.525	0.01		105	90 - 110%
7440-31-5	TIN	1	1.04	0.05		104	90 - 110%
7440-61-1	URANIUM	5	5.20	0.2		104	90 - 110%
7440-62-2	VANADIUM	0.5	0.500	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.967	0.02		97	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012 ALS

ALS Environmental -- FC

Page 5 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCV5

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: |T120202-2A1

Date Analyzed: 02/02/2012
Time Analyzed: 16:44
Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.7	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.494	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.529	0.01		106	90 - 110%
7440-39-3	BARIUM	1	1.06	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.491	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.513	0.005		103	90 - 110%
7440-70-2	CALCIUM	50	50.9	1		102	90 - 110%
7440-47-3	CHROMIUM	1	1.02	0.01		102	90 - 110%
7440-48-4	COBALT	0.5	0.497	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.05	0.01		105	90 - 110%
7439-89-6	IRON	20	20.3	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	50.2	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.01	0.01		101	90 - 110%
7440-02-0	NICKEL	1	1.00	0.02		100	90 - 110%
7440-09-7	POTASSIUM	50	51.4	1		103	90 - 110%
7782-49-2	SELENIUM	1	1.01	0.005		101	90 - 110%
7440-22-4	SILVER	0.2	0.211	0.01		106	90 - 110%
7440-23-5	SODIUM	50	47.9	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.531	0.01		106	90 - 110%
7440-31-5	TIN	1	1.04	0.05		104	90 - 110%
7440-61-1	URANIUM	5	5.15	0.2		103	90 - 110%
7440-62-2	VANADIUM	0.5	0.501	0.01	_	100	90 - 110%
7440-66-6	ZINC	1	0.985	0.02		99	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental – FC

Page 6 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCV6

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 17:09 Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.5	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.497	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.525	0.01		105	90 - 110%
7440-39-3	BARIUM	1	1.06	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.488	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.511	0.005		102	90 - 110%
7440-70-2	CALCIUM	50	50.8	1		102	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.495	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.04	0.01		104	90 - 110%
7439-89-6	IRON	20	20.3	0.1		101	90 - 110%
7439-92-1	LEAD	1	1.00	0.003		100	90 - 110%
7439-95-4	MAGNESIUM	50	50.1	1	#*·	100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.00	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.00	0.02		100	90 - 110%
7440-09-7	POTASSIUM	50	51.0	1		102	90 - 110%
7782-49-2	SELENIUM	1	0.997	0.005		100	90 - 110%
7440-22-4	SILVER	0.2	0.213	0.01		106	90 - 110%
7440-23-5	SODIUM	50	47.8	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.535	0.01		107	90 - 110%
7440-31-5	TIN	1	1.03	0.05		103	90 - 110%
7440-61-1	URANIUM	5	5.09	0.2		102	90 - 110%
7440-62-2	VANADIUM	0.5	0.498	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.977	0.02		98	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 7 of 7

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: ICB

QC Type: Initial Calibration

Run ID: 1T120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 3:09:00 PM

Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	Ç
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	Ų
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	Ų
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	Ų
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCB1

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 3:24:00 PM

Result Units:

MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	U
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB2

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 3:30:00 PM

Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	Ų
7439-96-5	MANGANESE	0.01	0.01	C
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB3

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 3:57:00 PM

Time Analyzed: Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	Ú
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	C
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	Ú
7439-96-5	MANGANESE	0.01	0.01	د
7439-98-7	MOLYBDENUM	0.01	0.01	C
7440-02-0	NICKEL	0.02	0.02	Ü
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	C
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 **Calibration Blanks**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCB4

Run ID: IT120202-2A1 **Date Analyzed:** 02/02/2012

QC Type: Continuing Calibration

4:21:00 PM

Time Analyzed: Result Units:

MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	U
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	υ
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	J
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Data Package ID: it1201354-1

ALS Environmental -- FC Date Printed: Wednesday, February 08, 2012

Page 5 of 7

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB5

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 4:46:00 PM

Result Units:

MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	U
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB6

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 5:10:00 PM

Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.247	0.2	
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	U
7439-96-5	MANGANESE	0.01	0.01	Ú
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	C
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	υ
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Data Package ID: it1201354-1

ALS Environmental -- FC

Page 7 of 7

Method SW6010 ICP Interference Check Sample

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012

Result Units: MG/L

CASNO	Target Analyte	Spike	Added	Results		% Rec.
		ICSA1	ICSAB1	ICSA1	ICSAB1	
7429-90-5	ALUMINUM	250	250	263	213	85
7440-36-0	ANTIMONY		0.6		0.585	98
7440-38-2	ARSENIC		0.1		0.102	102
7440-39-3	BARIUM		0.5		0.552	110
7440-41-7	BERYLLIUM		0.5		0.48500	97
7440-43-9	CADMIUM		1		1	100
7440-70-2	CALCIUM	250	250	263	262	105
7440-47-3	CHROMIUM		0.5		0.49200	98
7440-48-4	COBALT		0.5		0.48600	97
7440-50-8	COPPER		0.5		0.551	110
7439-89-6	IRON	100	100	107	107	107
7439-92-1	LEAD		0.05		0.04980	100
7439-95-4	MAGNESIUM	250	250	264	265	106
7439-96-5	MANGANESE		0.5		0.514	103
7439-98-7	MOLYBDENUM		1		0.993	99
7440-02-0	NICKEL		1		0.991	99
7440-09-7	POTASSIUM					
7782-49-2	SELENIUM		0.05		0.0514	103
7440-22-4	SILVER		0.2		0.20200	101
7440-23-5	SODIUM					
7440-28-0	THALLIUM		0.1		0.10700	107
7440-31-5	TIN		1		1.03	103
7440-61-1	URANIUM		10		10.8000	108
7440-62-2	VANADIUM		0.5		0.49500	99
7440-66-6	ZINC		1		0.92000	92

Method SW6010 ICP Interference Check Sample

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012

Result Units: MG/L

CASNO	Target Analyte	Spike	Added	Res	ults	% Rec.
		ICSA2	ICSAB2	ICSA2	ICSAB2	
7429-90-5	ALUMINUM	250	250	260	209	84
7440-36-0	ANTIMONY		0.6		0.58300	97
7440-38-2	ARSENIC		0.1		0.10300	103
7440-39-3	BARIUM		0.5		0.538	108
7440-41-7	BERYLLIUM		0.5		0.47900	96
7440-43-9	CADMIUM		1		1.01	101
7440-70-2	CALCIUM	250	250	259	262	105
7440-47-3	CHROMIUM		0.5		0.489	98
7440-48-4	COBALT		0.5		0.482	96
7440-50-8	COPPER		0.5		0.54400	109
7439-89-6	IRON	100	100	104	105	105
7439-92-1	LEAD		0.05		0.05160	103
7439-95-4	MAGNESIUM	250	250	262	263	105
7439-96-5	MANGANESE		0.5		0.506	101
7439-98-7	MOLYBDENUM		1		0.982	98
7440-02-0	NICKEL		1		0.982	98
7440-09-7	POTASSIUM					
7782-49-2	SELENIUM		0.05		0.0466	93
7440-22-4	SILVER		0.2		0.203	101
7440-23-5	SODIUM					
7440-28-0	THALLIUM		0.1		0.11200	112
7440-31-5	TIN		1		1.03	103
7440-61-1	URANIUM		10		10.5	105
7440-62-2	VANADIUM		0.5		0.48800	98
7440-66-6	ZINC		1		0.927	93

Metals Linear Ranges

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPTrace2
Active Date: 03/02/2010
Expiration Date: 05/31/2015

CASNO	Target Analyte	Concentration (ppm)
7429-90-5	ALUMINUM	500
7440-36-0	ANTIMONY	2
7440-38-2	ARSENIC	5
7440-39-3	BARIUM	10
7440-41-7	BERYLLIUM	1
7440-43-9	CADMIUM	5
7440-70-2	CALCIUM	500
7440-47-3	CHROMIUM	10
7440-48-4	COBALT	5
7440-50-8	COPPER	10
7439-89-6	IRON	200
7439-92-1	LEAD	10
7439-95-4	MAGNESIUM	500
7439-96-5	MANGANESE	10
7439-98-7	MOLYBDENUM	10
7440-02-0	NICKEL	10
7440-09-7	POTASSIUM	250
7782-49-2	SELENIUM	5
7440-22-4	SILVER	2
7440-23-5	SODIUM	150
7440-28-0	THALLIUM	5
7440-31-5	TIN	10
7440-61-1	URANIUM	50
7440-62-2	VANADIUM	5
7440-66-6	ZINC	10

ALS Environmental - FC

Page 1 of 1

ICP Interelement Correction Factors

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPTrace2

Active Date: 1/3/2012

Expiration Date: 1/3/2013

Page 1

Analyte	Lamda	Al	Sb	As	Ba	Be	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Ni	Th
	(nm)																
ALUMINUM																	
ANTIMONY									0.0103504								
ARSENIC																	
BERYLLIUM																	
CADMIUM				0,0068507													
CHROMIUM																	
COBALT					-0.001400												
COPPER																	
LEAD		0.0002559										0.0000304					
MANGANESE										***************************************							
SELENIUM												-0.000371					
SILVER																	
THALLIUM										******		-0.000475			-0.000176		
TIN																	
URANIUM												6.809E-05					
VANADIUM								 		***************************************		-0.000159				•••••	
ZINC																	

ICP Interelement Correction Factors

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPTrace2 **Active Date: 1/3/2012**

Expiration Date: 1/3/2013

Page 2

Analyte	Lamda (nm)	К	Se	Ag	Na	TI	V	Zn	Sn	Ti	Мо	Li	Sr	В	Si	U	Zr
ALUMINUM							0.0125517				0.0033239					-0.035496	
ANTIMONY			<u> </u>				0.0120011				-0.007006						
ARSENIC																	
BERYLLIUM																	
CADMIUM		_															
CHROMIUM		_				-						_				0.0005333	
COBALT										0,002105							
COPPER]		Ĭ .									0.0010734	
LEAD							0.0010513			-0.000532	-0.001821					0.0006768	
MANGANESE																	
SELENIUM																-0.000948	
SILVER				_												0.0006982	0,0038966
THALLIUM							0.0006359			0.0006156						-0.000582	
TIN										0.0011632							
URANIUM																	
VANADIUM																	
ZINC																	

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2 File Name: 120202A. AnalRunID: IT120202-2A1 CalibRefID: IT120202-2A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		MIXBHIGH	1	2/2/2012	14:37
		MIXAHIGH	1	2/2/2012	14:39
		MIXCHIGH	1	2/2/2012	14:41
		ICV	1	2/2/2012	15:07
		ICB	1	2/2/2012	15:09
		CRI1	1	2/2/2012	15:12
		ZZZ	1	2/2/2012	15:14
		ICSA1	1	2/2/2012	15:18
		ICSAB1	1	2/2/2012	15:20
		CCV1	1	2/2/2012	15:22
		CCB1	1	2/2/2012	15:24
		CCV2	1	2/2/2012	15:26
		CCB2	1	2/2/2012	15:30
		ZZZ	1	2/2/2012	15:32
		IP120202-2MB	1	2/2/2012	15:36
		IP120202-2LCS	1	2/2/2012	15:38
	JM-54-31-120128	1201354-1	1	2/2/2012	15:40
	JM-54-31-120128	1201354-1DUP	1	2/2/2012	15:42
	JM-54-31-120128	1201354-1SER	5	2/2/2012	15:44
	JM-54-31-120128	1201354-1MS	1	2/2/2012	15:47
	JM-54-31-120128	1201354-1MSD	1	2/2/2012	15:49
	JM-55-31-120128	1201354-2	1	2/2/2012	15:51
	JM-65-31-120128	1201354-3	1	2/2/2012	15:53
		CCV3	1	2/2/2012	15:55
		CCB3	1	2/2/2012	15:57
	JM-66-31-120128	1201354-4	1	2/2/2012	15:59
	JM-70-31-120128	1201354-5	1	2/2/2012	16:01
	JM-70-32-120128	1201354-6	1	2/2/2012	16:03
	JM-73-31-120128	1201354-7	1	2/2/2012	16:05
	JM-77-31-120128	1201354-8	1	2/2/2012	16:07
	JM-82-31-120128	1201354-9	1	2/2/2012	16:09
	JM-84-31-120128	1201354-10	1	2/2/2012	16:11
	JM-88-31-120128	1201354-11	1	2/2/2012	16:13
	JMBKGD-NE-31-120128	1201354-12	1	2/2/2012	16:15
- Fe,Pb,Se,Tl,U,V	JMBKGD-NW-31-120128	1201354-13	1	2/2/2012	16:16

Data Package ID: IT1201354-1

ALS Environmental -- FC

LIMS Version: 6.560

Date Printed: Wednesday, February 08, 2012

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2
File Name: 120202A.
AnalRunID: IT120202-2A1
CalibRefID: IT120202-2A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		CCV4	1	2/2/2012	16:19
		CCB4	1	2/2/2012	16:21
		EX120201-2MB	1	2/2/2012	16:23
		EX120201-2	1	2/2/2012	16:25
- Na		EX120201-2LCS	1	2/2/2012	16:27
		1201363-11	1	2/2/2012	16:29
		1201363-11DUP	1	2/2/2012	16:31
		1201363-11SER	5	2/2/2012	16:33
- Na		1201363-11MS	1	2/2/2012	16:35
- Na		1201363-11MSD	1	2/2/2012	16:38
		1201363-13	1	2/2/2012	16:40
		1201363-15	1	2/2/2012	16:42
		CCV5	1	2/2/2012	16:44
		CCB5	1	2/2/2012	16;46
		1201363-17	1	2/2/2012	16:48
		1201363-19	1	2/2/2012	16:50
		ZZZ	1	2/2/2012	16:52
+ Ba,Ca,Sb,V,Zn	JM-54-31-120128	1201354-1A	1	2/2/2012	16:58
+ Fe,Pb,Se,TlU,V	JMBKGD-NW-31-120128	1201354-13	5	2/2/2012	17:00
		CRI2	1	2/2/2012	17:02
		ICSA2	1	2/2/2012	17:04
		ICSAB2	1	2/2/2012	17:06
		CCV6	1	2/2/2012	17:09
		CCB6	1	2/2/2012	17:10

Method SW6020A Method Blank

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: IP120202-2MB

Sample Matrix: SOIL % Moisture: N/A

Date Collected: N/A Date Extracted: 02-Feb-12 Date Analyzed: 03-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-2 Run ID: IM120203-10A1 Cleanup: NONE

Sample Aliquot:

Final Volume:

Result Units: UG/KG

Clean DF:

1 g

100 ml

Basis: N/A

File Name: 027SMPL_

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7440-61-1	URANIUM	10	13	10		

Data Package ID: im1201354-1

57 of 195

Method SW6020A **Laboratory Control Sample**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: IM120202-2LCS

Sample Matrix: SOIL

Prep Batch: IP120202-2

Sample Aliquot: 1 g

% Moisture: N/A

QCBatchID: IP120202-2-2

Final Volume: 100 ml

Date Collected: N/A

Run ID: IM120203-10A1

Result Units: UG/KG

Date Extracted: 02/02/2012

Cleanup: NONE Basis: N/A

Clean DF:

Date Analyzed: 02/03/2012

8SMPL_

Prep Method: SW 30	50B	File	Name:	028

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
7440-61-1	URANIUM	1000	990	10		99	80 - 120%

Method SW6020A Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

Target Analyte

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

LabID: 1201354-1MS

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 03-Feb-12

Prep Method: SW 3050 Rev B

Sample

Result

38000

Prep Batch: IP120202-2

QCBatchID: IP120202-2-2

Run ID: IM120203-10A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.018 g

Final Volume: 100 ml Result Units: UG/KG File Name: 032SMPL

Reporting	Spike	MS %	Control
Limit	Added	Rec.	Limits

-80

75 - 125%

Field ID: JM-54-31-120128 LabID: 1201354-1MSD

URANIUM

CASNO

7440-61-1

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 03-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

MS

Qual

11.2

QCBatchID: IP120202-2-2

Run ID: IM120203-10A1 Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.015 g Final Volume: 100 ml

1120

Result Units: UG/KG File Name: 033SMPL

CASNO Target Analyte MSD MSD Spike MSD % Reporting **RPD RPD** Added Limit Result Qual Rec. Limit 7440-61-1 URANIUM 38600 1130 57 11.3 20 4

Samp

Qual

MS

Result

37100

Method SW6020 **Duplicate Sample Results**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1D

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 01/28/2012 Date Extracted: 02/02/2012

Date Analyzed: 02/03/2012

Prep Batch: IP120202-2

QCBatchID: IP120202-2-2 Run ID: IM120203-10A1

Cleanup: NONE

Basis: Dry Weight File Name: 030SMPL_

Sample Aliquot: Final Volume:

1.023 g 100 ml

Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Sample Result	Samp Qual	Duplicate Result	Dup Qual	Reporting Limit	Dilution Factor	RPD	RPD Limit
7440-61-1	URANIUM	38000		36900		11.2	10	3	20

Method SW6020 Serial Dilution

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1L

Run ID: IM120203-10A1

Date Analyzed: 03-Feb-12

Result Units: mg/l

CASNO	Target Analyte	Sample Result	Samp Qual	SD Result	SD Qual	EPA Qualifier	%D
7440-61-1	URANIUM	0.0341		0.0347			2

Prep Batch ID: IP120202-2

Start Date: 02/02/12 Start Time: 7:00

Comments:

Prep Analyst: Brent A. Stanfield

End Date: 02/02/12 End Time: 17:00 Concentration Method: NONE Extract Method: SW 3050B

Initial Volume Units: g
Final Volume Units: ml

Batch Created By: bas

Date Created: 02/02/12

Time Created: 7:00 Validated By: bas Date Validated: 02/02/12

Time Validated: 7:35

QC Batch ID: IP120202-2-2

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Number
IP120202-2	MB	XXXXXX	SOIL	XXXXXX	1	100	NONE	1	1201354
IM120202-2	LCS	XXXXXX	SOIL	XXXXXX	1	100	NONE	1	1201354
1201354-1	MS	JM-54-31-120128	SOIL	1/28/2012	1.018	100	NONE	1	1201354
1201354-1	MSD	JM-54-31-120128	SOIL	1/28/2012	1.015	100	NONE	1	1201354
1201354-1	DUP	JM-54-31-120128	SOIL	1/28/2012	1.023	100	NONE	1	1201354
1201354-1	SMP	JM-54-31-120128	SOIL	1/28/2012	1.027	100	NONE	1	1201354
1201354-10	SMP	JM-84-31-120128	SOIL	1/28/2012	1.022	100	NONE	1	1201354
1201354-11	SMP	JM-88-31-120128	SOIL	1/28/2012	1.007	100	NONE	1	1201354
1201354-12	SMP	JMBKGD-NE-31-1201	SOIL	1/28/2012	1.033	100	NONE	1	1201354
1201354-13	SMP	JMBKGD-NW-31-120	SOIL	1/28/2012	1.014	100	NONE	1	1201354
1201354-2	SMP	JM-55-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	1201354
1201354-3	SMP	JM-65-31-120128	SOIL	1/28/2012	1.001	100	NONE	1	1201354
1201354-4	SMP	JM-66-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	1201354
1201354-5	SMP	JM-70-31-120128	SOIL	1/28/2012	1.034	100	NONE	1	1201354
1201354-6	SMP	JM-70-32-120128	SOIL	1/28/2012	1.004	100	NONE	1	1201354
1201354-7	SMP	JM-73-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	1201354
1201354-8	SMP	JM-77-31-120128	SOIL	1/28/2012	1.012	100	NONE	1	1201354
1201354-9	SMP	JM-82-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	1201354

QC Types

CAR	Carrier reference sample	DUP	Laboratory Duplicate
LCS	Laboratory Control Sample	LCSD	Laboratory Control Sample Duplicat
МВ	Method Blank	MS	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate	REP	Sample replicate
RVS	Reporting Level Verification Standar	SMP	Field Sample
SYS	Sample Yield Spike		

URANIUM

Method SW6020

Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IM120203-10A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
ICV	Initial Calibration	2/3/2012	10:12	0.002	0.00191	0.00001	N/A	96	90 - 110
CCV1	Continuing Calibration	2/3/2012	10:26	0.001	0.000991	0.00001	N/A	99	90 - 110
CCV2	Continuing Calibration	2/3/2012	10:51	0.001	0.00104	0.00001	N/A	104	90 - 110
CCV3	Continuing Calibration	2/3/2012	11:19	0.001	0.00103	0.00001	N/A	103	90 - 110
CCV4	Continuing Calibration	2/3/2012	11:47	0.001	0.00103	0.00001	N/A	103	90 - 110
CCV5	Continuing Calibration	2/3/2012	12:39	0.001	0.00101	0.00001	N/A	101	90 - 110
CCV6	Continuing Calibration	2/3/2012	12:57	0.001	0.00102	0.00001	N/A	102	90 - 110

Data Package ID: im1201354-1

ALS Environmental -- FC
LIMS Version: 6.560

Page 8 of 8

URANIUM

Method SW6020

Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IM120203-10A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Result	Reporting Limit	Flag
ICB	Initial Calibration	2/3/2012	10:14	0.00001	0.00001	U
CCB1	Continuing Calibration	2/3/2012	10:28	0.00001	0.00001	5
CCB2	Continuing Calibration	2/3/2012	10:54	0.00001	0.00001	D
CCB3	Continuing Calibration	2/3/2012	11:21	0.00001	0.00001	U
CCB4	Continuing Calibration	2/3/2012	11:49	0.00001	0.00001	U
CCB5	Continuing Calibration	2/3/2012	12:41	0.00001	0.00001	U
CCB6	Continuing Calibration	2/3/2012	12:59	0.00001	0.00001	U

Data Package ID: im1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 8 of 8

Method SW6020 ICP Interference Check Sample

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IM120203-10A1

Date Analyzed: 02/03/2012

Result Units: MG/L

CASNO	Target Analyte	Spike Added		Results		% Rec.
		ICSA1	ICSAB1	ICSA1	ICSAB1	
7440-38-2	ARSENIC		0.01		0.01	100
7440-39-3	BARIUM		0.01		0.0105	105
7440-43-9	CADMIUM		0.003		0.00314	105
7440-47-3	CHROMIUM		0.05		0.05090	102
7439-92-1	LEAD		0.005		0.00506	101
7782-49-2	SELENIUM		0.01		0.01030	103
7440-22-4	SILVER		0.001		0.00104	104
7440-61-1	URANIUM		0.001		0.00103	103

Metals Linear Ranges

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPMS2
Active Date: 04/01/2010
Expiration Date: 04/01/2015

CASNO	Target Analyte	Concentration (ppm)		
7429-90-5	ALUMINUM	50		
7440-36-0	ANTIMONY	0.3		
7440-38-2	ARSENIC	1		
7440-39-3	BARIUM	1		
7440-41-7	BERYLLIUM	0.5		
7440-43-9	CADMIUM	0.3		
7440-70-2	CALCIUM	500		
7440-47-3	CHROMIUM	5		
7440-48-4	COBALT	1		
7440-50-8	COPPER	10		
7439-89-6	IRON	50		
7439-92-1	LEAD	0.5		
7439-95-4	MAGNESIUM	100		
7439-96-5	MANGANESE	2		
7439-98-7	MOLYBDENUM	1		
7440-02-0	NICKEL	5		
7440-09-7	POTASSIUM	500		
7782-49-2	SELENIUM	1		
7440-22-4	SILVER	0.1		
7440-23-5	SODIUM	1000		
7440-28-0	THALLIUM	0.02		
7440-31-5	TIN	5		
7440-61-1	URANIUM	0.1		
7440-62-2	VANADIUM	1		
7440-66-6	ZINC	20		

ALS Environmental – FC

Page 1 of 1

ICPMS2 Run Log -- 2/3/2012

Instrument ID: ICPMS2
File Name: 003CALB_
AnalRunID: IM120203-10A1
CalibRefID: IM120203-10A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		blank	1	2/3/2012	10:00
		H/1000	1	2/3/2012	10:03
		H/100	1	2/3/2012	10:05
		H/10	1	2/3/2012	10:07
		HIGH	1	2/3/2012	10:10
		ICV	1	2/3/2012	10:12
		ICB	1	2/3/2012	10:14
		CRI1	1	2/3/2012	10:17
		CRI2	1	2/3/2012	10:19
		ICSA1	1	2/3/2012	10:21
		ICSAB1	1	2/3/2012	10:24
		CCV1	1	2/3/2012	10:26
		CCB1	1	2/3/2012	10:28
		EX120201-2MB	10	2/3/2012	10:30
		EXM120201-2	10	2/3/2012	10:33
		EXM120201-2LCS	10	2/3/2012	10:35
		1201363-11	10	2/3/2012	10:37
		1201363-11DUP	10	2/3/2012	10:40
		1201363-11SER	50	2/3/2012	10:42
		1201363-11MS	10	2/3/2012	10:44
		1201363-11MSD	10	2/3/2012	10:47
		1201358-2	50	2/3/2012	10:49
		CCV2	1	2/3/2012	10:51
		CCB2	1	2/3/2012	10:54
		IP120202-2MB	10	2/3/2012	10:56
		IM120202-2LCS	10	2/3/2012	10:58
	JM-54-31-120128	1201354-1	10	2/3/2012	11:01
	JM-54-31-120128	1201354-1DUP	10	2/3/2012	11:03
	JM-54-31-120128	1201354-1SER	50	2/3/2012	11:05
	JM-54-31-120128	1201354-1MS	10	2/3/2012	11:08
	JM-54-31-120128	1201354-1MSD	10	2/3/2012	11:10
		ZZZZZZ	1	2/3/2012	11:12
		<u> 227277</u>	1	2/3/2012	11:14
		277777	1	2/3/2012	11:17
		CCV3	1	2/3/2012	11:19

Data Package ID: IM1201354-1

ICPMS2 Run Log -- 2/3/2012

Instrument ID: ICPMS2
File Name: 038SMPL_
AnalRunID: IM120203-10A1
CalibRefID: IM120203-10A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		CCB3	1	2/3/2012	11:21
		ZZZZZZ	1	2/3/2012	11:24
		ZZZZZZ	1	2/3/2012	11:26
		ZZZZZZ	1	2/3/2012	11:28
		777777	1	2/3/2012	11:31
		<u> 277777</u>	1	2/3/2012	11:33
		ZZ ZZ Z	1	2/3/2012	11:35
		ZZZZZZ	1	2/3/2012	11:38
		Z <u>ZZZZZ</u>	1	2/3/2012	11:40
		ZZZZZZ	1	2/3/2012	11:42
- As,Se		1201358-1	50	2/3/2012	11:45
		CCV4	1	2/3/2012	11:47
		CCB4	1	2/3/2012	11:49
	JMBKGD-NE-31-120128	1201354-12	10	2/3/2012	12:16
	JMBKGD-NW-31-120128	1201354-13	10	2/3/2012	12:18
	JM-55-31-120128	1201354-2	100	2/3/2012	12:20
	JM-65-31-120128	1201354-3	100	2/3/2012	12:23
	JM-66-31-120128	1201354-4	10	2/3/2012	12:25
	JM-70-31-120128	1201354-5	100	2/3/2012	12:27
	JM-70-32-120128	1201354-6	100	2/3/2012	12:30
	JM-73-31-120128	1201354-7	100	2/3/2012	12:32
	JM-77-31-120128	1201354-8	100	2/3/2012	12:34
	JM-82-31-120128	1201354-9	100	2/3/2012	12:37
		CCV5	1	2/3/2012	12:39
		CCB5	1	2/3/2012	12:41
	JM-84-31-120128	1201354-10	10	2/3/2012	12:43
	JM-88-31-120128	1201354-11	100	2/3/2012	12:46
Ag,Ba,Cd,Cr,Pb,U		1201358-1	50	2/3/2012	12:55
		CCV6	1	2/3/2012	12:57
		CCB6	1	2/3/2012	12:59

Data Package ID: IM1201354-1

Method SW7471A Method Blank

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: HG120206-1MB

Sample Matrix: SOIL % Moisture: N/A

Date Collected: N/A
Date Extracted: 06-Feb-12

Date Analyzed: 07-Feb-12 Prep Method: METHOD Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1 Cleanup: NONE

Basis: N/A File Name: HG120206-1 Sample Aliquot: 0.6 g Final Volume: 100 g

Result Units: MG/KG Clean DF: 1

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7439-97-6	MERCURY	1	0.033	0.033	U	

Data Package ID: hg1201354-1

Method SW7471A **Laboratory Control Sample**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: HG120206-1LCS

Sample Matrix: SOIL % Moisture: N/A

Prep Batch: HG120206-1 QCBatchID: HG120206-1-1 Run ID: HG120207-1A1

Cleanup: NONE

0.6 g Sample Aliquot: Final Volume: 100 g Result Units: MG/KG Clean DF:

Date Collected: N/A Date Extracted: 02/06/2012

Date Analyzed: 02/07/2012 Basis: N/A Prep Method: METHOD

File Name: HG120206-1

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
7439-97-6	MERCURY	0.167	0.168	0.0333		101	80 - 120%

Data Package ID: hg1201354-1

ALS Environmental - FC LIMS Version: 6.560

Page 1 of 1

Method SW7471A Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

Target Analyte

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JMBKGD-NW-31-12012

LabID: 1201354-13MS

Sample Matrix: SOIL % Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 06-Feb-12

Date Analyzed: 07-Feb-12 Prep Method: METHOD

Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 0.604 g

Final Volume: 100 g Result Units: MG/KG File Name: HG120206-1

Sample Result	Samp Qual	MS Result	MS Qual	Reporting Limit	Spike Added	MS % Rec.	Control Limits
0.036	U	0.39		0.0358	0.358	109	80 - 120%

Field ID: JMBKGD-NW-31-12012

CASNO

7439-97-6

LabID: 1201354-13MSD

MERCURY

Sample Matrix: SOIL % Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 06-Feb-12 Date Analyzed: 07-Feb-12

Prep Method: METHOD

Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1 Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 0.607 g Final Volume: 100 g Result Units: MG/KG

File Name: HG120206-1

CASNO	Target Analyte	MSD Result	MSD Qual	Spike Added	MSD % Rec.	Reporting Limit	RPD Limit	RPD
7439-97-6	MERCURY	0.39		0.356	110	0.0356	20	0

Data Package ID: hg1201354-1

71 of 195

Method SW7471 Duplicate Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JMBKGD-NW-31-12012

Lab ID: 1201354-13D

Sample Matrix: SOIL

% Moisture: 7.4

Date Collected: 01/28/2012

Date Extracted: 02/06/2012

Date Analyzed: 02/07/2012

Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1

Cleanup: NONE

Basis: Dry Weight

File Name: HG120206-1

Sample Aliquot: 0.616 g

Final Volume: 100 g Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Sample Result	Samp Qual	Duplicate Result	Dup Qual	Reporting Limit	Dilution Factor	RPD	RPD Limit
7439-97-6	MERCURY	0.036	U	0.0351	บ	0.0351	1		20

Data Package ID: hg1201354-1

Prep Batch ID: HG120206-1

Start Date: 02/06/12 Start Time: 8:32 End Date: 02/06/12

Concentration Method: NONE
Extract Method: METHOD

Batch Created By: SKL
Date Created: 02/06/12

Start Time: 8:32
Prep Analyst: Sheri Lafferty

Comments:

End Time: 8:32

Initial Volume Units: 9
Final Volume Units: 9

Time Created: 8:32

Validated By: SKL

Date Validated: 02/07/12

Time Validated: 7:48

QC Batch ID: HG120206-1-1

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Numbe
HG120206-1	MB	XXXXXX	SOIL	XXXXXX	0.6	100	NONE	1	120135
HG120206-1	LCS	XXXXXX	SOIL	XXXXXX	0.6	100	NONE	1	120135
1201354-13	MS	JMBKGD-NW-31-120	SOIL	1/28/2012	0.604	100	NONE	1	120135
1201354-13	MSD	JMBKGD-NW-31-120	SOIL	1/28/2012	0.607	100	NONE	1	120135
1201354-13	DUP	JMBKGD-NW-31-120	SOIL	1/28/2012	0.616	100	NONE	1	120135
1201354-1	SMP	JM-54-31-120128	SOIL	1/28/2012	0.614	100	NONE	1	120135
1201354-10	SMP	JM-84-31-120128	SOIL	1/28/2012	0.61	100	NONE	1	120135
1201354-11	SMP	JM-88-31-120128	SOIL	1/28/2012	0.602	100	NONE	1	120135
1201354-12	SMP	JMBKGD-NE-31-1201	SOIL	1/28/2012	0.614	100	NONE	1	120135
1201354-13	SMP	JMBKGD-NW-31-120	SOIL	1/28/2012	0.608	100	NONE	1	120135
1201354-2	SMP	JM-55-31-120128	SOIL	1/28/2012	0.616	100	NONE	1	120135
1201354-3	SMP	JM-65-31-120128	SOIL	1/28/2012	0.603	100	NONE	1	120135
1201354-4	SMP	JM-66-31-120128	SOIL	1/28/2012	0.613	100	NONE	1	120135
1201354-5	SMP	JM-70-31-120128	SOIL	1/28/2012	0.605	100	NONE	1	120135
1201354-6	SMP	JM-70-32-120128	SOIL	1/28/2012	0.6	100	NONE	1	120135
1201354-7	SMP	JM-73-31-120128	SOIL	1/28/2012	0.615	100	NONE	1	120135
1201354-8	SMP	JM-77-31-120128	SOIL	1/28/2012	0.604	100	NONE	1	120135
1201354-9	SMP	JM-82-31-120128	SOIL	1/28/2012	0.608	100	NONE	1	120135

QC Types

CAR	Carrier reference sample	DUP	Laboratory Duplicate
LCS	Laboratory Control Sample	LCSD	Laboratory Control Sample Duplicat
мв	Method Blank	мѕ	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate	REP	Sample replicate
RVS	Reporting Level Verification Standar	SMP	Field Sample
SYS	Sample Yield Spike		

MERCURY

Method SW7471

Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: HG120207-1A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
ICV	Initial Calibration	2/7/2012	10:45	0.001	0.00106	0.0002	N/A	106	90 - 110
CCV1	Continuing Calibration	2/7/2012	11:11	0.002	0.00199	0.0002	N/A	99	80 - 120
CCV2	Continuing Calibration	2/7/2012	11:37	0.002	0.00206	0.0002	N/A	103	80 - 120
CCV3	Continuing Calibration	2/7/2012	11:44	0.002	0.00208	0.0002	N/A	104	80 - 120

Data Package ID: hg1201354-1

Date Printed: Wednesday, February 08, 2012

MERCURY

Method SW7471

Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: HG120207-1A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Result	Reporting Limit	Flag
ICB	Initial Calibration	2/7/2012	10:48	0.0002	0.0002	υ
CCB1	Continuing Calibration	2/7/2012	11:14	0.0002	0.0002	U
CCB2	Continuing Calibration	2/7/2012	11:39	0.0002	0.0002	U
CCB3	Continuing Calibration	2/7/2012	11:46	0.0002	0.0002	U

Data Package ID: hg1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 1 of 1

Metals Linear Ranges

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: CETAC7500 Active Date: 07/19/2010 Expiration Date: 10/17/2020

CASNO	Target Analyte	Concentration (ppm)
7439-97-6	MERCURY	0.01

ALS Environmental - FC LIMS Version: 6.560

Page 1 of 1

Date Printed: Wednesday, February 08, 2012

Mercury Run Log -- 2/7/2012

Instrument ID: CETAC7500 File Name: HG120206-1 AnalRunID: HG120207-1A1 CalibRefID: HG120207-1A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		STD0	1	2/7/2012	10:30
		STD1	1	2/7/2012	10:32
		STD2	1	2/7/2012	10:35
		STD3	1	2/7/2012	10:37
		STD4	1	2/7/2012	10:39
		STD5	1	2/7/2012	10:41
		STD6	1	2/7/2012	10:43
		ICV	1	2/7/2012	10:45
		ICB	1	2/7/2012	10:48
		CRA1	1	2/7/2012	10:50
		HG120206-1MB	1	2/7/2012	10:52
		HG120206-1LCS	1	2/7/2012	10:54
	JM-54-31-120128	1201354-1	1	2/7/2012	10:56
	JM-55-31-120128	1201354-2	1	2/7/2012	10:58
	JM-65-31-120128	1201354-3	1	2/7/2012	11:00
	JM-66-31-120128	1201354-4	1	2/7/2012	11:02
	JM-70-31-120128	1201354-5	1	2/7/2012	11:05
	JM-70-32-120128	1201354-6	1	2/7/2012	11:07
	JM-73-31-120128	1201354-7	1	2/7/2012	11:09
		CCV1	1	2/7/2012	11:11
		CCB1	1	2/7/2012	11:14
	JM-77-31-120128	1201354-8	1	2/7/2012	11:16
	JM-82-31-120128	1201354-9	1	2/7/2012	11:18
	JM-84-31-120128	1201354-10	1	2/7/2012	11:20
	JM-88-31-120128	1201354-11	1	2/7/2012	11:22
	JMBKGD-NE-31-120128	1201354-12	1	2/7/2012	11:24
	JMBKGD-NW-31-120128	1201354-13	1	2/7/2012	11:26
	JMBKGD-NW-31-120128	1201354-13DUP	1	2/7/2012	11:29
		1201354-13L	5	2/7/2012	11:31
	JMBKGD-NW-31-120128	1201354-13MS	1	2/7/2012	11:33
	JMBKGD-NW-31-120128	1201354-13MSD	1	2/7/2012	11:35
		CCV2	1	2/7/2012	11:37
		CCB2	1	2/7/2012	11:39
		CRA2	1	2/7/2012	11:41
		CCV3	1	2/7/2012	11:44

Data Package ID: HG1201354-1

Date Printed: Wednesday, February 08, 2012

Mercury Run Log -- 2/7/2012

Instrument ID: CETAC7500 File Name: HG120206-1 AnalRunID: HG120207-1A1 CalibRefID: HG120207-1A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		CCB3	1	2/7/2012	11:46

Data Package ID: HG1201354-1

Raw Data

HEADER INFORMATION FOR ANALYTICAL SEQUENCE 120202A Analyst: Michael Lundgreen

STANDARD SOLUTION CODES

	Stock A	. (ST111115-1) Exp.6-30-2012
<u>Element</u>		ug/ml
Al, Ca, Mg		1000
K		500
Na		300
Fe		400
Li		20
Standard	Dilution	Procedure
A1	1/2 of Stock A	5ml of Stock A to 10ml final volume.
A2	1/2.5 of Stock A	2ml of Stock A to a 5ml final volume.
A3	1/5 of Stock A	1ml of Stock A to a 5ml final volume.
A3 A4	1/10 of A1	1ml of Stock A to a 5ml mai volume. 1ml of Standard A1 up to a 10ml final volume.
A5	1/10 of A4	1ml of Standard A4 up to a 10ml final volume.
AS	1/10 01 A4	This of Standard A4 up to a form inial volume.
	Stock I	B (ST100625-8) Exp. 2-28-15
Element		ug/ml
P, Si		100
	n, Mo, Ni, Pb, Sn, Sr, Ti ,Zn	
As, Cd, Co, Se, T		10
Sb	1, *	4
Be		2
DC		2
	Stools Ac. 100	00 ya/m1 (ST100407 4) Evm 2 28 15
		00 ug/ml (ST100407-4) Exp. 2-28-15 00 ug/ml (ST100407-5) Exp. 2-28-15
	Stock III – Too	30 ug/iii (31100407-3) Exp. 2-26-13
The following dil	lutions of Stock Ag and Stoc	k Th are made to provide the daily calibration Standards.
The following di	iditions of Stock Ag and Stoc	ik in are made to provide the daily cantoration standards.
Standard	Dilution	Procedure
B1	1/2 of Stock B	5ml of Stock B, 0.02ml of Stock Ag and 0.02ml of Stock
Di	1/500 Ag and 1/500 Th	Th up to a 10ml final volume.
B2	1/10 of B1	1.0ml of Standard B1 up to a 10ml final volume.
B3	1/10 of B2	1.0ml of Standard B2 up to a 10ml final volume.
БJ	1/10 01 B2	1.0m of Standard B2 up to a 10m mai volume.
	Stock (C (ST100625-9) Exp. 6-30-15
Element	No.	ug/ml
S, U		100
Bi, Zr		10
Standard	Dilution	Procedure
C1	1/2 of Stock C	5ml of Stock C up to a 10ml final volume.
C1 C2	1/10 of C1	1.0ml of Standard C1 up to a 10ml final volume.
C2 C3	1/10 of C2	1.0ml of Standard C2 up to a 10ml final volume.
CS	1/10 of C2	1.000 of Standard C2 up to a Total milat volume.
	RL STD (Ren	orting Limit Standard) Intermediate.
		(100301-54) Exp. 2-28-15
Element	(2)	ug/ml
K, Na		500
Ca, Mg		200
Al, U		100
B, Fe, P, S, Si		50
	1	10
Li, Mo, Sn, Sr, Ti	ı	
Sb	7 7	8
Ni, As, Bi, Se, Tl	, Zn, Zr	5
Pb		3
Ag, Ba, Co, Cr, C	Cu, Mn, V, Th	2
Be, Cd		1

RL STD (working standard) made daily by diluting the intermediate above 1000 fold. This working standard has concentration levels at the normal ALS-FC reporting limits for all elements except Ca, Mg and Na, K which are at 0.2ppm and 0.5ppm; this is below the normal ALS-FC reporting limit.

RL2 (working standard) made daily by diluting the intermediate above 333 fold.

Blank Solution

Double D.I. water, 3% HNO₃ and 5%HCl Used for Std. Blank, ICB and CCB

<u>ug/ml</u>
50
20
5
1
0.5
0.2

ICV (ST111116-2) Exp. 6-20-12

Prepared daily by diluting the CCV (described above) ½.

The 1/2 dilution is made by diluting 5ml of the CCV to a 10ml final volume.

The resulting concentrations are:

Element	ug/m
Al, Ca, Mg, K, Na	25
Fe	10
U, P, S, Si	2.5
B, Ba, Cr, Cu, Mn, Mo, Ni, Pb, Se, Sn, Zn, Zr	0.5
As, Be, Bi, Cd, Co, Li, Sb, Sr, Ti, Tl, V	0.25
Ag, Th	0.1

CRI (ST110105-13) Exp. 6-20-12

Made By diluting

1.0ml of CRI Stock (ST110105-4) Exp. 6-20-12

to a 100ml final volume.

<u>Element</u>	<u>ug/ml</u>
Ca, Mg, K, Na	5.0
Al, B, Ba	0.4
Fe, U, P, S	0.2
Sb	0.12
Co, Si,, Sn, V, Th	0.1
Ni	0.08
Cu, Bi, Zr	0.05
Zn	0.04
Mn	0.03
Ag, Cr, Li, Mo, Sr, Ti, Tl	0.02
Be, Cd, As, Se,	0.01
Pb	0.006

	ICSA (ST110105-7) Exp. 6-20-12	
<u>Element</u>	ug/ml	
Ca, Mg, Al	250	
Fe	100	

	ICSAB (ST110105-8) Exp. 6-20-12	
<u>Element</u>	<u>ug/ml</u>	
Ca, Mg, Al	250	
Fe	100	
U	10	

Sb	0.6
Ba, Be, Co, V, Cr, Cu, Mn, Bi, Zr	0.5
Ag	0.2
As, Tl	0.1
Se, Pb, Th	0.05

Pipette ID Numbers

1.0ml to 5.0ml --- M-55 0.1ml to 1.0ml --- M-61 0.01ml to 0.1ml --- M-57

Acid Lot Numbers

HCl – J35042 HNO₃ – J41037

Inter Element Correction Information

The following table summarizes spectral interferences that have been identified and for which IEC's are used. If a sample contains a concentration of an interfering element that exceeds the upper analytical range, and an affected element is being determined, it is necessary to dilute the sample to bring the interfering element into analytical range.

Interfering Element (ug/ml)	Affected Element
Al (500)	Pb
Mg (500)	Th
Fe (200)	Se, Tl, V, Pb, U
Si (50)	Zr
U (50)	Al, Cr, Cu, Bi, Pb, Mg, Se, Ag, Tl, Si
Ba (10)	Co
Cr (10)	Sb
Cu (10)	Bi
Mn (10)	Tl
Mo (10)	Al, Si, Pb,, Sb
Ti (10)	Co, Bi, Si, Sn, Tl, Pb, Zr
As (5)	Cd
V (5)	Al, Be, Tl
Zr (5)	Ag

The following table lists element concentrations (ug/ml) that no significant spectral interferences have been observed.

Element	Concentration	Element	Concentration	Element	Concentration
K	500	Se	10		
Na	500	Pb	10	Li	5
Ca	500	Zn	10	Cd	5
P	50	Sr	10	Co	5
S	50	Sn	10	Ag	2
Ni	10	Bi	5	Sb	2
В	10	Tl	5	Be	1

- 2X Dilution made by diluting 2.5ml of sample up to a 5ml final volume.
- 3X Dilution made by diluting 2.0ml of sample up to a 6ml final volume.
- 4X Dilution made by diluting 2.0ml of sample up to a 8ml final volume.
- 5X Dilution made by diluting 1.0ml of sample to a 5ml final volume.
- 10X Dilution made by diluting 0.5ml of sample to a 5ml final volume.
- 20X Dilution made by diluting 0.25ml of sample to a 5ml final volume.
- 25X Dilution made by diluting 0.2ml of sample to a 5ml final volume.

100X-Dilution made by diluting 0.05ml of sample to a 5ml final volume. 500X-Dilution made by diluting 0.02ml of sample to a 10ml final volume.

1000X - Dilution made by diluting a 10X dilution 100X.

Analytical Spikes

1201354-1 was post spiked for all Sb, Ba, Ca, V and Zn by spiking 0.1mL ST110916-7, 0.1mL ST111116-1 onto 4.8mL sample, 5.0mL final volume.

Comments

1. Please see run log and work orders for elements of interest.

Daily Maintenance

- 1. Check/ Change Peristaltic pump tubing.
- 2. Check the torch for deposits, clean if necessary.
- 3. Check/ Empty drain water.

Daily Maintenance done by MTL .

Monthly Maintenance

- 1. Check/Clean nebulizer and spray chamber.
- 2. Clean air filters
- 3. Check/Clean entrance slit.
- 4. Fill water recirculating reservoir.

Monthly maintenance done by: MTL 01-09-2012.

Major problems / adjustments / repairs recorded in the ICP Maintenance Log (3716).

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2
File Name: 120202A.
AnalRunID: IT120202-2A1
CalibRefID: IT120202-2A1

Comment	Inst Sample Name	Lab ID	DF	Date Analyzed	Time Analyzed
	MIXBHIGH	MIXBHIGH	1	2/2/2012	14:37
	MIXAHIGH	MIXAHIGH	1	2/2/2012	14:39
	MIXCHIGH	MIXCHIGH	1	2/2/2012	14:41
	icv	ICV	1	2/2/2012	15:07
	ICB	ICB	1	2/2/2012	15:09
	CRI	CRI1	1	2/2/2012	15:12
	ZZZ	ZZZ	1	2/2/2012	15:14
	ICSA	ICSA1	1	2/2/2012	15:18
	ICSAB	ICSAB1	1	2/2/2012	15:20
	ccv	CCV1	1	2/2/2012	15:22
	ССВ	CCB1	1	2/2/2012	15:24
-	CCV	CCV2	1	2/2/2012	15:26
	ССВ	CCB2	1	2/2/2012	15:30
	ZZZ	ZZZ	1	2/2/2012	15:32
	IP120202-2MB	IP120202-2MB	1	2/2/2012	15:36
	IP120202-2LCS	IP120202-2LCS	1	2/2/2012	15:38
-	1201354-1	1201354-1	1	2/2/2012	15:40
	1201354-1D	1201354-1DUP	1	2/2/2012	15:42
	1201354-1L 5X	1201354-1SER	5	2/2/2012	15:44
	1201354-1MS	1201354-1MS	1	2/2/2012	15:47
	1201354-1MSD	1201354-1MSD	1	2/2/2012	15:49
	1201354-2	1201354-2	1	2/2/2012	15:51
	1201354-3	1201354-3	1	2/2/2012	15:53
	ccv	CCV3	1	2/2/2012	15:55
	CCB	CCB3	1	2/2/2012	15:57
	1201354-4	1201354-4	1	2/2/2012	15:59
	1201354-5	1201354-5	1	2/2/2012	16:01
	1201354-6	1201354-6	1	2/2/2012	16:03
-	1201354-7	1201354-7	1	2/2/2012	16:05
	1201354-8	1201354-8	1	2/2/2012	16:07
	1201354-9	1201354-9	1	2/2/2012	16:09
	1201354-10	1201354-10	1	2/2/2012	16:11
	1201354-11	1201354-11	1	2/2/2012	16:13
	1201354-12	1201354-12	1	2/2/2012	16:15
- Fe,Pb,Se,Ti,U,V	1201354-13	1201354-13	1	2/2/2012	16:16

Data Package ID:

Page 1 of 2

ALS Environmental -- FC

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2
File Name: 120202A.
AnalRunID: IT120202-2A1
CalibRefID: IT120202-2A1

Comment	Inst Sample Name	Lab ID	DF	Date Analyzed	Time Analyzed
	ccv	CCV4	1	2/2/2012	16:19
	ССВ	ССВ4	1	2/2/2012	16:21
	EX120201-2MB	EX120201-2MB	1	2/2/2012	16:23
	EX120201-2RVS	EX120201-2	1	2/2/2012	16:25
- Na	EX120201-2LCS	EX120201-2LCS	1	2/2/2012	16:27
	1201363-11	1201363-11	1	2/2/2012	16:29
	1201363-11D	1201363-11DUP	1	2/2/2012	16:31
	1201363-11L 5X	1201363-11SER	5	2/2/2012	16:33
- Na	1201363-11MS	1201363-11MS	1	2/2/2012	16:35
- Na	1201363-11MSD	1201363-11MSD	1	2/2/2012	16:38
	1201363-13	1201363-13	1	2/2/2012	16:40
	1201363-15	1201363-15	1	2/2/2012	16:42
	ccv	CCV5	1	2/2/2012	16:44
	ССВ	CCB5	1	2/2/2012	16:46
	1201363-17	1201363-17	1	2/2/2012	16:48
	1201363-19	1201363-19	1	2/2/2012	16:50
	ZZZ	ZZZ	1	2/2/2012	16:52
+ Ba,Ca,Sb,V,Zn	1201354-1A	1201354-1A	1	2/2/2012	16:58
+ Fe,Pb,Se,Tl,U,V	1201354-13 5X	1201354-13	5	2/2/2012	17:00
	CRI	CRI2	1	2/2/2012	17:02
	ICSA	ICSA2	1	2/2/2012	17:04
	ICSAB	ICSAB2	1	2/2/2012	17:06
	CCV	CCV6	1	2/2/2012	17:09
	ССВ	CCB6	1	2/2/2012	17:10

Data Package ID:

Page 2 of 2

r			·	,	,	y	,		rrinced		11.32.01	rage r
Sample Idl	Ag	A1	As	В	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu
MIXBHIGH	1.97893	0.14513	4.93852	9.90246	9.79854	0.97659	0.01168	-0.07917	4.86593	4.88105	9.74914	9.91932
MIXAHIGH	0.00054	498.45885	-0.00069	0.00408	0.00002	0.00080	0.00992	496.98492	-0.00033	0.00047	0.00188	-0.00914
MIXCHIGH	L-0.01708	0.88338	-0.00768	0.00604	-0.00151	0.00338	н5.06332	-0.06714	-0.00142	0.00409		L-0.02929
ICV	0.10395	25.45605	0.25898	0.49657	0.52849	0.25019	0.26304	25.08494	0.25348	0.24919	0.51015	0.51211
ICB	-0.00075	0.06703	-0.00174	-0.00642	-0.00085	-0.00026	-0.00944	-0.09139	-0.00082	-0.00076	-0.00110	-0.00312
CRI	0.01983	0.50031	0.00592	0.39777	0.41268	0.01170	0.04537	5.12590	0.01151	0.10126	0.02158	0.04745
ZZZ	-0.00122	262.45901	0.00004	-0.00716	-0.00085	0.00039	0.00233	260.73861	-0.00037	0.00039	-0.00121	-0.00666
ICSA	-0.00004	262.69471	0.00009	<u> </u>	-0.00054	i		262.88254	0.00007	0.00101	-0.00082	-0.00577
ICSAB	0.20190	212,65836	0.10176	1.01811	0.55218	0.48457	0.54482	262.05421	1.00190	0.48563	0.49214	0.55122
CCV	0.20828	51.62534	0.51697	0.99616	1.06520	0.48841	0.52814	50.49756	0.50741	0.49366	1.01075	1.04176
CCB	-0.00019	0.10845	-0.00546	-0.00583	-0.00057	-0.00007	-0.00804	-0.05529	-0.00022	-0.00060	0.00003	-0.00265
CCV	0.20899	51.50836	0.51264	0.98842	1.06226	0.48578	0.52882	50.16837	0.50502	0.49238	1.00628	1.03562
CCB	-0.00066	0.11335	-0.00191	-0.00554	-0.00064	0.00000	-0.00071	-0.05360	-0.00038	-0.00122	0.00022	-0.00241
ZZZ	0.00008	0.07695	-0.00540	-0.00665	-0.00067	-0.00031	-0.00501	-0.07484	-0.00022	-0.00216	-0.00044	-0.00130
IP120202-2MB	-0.00114	0.07859	-0.00113	-0.00372	-0.00085	-0.00029	-0.00804	-0.07108	-0.00025	-0.00155	-0.00083	-0.00153
IP120202-2LCS	0.09343	2.17815	1.90412	0.46055	2.07984	0.04742	-0.00737	37.15536	0.04972	0.47559	0.19461	0.25712
1201354-1	-0.00214	59.68540	0.05881	0.51640	3.00603	0.00472	-0.00245	86.18621	0.00055	0.03531	0.04517	0.06649
1201354-1D	-0.00096	55.38178	0.05354	0.16515	1.38006	0.00441	-0.00251	72.48209	0.00088	0.03245	0.04213	0.06083
1201354-1L 5X	-0.00114	11.57762	0.01314	0.08247	0.51227	0.00080	-0.00176	17.12909	-0.00071	0.00620	0.00854	0.00962
1201354-1MS	0.09575	88.95425	1.97393	0.37462	3.37275	0.05360	0.00698	111.61500	0.05245	0.51779	0.25688	0.33664
1201354-1MSD	0.09669	91.20298	1.97349	0.37203	3.44656	0.05345	-0.00378	116.34026	0.05210	0.51563	0.25709	0.34045
1201354-2	-0.00173	41.89574	0.09327	0.00715	0.89966	0.00364	-0.00465	103.76504	0.00023	0.02578	0.02817	0.04780
1201354-3	-0.00136	37.26261	0.10159	0.00833	1.08548	0.00370	-0.00286		0.00056	0.01990	0.02432	0.06035
CCV	0.20970	51.75839	0.51797	1.00038	1.07279	0.48573	0.53445	50.35484	0.50773	0.49290	1.00646	1.05086
ССВ	-0.00045	0.15194	-0.00068	-0.00235	-0.00012	0.00004	-0.00735		-0.00032	-0.00109	-0.00034	-0.00275
1201354-4	-0.00112	29.38481	0.03816	0.00896	0.58394	0.00258		109.84791	0.00021	0.03253	0.02229	0.02808
1201354-5	-0.00168	36.16084	0.12019	0.01074	1.53983	0.00349	-0.00416		0.00069	0.02539	0.03172	0.04708
1201354-6	-0.00093	34.02753	0.05220	0.00900	1.49344	0,00302	-0.00141	124.83243	0.00020	0.02627	0.02604	0.04003
1201354-7	-0.00061	40.02791	0.07790	0.00985	1.17901	0.00338	0.00008	296.90769	0.00060	0.02983	0.03338	0.04832
1201354-8	-0.00172	51.88546	0.06896	0.01673	0.72199	0.00480	-0.00204	80.24279	0.00037	0.04656	0.04664	0.07871
1201354-9	-0.00202	43.99332	0.09638	0.00981	0.73184	0.00398		149.69363	0.00021	0.02992	0.03514	0.04580
1201354-10	-0.00186	66.99448	0.04860	0.01765	0.77472	0.00572	0.00134	136.54269	0.00064	0.05905	0.06213	0.11146
1201354-11	-0.00123	47.67139	0.16730	0.01003	0.73641	0.00433	-0.00358	72.07532	0.00064	0.03859	0.03419	0.07304
1201354-12	-0.00075	27.64569	0.01691	0.00689	0.47093	0.00245	0.00063	9.95291	0.00039	0.02058	0.03252	0.03245
1201354-13	-0.00140	57.38864	0.06569	0.01436	0.98240	0.00602	0.00894	43.22886	0.00089	0.06542	0.06991	0.09269
CCV	0.21214	52.15701	0,52957	1.00960	1.08041	0.48967	0.53811	50.41700	0.50851	0.49459	1.00907	1.06340
ССВ	-0.00024	0.15675	-0.00124		-0.00047	1	-0.00757	-0.05191	-0.00059	-0.00068	0.00067	-0.00279
EX120201-2MB	-0.00029	0.11454	-0.00157	0.00767	-0.00005	į.	1	-0.06582	-0.00080	-0.00146		-0.00368
EX120201-2RVS	0.00979	1.07935	0.04482	0.04490	0.04989	0.00949	0.08959	4.71540	0.01918	0.01786	0.04830	0.04655
EX120201-2LCS	0.09835	2.36153	1.98087	0.49362	2.14647	0.04827	-0.00571	38.53287	0.05181	0.48814	0.19978	0.26726
1201363-11	-0.00065	1.81317	-0.00052	0.00963	0.08636	0.00003	-0.00770		-0.00028	0.00101	0.00094	-0.00143
1201363-11D	-0.00011	1.83915	-0.00307	š	0.08748	1	-0.00525		-0.00013		0.00094	-0.00143
1201363-11L 5X			0.00231					4.33366				
1201363-11MS	0.09848	4.77362	1.96711	0.49754	2.20641	0.04828	<u> </u>	60.92967	0.05192	0.48830	0.19964	0.26539
1201363-11MSD	0.09990	4.86229	1.99224	0.50331	2.22266	0.04825		61.49041	0.05231	0.49354	0.20173	0.26919
1 2 01363-13	-0.00078	1.44678	-0.00196		0.08751	0.04693		20.85125		 	0.00029	-0.00166
1 2 01363-15	-0.00029	1.45821	0.00037	0.01288	0.09093	0.00001		23.40378	0.00003		0.00023	-0.00188
	0.21137	51.72776	0.52896	1.00130	1.06251	0.49108			0.51250		1.01561	1.04638
୍ଞ୍∨ c o s	-0.00035	0.15358	-0.00168		-0.00012		1	-0.04138		-0.00035		-0.00337
1201363-17	-0.00033	1.48104	0.00143	0.00822		0.00010					0.00027	·
1201303-17	-0.00019	1.40104	0.00143	0.00022	0.08532	10.00015	1-0.00//2	19.14651	-0.00028	0.001/0	10.00005	-0.00214

Printed 2/2/2012 17:32:01 Page 2

Sample Idl	Ag	A1	As	В	Ba	Ве	Bi	Ca	Cd	Со	Cr	Cu
1201363-19	-0.00112	1.90664	0.00098	0.00796	0.10305	0.00021	-0.01048	22.21972	0.00001	0.00169	0.00056	-0.00113
ZZZ	0.02033	0.56809	0.01241	0.40477	0.41739	0.01177	0.04654	5.08272	0.01172	0.10069	0.02161	0.04829
1201354-1A	-0.00179	60.61438	2.03713	0.98998	5.02961	0.05279	-0.00038	121.83159	0.05355	0.52156	0.24110	0.33623
1201354-13 5X	-0.00075	11.26272	0.01552	0.00005	0.19451	0.00120	-0.00218	8.70833	-0.00030	0.01252	0.01407	0.01479
CRI	0.02004	0.54748	0.01275	0.40291	0.41167	0.01176	0.05049	5.14646	0.01123	0.10130	0.02172	0.04788
ICSA	-0.00205	259.86068	-0.00190	-0.00516	-0.00085	0.00048	0.00406	258.97348	-0.00068	-0.00110	-0.00280	-0.00796
ICSAB	0.20257	209.33260	0.10331	1.00752	0.53809	0.47921	0.54051	261.53927	1.00569	0.48161	0.48872	0.54365
CCV	0.21255	51.54316	0.52463	1.00160	1.05587	0.48772	0.53336	50.79330	0.51056	0.49498	1.01052	1.04386
CCB	-0.00063	0.24713	-0.00029	-0.00010	0.00096	0.00090	-0.00071	0.05676	0.00054	-0.00072	0.00134	-0.00228

						1				7.1	D) T	DI TT
Sample Id1	Fe	K	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Pb I	Pb II
MIXBHIGH	-0.01956	-0.46129	-0.00309		9.73158	9.76899	-0.11659		49.26311	9.68846	9.77306	9.64622
MIXAHIGH	197.83967	248.60848	9.70762	498.64729			Н150.66405	0.00101	0.00888	-0.00017	0.00406	-0.00228
MIXCHIGH	-0.01454	-0.50272	-0.00308	-0.19345	0.00320	-0.00107	-0.11902	-0.00023	0.01011	0.00502	L-0.02642	0.02072
ICV	10.23099	23.53209	0.22792	24.83678	0.51308	0.49914	22.88229	0.49743	2.49772	0.50875	0.50680	0.50973
ICB	-0.00875	-0.32812	-0.00338	-0.00362	-0.00047	-0.00335	-0.14006	-0.00205	-0.00775		L-0.00347	0.00021
CRI	0.20242	3.47105	0.01225	4.98048	0.03208	0.02023	3.66051	0.08066	0.19694	0.00738	0.00967	0.00624
ZZZ	106.53069	-0.44818		263.83730	0.00196	-0.00107	-0.12909	-0.00019	0.00833	-0.00132	-0.00152	-0.00121
ICSA	107.10969	-0.44797	i	264.37983	0.00202	-0.00025	-0.12819	0.00081	0.00146	-0.00038	0.00450	-0.00282
ICSAB	107.31884	-0.47265	1.08205		0.51427	0.99291	-0.12729	0.99141	0.99502	0.04982	0.04214	0.05365
CCV	20.41254	51.54281	0.52060	50.08209	1.01288	1.00264	48.24507	1.00561	4.93310	1.00686	1.01100	1.00480
CCB	0.00577	-0.32248	-0.00332	0.03613	-0.00023	-0.00071	-0.13599	-0.00053	-0.00631	0.00026	0.00255	-0.00088
CCV	20.30082	51.36925	0.51840	49.90117	1.00853	0.98537	48.14691	0.99110	4.92777	1.00260	1.00434	1.00174
CCB	0.00616	-0.31871	-0.00328	0.03639	-0.00011	-0.00066	-0.13200	-0.00013	-0.00598	0.00039	0.00157	-0.00021
ZZZ	0.02230	-0.39882	-0.00354	-0.00074	-0.00029	-0.00107	-0.09185	-0.00019	-0.01130	-0.00060	-0.00218	0.00019
IP120202-2MB	0.02354	-0.35009	-0.00342	-0.00362	-0.00035	-0.00188	-0.08928	-0.00106	-0.00320	0.00103	-0.00126	0.00217
IP120202-2LCS	1.03963	37.64932	0.47039	36.17879	0.49521	0.96347	35.90477	0.48211	-0.00342	0.48518	0.48768	0.48393
1201354-1	118.16513	12.14933	0.07170	22.49394	1.65154	0.03491	7.31037	0.03964	2.38575	0.14431	0.14310	0.14491
1201354-1D	113.28140	9.38163	0.06311	20.77127	1.48104	0.03395	1.32763	0.03812	2.31965	0.13271	0.13464	0.13175
1201354-1L 5X	22.70725	1.51582	0.00822	4.36393	0.33172	0.00539	0.78638	0.00708	0.49137	0.02805	0.02753	0.02831
1201354-1MS	126.66725	53.69552	0.60883	63.09358	2.06439	0.98012	40.00731	0.53219	2.32570	0.62080	0.63339	0.61451
1201354-1MSD	129.57668	54.53206	0.62050	63.86007	2.12684	0.97956	40.44208	0.53531	2.35113	0.63092	0.63685	0.62796
1201354-2	93.01974	5.99850	0.05429	17.38023	1.92874	0.06993	0.26053	0.02527	1.84708	0.11833	0.11685	0.11907
1201354-3	65.78004	5.55503	0.04740	15.93042	1.43925	0.11125	0.38081	0.01880	1.57760	0.17622	0.17615	0.17625
CCV	20.33682	51.83428	0.52385	49.94543	1.00859	0.99591	48.43347	1.00738	4.94250	1.00660	1.01023	1.00478
ССВ	0.01520	-0.37016	-0.00326	0.03168	0.00012	-0.00096	-0.12798	-0.00159		-0.00025	0.00123	-0.00098
1201354-4	57.71411	4.95518	0.03997	11.80921	1.53312	0.03278	0.62376	0.02767	1.16572	0.09074	0.09243	0.08989
1201354-5	93.46906	5.90005	0.04456	14.73216	1.33285	0.09773	0.90134	0.02730	1.63031	0.14321	0.14637	0.14163
1201354-6	68.52994	5.60927	0.04466	14.55746	1.36161	0.08538	1.14553	0.02732	1.55069	0.13173	0.13303	0.13109
1201354-7	82.73363	7.48621	0.05969	17.30087	1.85176	0.04259	0.67735	0.04412	1.84250	0.12438	0.12661	0.12327
1201354-8	110.43899	11.26300	0.06447	19.82462	1.57589	0.10342	1.03159	0.05585	2.14463	0.13405	0.13194	0.13510
1201354-9	110.08207	7.65901	0.05965	19.35296	1.86924	0.07130	0.37243	0.03712	2.06495	0.11913	0.11333	0.12203
1201354-10	140.56499	15.25504	0.08588	22.47359	1.99940	0.00971	0.68789	0.08450	2.98296	0.12428	0.12515	0.12385
1201354-11	113.49248	9.11148	0.06943	19.14179	1.94281	0.18470	0.66618	0.04315	2.11721	0.15849	0.16165	0.15692
1201354-12	71.49818	7.03802	0.02038	8.90327	1.15399	0.00198	0.04174	0.03714	1.50302	0.05931	0.06215	0.05790
1201354-13	H265.51909	21.55162	0.06054	26.28049	2.56707	0.00122	1.22304	0.07194	4.02540	0.10372	0.10182	0.10466
CCV	20.38721	52.00740	0.52634	50.37312	1.01121	1.00019	48.67172	1.00630	5.00277	1.00748	1.01271	1.00487
ССВ	0.01852	-0.38459	-0.00331	0.03011	0.00006	0.00071	-0.13252	-0.00088			0.00252	-0.00110
EX120201-2MB	-0.01199	-0.40509	-0.00353	-0.00179	-0.00065	-0.00300		-0.00086			-0.00007	0.00091
EX120201-2RVS	0.96397	7.54729	0.03438	4.67182	0.04824	0.09783	7.69196	0.04788	0.92386	0.04780	0.04796	0.04772
EX120201-2LCS	1.00738	50.14414	0.58478	37.31692	0.50246	0.99688	H173.31705	1	-0.00409		0.49808	0.48550
1201363-11	1.16681	1.06626	-0.00025		0.38545	-0.00152	129.23173	0.00115	0.06079	0.00352	0.00063	0.00496
1201363-11D	1.17712	1.00020	-0.00025		0.38972	-0.00132		0.00113	0.05802	0.00332	0.00083	0.00137
1201363-11L 5X		-0.12547			0.38972	-0.00031			0.00389	1		0.000137
1201363-11L 3X	2.30849	50.55749	0.57809	47.03498	0.88563		H162.02296			0.49452	0.50002	0.49177
1201363-11MSD			0.57809			0.99464			0.06343	0.49432	0.50154	0.49177
1 20 1363-11MSD	2.34105	50.89000	-0.00040	47.53647	0.89664		H163.05815			0.50042		0.49987
1201363-15	0.93894	0.93227			0.39019	-0.00020		0.00113	0.03983			
	0.94870	1.10973	-0.00017		0.37447	-0.00198		0.00227	0.05170	0.00410	0.00344	0.00444
C ey C o B	20.33856	51.38540	0.51709	50.23099	1.01347	1.00722	47.89112	1.00415	4.96878	1.00824	1.01485	1.00494
	0.01574	-0.29508	-0.00307		0.00030	-0.00046		1	-0.00819			-0.00215
1201363-17	0.91987	0.85806	-0.00077	7.65749	0.28150	1-0.00228	133.57086	0.00152	0.04216	0.00494	0.00254	0.00614

Printed 2/2/2012 17:32:01	Page	4
---------------------------	------	---

Sample Id1	Fe	K	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Pb I	Pb II
1201363-19	1.89042	1.04431	-0.00033	9.94253	0.34879	-0.00112	135.50311	0.00284	0.06357	0.00478	0.00457	0.00488
$Z\overline{Z}Z$	0.20025	3.41739	0.01239	4.96271	0.03155	0.02002	3.72482	0.08305	0.20060	0.00530	0.00614	0.00487
1201354-1A	111.32388	54.77640	0.60765	59.07959	2.04918	1.02408	46.71107	0.53969	2.22591	0.62750	0.63294	0.62479
120135 4-13 5X	51.27429	3.16785	0.00701	5.20760	0.52050	-0.00152	0.08553	0.01395	0.82924	0.02111	0.02071	0.02130
CRI	0.20551	3.49277	0.01239	4.96402	0.03196	0.01987	3.68506	0.08247	0.19816	0.00809	0.00936	0.00746
ICSA	104.39097	-0.41178	-0.00304	261.74505	0.00095	-0.00503	-0.12095	-0.00171	-0.00342	-0.00069	L-0.00879	0.00336
ICSAB	105.28281	-0.36096	1.04998	262.55631	0.50590	0.98247	-0.11289	0.98173	0.98366	0.05165	0.04801	0.05347
CCV	20.26674	51.02168	0.51222	50.13676	1.00716	1.00325	47.75746	1.00305	4.92505	1.00332	1.01026	0.99986
CCB	0.05668	-0.27835	-0.00279	0.13339	0.00149	0.00071	-0.07157	0.00038	0.00256	0.00056	0.00213	-0.00022

												rage
Sample Idl	S	Sb	Se	Se I	Se II	Si	Sn	Sr	Ti	Tl	U	V
MIXBHIGH	-0.01727	1.94621	4.95263	4.96120	4.94836	49.65806	9.85562	9.78627	9.78448	4.92611	-0.07317	4.88935
MIXAHIGH	-0.00012	0.00201	-0.01189	L-0.04481	0.00455	0.00009	-0.00284	0.00772	-0.00087	0.01595	0.17302	L-0.01973
MIXCHIGH	Н50.76693	0.00215	0.00416	0.01238	0.00005	L-0.05429	0.02126	-0.00240	0.00547	0.00393	Н51.10719	
ICV	2.57669	0.24600	0.50986	0.50992	0.50983	2.57927	0.52124	0.25853	0.25059	0.26567	2.55050	0.25074
ICB	-0.02507	-0.00257	-0.00269	-0.00343	-0.00231	-0.02268	-0.00328	-0.00414	-0.00211	-0.00683	-0.04208	-0.00092
CRI	0.20261	0.12026	0.00980	0.01115	0.00912	0.09994	0.09885	0.01790	0.01987	0.02424	0.18753	0.10360
ZZZ	0.04667	-0.00269	-0.00761	L-0.01948	-0.00168	-0.02603	-0.00087	-0.00253	-0.00050	0.00603	0.04692	L-0.01081
ICSA	0.04355	0.00062	-0.00484	L-0.01863	0.00205	-0.02193	0.00395	-0.00233	-0.00021	0.01346	0.06453	-0.00907
ICSAB	1.08379	0.58525	0.05141	0.04131	0.05646	1.01668	1.03344	1.07776	0.99088	0.10665	10.78807	0.49509
CCV	5.17042	0.49542	1.01675	1.01709	1.01659	5.11285	1.02721	0.52651	0.49638	0.52020	5.14036	0.49918
ССВ	-0.01571	-0.00085	0.00061	-0.00335	0.00259	-0.01808	-0.00372	-0.00395	-0.00195	0.00245	-0.03063	0.00019
CCV	5.12827	0.48911	1.00367	1.00587	1.00258	5.09766	1.02391	0.52385	0.49532	0.51729	5.14426	0.49698
CCB	-0.01727	-0.00184	0.00064	0.00054	0.00070	-0.02095	-0.00350	-0.00391	-0.00228	0.00049	-0.02790	-0.00089
ZZZ	-0.02351	-0.00118	-0.00353	L-0.00537	-0.00261	-0.02184	-0.00328	-0.00409	-0.00349	L-0.01002	-0.04155	-0.00070
IP120202-2MB	-0.02819	-0.00276	-0.00217	-0.00070	-0.00291	-0.02266	0.00483	-0.00212	-0.00282	-0.00402	-0.05356	-0.00148
IP120202-2LCS	-0.00636	0.45571	1.79012	1.80484	1.78277	1.76998	0.49244	0.53687	0.48314	1.97952	-0.05480	0.48860
1201354-1	5.90258	0.00131	0.09880	0.07633	0.11001	1.52412	0.00246	0.39028	0.15470	0.01901	0.36971	0.80588
1201354-1D	7.09550	0.00114	0.13708	0.12364	0.14380	1.48955	0.00708	0.32460	0.13638	0.01582	0.35066	0.80777
1201354-1L 5X	1.16958	-0.00037	0.01796	0.01147	0.02121	0.29242	-0.00003	0.07419	0.02918	0.00490	0.04342	0.16227
1201354-1MS	6.06807	0.25596	1.89367	1.89497	1.89302	14.10500	0.51158	0.89125	0.63018	1.99872	0.42669	1.51114
1201354-1MSD	6.06651	0.25781	1.89146	1.87913	1.89761	12.95746	0.50129	0.91471	0.60741	1.98390	0.36576	1.56451
1201354-2	4.36188	0.00180	0.24194	0.23169	0.24706	5.21768	0.00567	0.44976	0.22354	0.01558	1.44235	0.95079
1201354-3	4.83793	0.00034	0.51941	0.51757	0.52032	12.19408	0.00354	0.44155	0.35636	0.00939	4.05912	1.64990
CCV	5.16417	0.49422	1.01456	1.01426	1.01471	5.11179	1.02699	0.53185	0.49336	0.52261	5.17754	0.49876
ССВ	-0.01571	-0.00257	0.00023	-0.00062	0.00066	-0.01644	-0.00262	-0.00185	-0.00195	0.00228	-0.04864	-0.00003
1201354-4	4.38685	-0.00243	0.13288	0.12882	0.13491	12.02386	0.00096	0.25984	0.31244	0.00887	0.37540	0.65806
1201354-5	5.00027	0.00387	0.38477	0.37889	0.38771	14.29376	0.00332	0.39893	0.35889	0.00877	2.34099	1.11381
1201354-6	4.14026	-0.00151	0.38548	0.37577	0.39033	11.97568	0.00139	0.41809	0.32222	0.00774	2.53810	1.03584
1201354-7	4.60224	-0.00043	0.29713	0.28396	0.30370	16.14467	-0.00038	0.49252	0.52275	0.01169	1.35330	0.84976
1201354-8	10.02901	0.00257	0.14450	0.12662	0.15343	13.55458	0.00173	0.61106	0.40702	0.01685	2.68260	0.54307
1201354-9	4.50079	0.00028	0.23923	0.21543	0.25112	7,42973	-0.00036	0.40838	0.31887	0.00942	1.44547	1.53649
1201354-10	5.85886	-0.00076		L-0.01032	0.02447	14.37359	0.00277	0.44338	0.44928	0.01637	0.28242	0.21588
1201354-11	7.94507	0.00261	0.64914	0.63917	0.65412	8.61056	0.00974	0.36436	0.30118	0.02437	2.94798	1.35773
1201354-12	2.30678	-0.00024	0.00743	-0.00136	0.01182	4.72460	0.00180	0.07445	0.34804	0.01538	0.01947	0.08153
1201354-13	18.05717	0.00267	-0.00160	L-0.04102	0.01808	4.52670	0.00342	0.38661	0.26763	0.03470	0.13131	0.18420
CCV	5.21881	0.49993	1.01266	1.02164	1.00818	5.16634	1.04060	0.53551	0.49730	0.52540	5.20480	0.49980
CCB	-0.02039	-0.00124	-0.00123	0.00041	-0.00205	-0.01649	-0.00459		-0.00228	0.00331	-0.01317	-0.00011
EX120201-2MB	-0.01883	-0.00231	0.00138	-0.00087	0.00250	0.00239	0.00155	-0.00207	-0.00258	0.00177	-0.02734	-0.00117
EX120201-2RVS	0.95121	0.09083	0.04468	0.04704	0.04351	0.25124	0.09422	0.04784	0.04445	0.09910	0.46807	0.04850
EX120201-2LCS	-0.00636	0.47950	1.92059	1.94196	1.90992	2.02627	0.51636	0.53668	0.48698	2.06626	-0.05095	0.50203
1201363-11	0.17766	-0.00126	0.00213	-0.00202	0.00420	3.67740	-0.00115		0.05491	-0.00012	-0.03960	0.00144
1201363-11D	0.17298	-0.00304	l .	0.00315	0.00029	3.73159	1	0.07770	0.05687	-0.00252	-0.02051	0.00190
1201363-11L 5X		-0.00311			0.00229					0.00087		0.00001
1201363-11MS	0.19325	0.47068			1.89872	6.88495	0.51606		0.54939	2.04263	-0.04857	0.49972
1201363-11MSD	0.20105	0.47655	1.93418	1.94166	1.93044	7.17238	0.51803	. i	0.55881	2.07376	-0.04531	0.50528
1901363-13	0.07629	-0.00177		0.00116	0.00381	2.89945	-0.00465		0.04260	0.00040	-0.04872	0.00094
1201363-15	0.13555	0.00073		-0.00037	0.00037	2.95768	-0.00005			0.00394	-0.03509	0.00188
	5.16261	0.49354	1.01024	1.02428	1.00323	5.13259	1.04192		0.49547	0.53056	5.14696	0.50084
C e y C 0 β	-0.00636		0.00028	0.00548	-0.00231				-0.00192	0.00498	-0.03500	-0.00038
1201363-17	0.13867		0.00318	0.00598	0.00179	2.96442		0.06750	0.04322	-0.00121	-0.04762	0.00085
		1 0100100	1 0.00010		V. VVI. 1 J		1 0.00223	10.00/30	10.01022	L 0.00121	1 0.01,02	1 0 0 0 0 0 0

Printed	2/2/2012	17:32:01	Page 6
---------	----------	----------	--------

Sample Idl	S	Sb	Se	Se I	Se II	Si	Sn	Sr	Ti	T1	U	V
1201363-19	0.08877	-0.00304	0.00168	-0.00074	0.00289	3.69342	-0.00006	0.07433	0.05829	0.00151	-0.03737	0.00207
ZZZ	0.20417	0.12217	0.00870	0.00520	0.01045	0.10007	0.10061	0.02025	0.01921	0.02396	0.19463	0.10280
1201354-1A	5.56536	0.47827	2.00976	2.01917	2.00506	3.46451	0.52080	0.90993	0.62908	2.06603	0.35691	1.26106
1201354-13 5X	3.77039	-0.00007	-0.00013	L-0.00758	0.00360	0.86341	-0.00027	0.07541	0.05087	0.00957	0.01305	0.03636
CRI	0.20885	0.11999	0.01203	0.01356	0.01127	0.09583	0.10521	0.01996	0.01941	0.02727	0.18262	0.10266
ICSA	0.03887	-0.00521	-0.00329	L-0.02322	0.00666	-0.03690	-0.00525	-0.00057	-0.00045	0.01365	0.01727	L-0.01109
ICSAB	1.06819	0.58275	0.04664	0.03701	0.05145	0.99508	1.02643	1.05623	0.97166	0.11223	10.53713	0.48768
CCV	5.11734	0.49655	0.99685	1.01332	0.98863	5.09488	1.03314	0.52547	0.49175	0.53494	5.09242	0.49799
CCB	-0.00480	0.00139	0.00111	0.00166	0.00084	-0.01318	0.00045	-0.00113	-0.00109	0.00669	-0.02957	0.00125

Sample Id1	Zn	Zr
MIXBHIGH	9.67701	-0.01459
MIXAHIGH	-0.00569	0.00542
MIXCHIGH	-0.00406	н5.06373
ICV	0.49217	0.50673
ICB	-0.00243	-0.00035
CRI	0.04906	0.05326
ZZZ	-0.00258	0.00283
ICSA	-0.00317	0.00359
ICSAB	0.92026	0.50099
CCV	0.96609	1.01167
CCB	-0.00317	0.00025
CCV	0.95300	1.00580
ССВ	-0.00302	-0.00002
ZZZ	-0.00139	0.00006
IP120202-2MB	-0.00095	-0.00008
IP120202-2LCS	0.46454	0.00100
1201354-1	1.11956	0.05342
1201354-1D	0.52828	0.04411
1201354-1L 5X	0.19467	0.00992
1201354-1MS	0.75872	0.05626
1201354-1MSD	0.75217	0.05587
1201354-2	0.17789	0.03754
1201354-3	0.12668	0.04363
CCA	0.94868	1.01255
CCB	-0.00184	0.00010
1201354-4	0.14217	0.02934
1201354-5	0.16004	0.04294
1201354-6	0.15293	0.04257
1201354-7	0.19760	0.04630
1201354-8	0.28516	0.04977
1201354-9	0.22835	0.04428
1201354-10	0.37350	0.05629
1201354-11	0.26077	0.05443
1201354-12	0.17201	0.03208
1201354-13	0.37228	0.04313
CCV	0.96714	1.01737
CCB	-0.00242	0.00035
EX120201-2MB	-0.00257	-0.00027
EX120201-2RVS	0.04542	0.04919
EX120201-2LCS	0.48171	0.00096
1201363-11	0.12097	0.00134
1201363-11D	0.12218	0.00171
1201363-11L 5X	0.02211	-0.00009
1201363-11MS	0.60346	0.00198
1201363-11MSD 1201363-13	0.61150	0.00167
	0.12703	0.00087
1201363-15	0.14278	0.00169
Cev C	0.98521	1.01160
COB	-0.00302	-0.00008
1201363-17	0.12279	0.00150

Sample Idl	Zn	Zr
1201363-19	0.15096	0.00184
ZZZ	0.04814	0.05304
1201354-1A	1.54388	0.05197
1201354-13 5X	0.07419	0.00806
CRI	0.04830	0.05223
ICSA	-0.00408	0.00188
ICSAB	0.92737	0.49244
CCV	0.97716	1.00728
CCB	-0.00015	0.00189

Method : Paragon Printed: 2/2/2012 17:32:41 File : 120202A

SampleId1 : RL2 SampleId2 :

Analysis commenced: 2/2/2012 13:10:19
Dilution ratio: 1.00000 to 1.00000 Position: TUBE3 Tray :

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.114	0.246	0.212	0.341	0.033	0.718	0.165	0.256	0.125
#2	0.114	0.246	0.207	0.340	0.032	0.718	0.162	0.254	0.126
Mean	0.114	0.246	0.210	0.340	0.033	0.718	0.163	0.255	0.125
%RSD	0.558	0.029	1.721	0.332	0.435	0.020	1.082	0.555	0.622
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading								
#1	0.116	0.215	0.080	0.167	1.319	0.833	0.260	0.019	0.118
#2	0.116	0.213	0.080	0.165	1.304	0.834	0.258	0.019	0.117
Mean	0.116	0.214	0.080	0.166	1.312	0.833	0.259	0.019	0.117
%RSD	0.122	0.429	0.089	0.639	0.852	0.102	0.437	0.000	0.302
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	2.727	0.276	0.160	2.223	0.647	0.015	0.186	0.410	0.294
#2	2.659	0.276	0.162	2.217	0.656	0.015	0.186	0.407	0.297
Mean	2.693	0.276	0.161	2.220	0.652	0.015	0.186	0.409	0.296
%RSD	1.809	0.026	0.966	0.182	0.901	1.419	0.076	0.588	0.765
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	Reading								
#1	0.470	0.078	0.293	0.490	0.246	0.180	0.141	0.028	0.347
#2	0.471	0.079	0.292	0.485	0.250	0.179	0.141	0.028	0.346
Mean	0.471	0.079	0.292	0.488	0.248	0.180	0.141	0.028	0.346
%RSD	0.090	0.896	0.266	0.609	0.998	0.079	0.100	0.501	0.245
	Pb	Se							
#1 #2	Reading	Reading							
Mean	0.000	0.000							
%RSD	0.000	0.000							

[STD]

Method : Paragon Printed: 2/2/2012 17:32:42 File : 120202A

SampleId1 : B3 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:12:28
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE4

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
U 4	Reading	Reading							
#1	0.134	0.188	0.244	0.225	0.182	1.074	0.153	0.041	0.398
#2	0.134	0.187	0.235	0.227	0.183	1.076	0.151	0.041	0.397
Mean %RSD	0.134 0.106	0.188 0.301	0.240 2.626	0.226 0.626	0.183 0.581	1.075 0.138	0.152 0.836	0.041 0.519	0.397
91/00	0.100	0.301	2.020	0.626	0.381	0.138	0.836	0.519	0.125
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading	Reading							
#1	0.169	0.449	0.159	0.048	0.669	0.098	0.105	0.098	0.186
#2	0.170	0.449	0.160	0.047	0.665	0.098	0.105	0.098	0.186
Mean	0.169	0.449	0.160	0.047	0.667	0.098	0.105	0.098	0.186
%RSD	0.251	0.126	0.266	0.447	0.413	0.144	0.270	0.289	0.152
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading							
#1	0.165	0.528	0.307	2.559	0.861	0.008	0.180	0.434	0.329
#2	0.162	0.527	0.307	2.549	0.856	0.008	0.180	0.426	0.337
Mean	0.164	0.527	0.307	2.554	0.858	0.008	0.180	0.430	0.333
%RSD	1.426	0.067	0.023	0.266	0.395	0.868	0.118	1.184	1.655
	Si	Sn	Sr	Ti	Tl	Ŭ	v	Zn	Zr
	Reading	Reading							
#1	0.692	0.093	0.671	1.017	0.281	0.144	0.221	0.058	0.251
#2	0.695	0.093	0.675	1.019	0.277	0.141	0.222	0.058	0.250
Mean	0.693	0.093	0.673	1.018	0.279	0.142	0.221	0.058	0.251
%RSD	0.286	0.152	0.399	0.146	0.862	1.241	0.320	0.609	0.254
	Pb	Se							
	Reading	Reading							
#1 #2									
Mean	0.000	0.000							
%RSD	0.000	0.000							
Method	: Paragon		File : 12020	2A	Printed:	2/2/2012 17	:32:42		
						_, _, _ , _ , _ ,			

SampleId1: B2 SampleId2: Analysis commenced: 2/2/2012 13:14:27
Dilution ratio: 1.00000 to 1.00000 Tray: [STD]

Position : TUBE5

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading						
#1	0.424	0.192	0.684	1.639	1.657	6.462	$0.15\tilde{3}$	0.041	3.051
#2	0.423	0.192	0.692	1.639	1.657	6.480	0.155	0.041	3.058
Mean	0.424	0.192	0.688	1.639	1.657	6.471	0.154	0.041	3.055
%RSD	0.167	0.000	0.853	0.000	0.009	0.196	1.149	0.522	0.167
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо

	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.728	2.757	0.955	0.048	0.657	0.119	0.104	0.869	$1.14\tilde{1}$
#2	0.727	2.755	0.956	0.048	0.651	0.119	0.104	0.870	1.146
Mean	0.727	2.756	0.956	0.048	0.654	0.119	0.104	0.869	1.143
%RSD	0.078	0.038	0.111	0.589	0.595	0.178	0.136	0.073	0.328
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.135	3.293	2.342	5.979	2.889	0.008	0.347	0.775	0.871
#2	0.116	3.294	2.360	5.989	2.877	0.008	0.345	0.775	0.871
Mean	0.126	3.294	2.351	5.984	2.883	0.008	0.346	0.775	0.871
%RSD	11.043	0.024	0.529	0.122	0.292	0.000	0.307	0.018	0.016
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
)) -	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Zn Reading	Zr Reading
#1	Reading 3.980	Reading 0.305	Reading 6.475	Reading 8.391					
#2	Reading 3.980 3.992	Reading 0.305 0.307	Reading						
#2 Mean	Reading 3.980 3.992 3.986	Reading 0.305 0.307 0.306	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733	Reading 0.141	Reading 1.081	Reading 0.388	Reading 0.251
#2	Reading 3.980 3.992	Reading 0.305 0.307	Reading 6.475 6.468	Reading 8.391 8.394	Reading 0.733 0.736	Reading 0.141 0.141	Reading 1.081 1.080	Reading 0.388 0.390	Reading 0.251 0.247
#2 Mean	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249

Method : Paragon File: 120202A Printed: 2/2/2012 17:32:42

SampleId1: B1 SampleId2: Analysis commenced: 2/2/2012 13:16:52
Dilution ratio: 1.00000 to 1.00000 Tray: [STD]

Position : TUBE6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	3.380	0.236	5.142	$15.66\overline{1}$	16.22ī	60.057	0.199	0.046	28.683
#2	3.364	0.236	5.134	15.576	16.037	59.946	0.202	0.046	28.688
Mean	3.372	0.236	5.138	15.618	16.129	60.002	0.201	0.046	28.685
%RSD	0.329	0.090	0.103	0.383	0.805	0.130	0.916	0.612	0.013
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	6.312	25.820	9.168	0.064	0.647	0.104	0.112	8.364	10.617
#2	6.317	25.815	9.070	0.065	0.656	0.106	0.114	8.354	10.575
Mean	6.315	25.817	9.119	0.065	0.652	0.105	0.113	8.359	10.596
%RSD	0.063	0.015	0.761	1.093	0.998	1.145	0.999	0.080	0.284
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading

#1	0.118	31.029	20.957	40.504	23.168	0.011	2.023	4.232	6.157
#2	0.123	30.970	20.916	40.492	23.229	0.011	2.016	4.202	6.185
Mean	0.120	31.000	20.936	40.498	23.199	0.011	2.020	4.217	6.171
%RSD	2.939	0.135	0.142	0.021	0.188	0.634	0.259	0.495	0.322
ил	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	36.705	2.414	61.704	82.421	5.330	0.153	9.722	3.633	0.284
#2	36.586	2.416	61.284	82.042	5.289	0.155	9.700	3.656	0.287
Mean %RSD	36.645 0.231	2.415 0.064	61.494 0.483	82.231 0.326	5.310 0.542	0.154 0.781	9.711 0.160	3.644 0.454	0.286 0.619
#1 #2	Pb Reading	Se Reading							
Mean %RSD	0.000 0.000	0.000 0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A5 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:18:48
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE7

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.101	0.962	0.198	0.087	0.021	0.485	0.150	1.475	0.101
#2	0.101	0.962	0.192	0.085	0.021	0.480	0.151	1.486	0.100
Mean	0.101	0.962	0.195	0.086	0.021	0.482	0.150	1.480	0.100
%RSD	0.070	0.059	1,959	0.987	1.334	0.674	0.424	0.492	0.705
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading								
#1	0.106	0.194	0.073	1.369	1.479	2.142	1.137	0.013	0.088
#2	0.107	0.196	0.073	1.378	1.489	2,156	1.140	0.013	0.086
Mean	0.106	0.195	0.073	1.374	1.484	2.149	1.138	0.013	0.087
∜RSD	0.332	0.544	0.387	0.484	0.491	0.474	0.168	1.651	1.873
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	2.163	0.223	0.083	2.202	0.639	0.009	0.162	0.397	0.277
#2	2.180	0.219	0.080	2.202	0.641	0.009	0.164	0.400	0.278
Mean	2.171	0.221	0.082	2.202	0.640	0.009	0.163	0.399	0.278
%RSD	0.550	1.282	2.943	0.003	0.188	0.000	1.129	0.550	0.255
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	Reading								
#1	0.350	0.072	0.057	0.213	0.231	0.144	0.128	0.022	0.237

#2 Mean %RSD	0.344 0.347 1.265	0.071 0.071 0.594	0.056 0.057 1.876	0.210 0.211 1.138	0.233 0.232 0.579	0.145 0.144 0.538	0.129 0.128 0.055	0.022 0.022 0.000	0.239 0.238 0.653
ш 1	Pb Reading	Se Reading							
#1 #2 Mean %RSD	0.000 0.000	0.000 0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A4 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:20:46
Dilution ratio: 1.00000 to 1.00000 Tray : Position : TUBE8

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.102	7.508	0.212	0.081	0.019	0.485	0.153	13.794	0.102
#2	0.101	7.548	0,212	0.081	0.019	0.490	0.151	13.793	0.101
Mean	0.101	7.528	0.212	0.081	0.019	0.487	0.152	13.793	0.102
%RSD	0.907	0.375	0.300	0.000	2.626	0.609	0.605	0.008	0.278
	Co	Cr	Cu	Fe	К	Li	Ма	Mn	Мо
	Reading								
#1	0.108	0.208	0.072	12.706	6.535	19.008	10.136	0.013	0.092
#2	0.108	0.207	0.073	12.732	6.583	19.206	10.172	0.014	0.091
Mean	0.108	0.208	0.072	12.719	6.559	19.107	10.154	0.014	0.092
%RSD	0.262	0.340	0.489	0.146	0.511	0.732	0.244	2.080	0.927
	Na	Ni.	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	17.025	0.217	0.086	2.411	0.700	0.009	0.199	0.446	0.311
#2	17.193	0.216	0.088	2.398	0.704	0.009	0.198	0.446	0.313
Mean	17.109	0.216	0.087	2.405	0.702	0.009	0.199	0.446	0.312
%RSD	0.695	0.229	1.058	0.403	0.413	1.554	0.249	0.048	0.454
	Si	Sn	Sr	Ti	Tl	Ū	v	Zn	Zr
	Reading								
#1	0.355	0.078	0.039	0.214	0.259	0.167	0.139	0.025	0.245
#2	0.357	0.079	0.041	0.217	0.254	0.166	0.138	0.025	0.243
Mean	0.356	0.078	0.040	0.215	0.256	0.167	0.138	0.025	0.244
%RSD	0,378	0.090	4.950	0.920	1.241	0.636	0.204	1.428	0.754

98 of 195

Mean 0.000 0.000er: MIKE LUNDGREEN

8RSD 0.000 0.000

Method : Paragon File: 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A3 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:22:45

Dilution ratio : 1.00000 to 1.00000 Tray : Position: TUBE9

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.102	$15.05\bar{2}$	0.235	0.082	0.019	0.496	0.153	27.118	0.105
#2	0.103	15.045	0.231	0.083	0.020	0.496	0.154	27.181	0.107
Mean	0.103	15.048	0.233	0.083	0.019	0.496	0.154	27.149	0.106
%RSD	0.756	0.033	1.031	1.027	2.545	0.071	0.184	0.164	1.606
	_	_	_						
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
11.1	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.110	0.216	0.073	24.652	13.540	42.708	20.247	0.015	0.102
#2	0.110	0.217	0.074	24.684	13.551	42.644	20.228	0.015	0.102
Mean	0.110	0.217	0.073	24.668	13.545	42.676	20.238	0.015	0.102
%RSD	0.386	0.490	0.773	0.090	0.056	0.107	0.064	1.861	0.070
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	35.856	0.222	0.093	2,638	0.776	0.010	0.238	0.501	0.350
#2	35.815	0.223	0.090	2.646	0.782	0.010	0.237	0.507	0.348
Mean	35.836	0.222	0.091	2.642	0.779	0.010	0.238	0.504	0.349
%RSD	0.081	0.064	2.323	0.214	0.526	2.886	0.208	0.855	0.487
						2	******	0,000	5.15.
	Si	Sn	Sr	Ti	T1	U	v	Zn	Zr
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.368	0.087	0.049	0.228	0.285	0.183	0.147	0.029	0.256
#2	0.369	0.086	0.052	0.229	0.288	0.184	0.148	0.029	0.258
Mean	0.369	0.086	0.050	0.229	0.287	0.184	0.148	0.029	0.257
%RSD	0.230	0.327	3.518	0.433	0.764	0.578	0.384	0.248	0.577
	Pb	Se							
	Reading	Reading							
#1		1.0001119							
#2									
Mean	0.000	0.000							
%RSD	0.000	0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A2 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:24:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE10

#1 #2 Mean %RSD	Ag Reading 0.105 0.104 0.105 0.676	Reading 30.400 30.329 30.365 0.167	As Reading 0.274 0.273 0.273 0.388	Reading 0.091 0.090 0.091 0.545	Ba Reading 0.019 0.020 0.020 1.799	Be Reading 0.508 0.512 0.510 0.471	Bi Reading 0.157 0.158 0.158 0.629	Ca Reading 53.437 53.289 53.363 0.195	Cd Reading 0.112 0.113 0.113 0.628
#1 #2 Mean %RSD	Co Reading 0.115 0.115 0.115 0.123	Cr Reading 0.230 0.228 0.229 0.556	Cu Reading 0.074 0.075 0.074 0.762	Fe Reading 47.306 47.194 47.250 0.167	Reading 27.976 27.850 27.913 0.319	Li Reading 95.822 95.358 95.590 0.343	Mg Reading 40.955 40.861 40.908 0.163	Mn Reading 0.018 0.018 0.018 0.790	Mo Reading 0.124 0.124 0.124 0.000
#1 #2 Mean %RSD	Na Reading 71.287 71.003 71.145 0.282	Ni Reading 0.230 0.229 0.230 0.339	Reading 0.102 0.099 0.101 1.687	Pb I Reading 3.135 3.138 3.137 0.063	Pb II Reading 0.933 0.934 0.934 0.015	Reading 0.011 0.011 0.011 1.886	Sb Reading 0.311 0.314 0.312 0.657	Se I Reading 0.605 0.613 0.609 0.975	Se II Reading 0.424 0.422 0.423 0.401
#1 #2 Mean %RSD	Si Reading 0.385 0.386 0.386 0.257	Sn Reading 0.102 0.102 0.102 0.000	Sr Reading 0.065 0.067 0.066 1.825	Ti Reading 0.241 0.243 0.242 0.556	T1 Reading 0.343 0.349 0.346 1.267	U Reading 0.211 0.210 0.210 0.269	v Reading 0.163 0.164 0.163 0.260	Zn Reading 0.036 0.037 0.036 0.389	Zr Reading 0.260 0.260 0.260 0.000
#1 #2 Mean %RSD	Pb Reading 0.000 0.000	Se Reading 0.000 0.000							
Method:	: Paragon		File : 12020:	2A	Printed:	2/2/2012 17	:32:43		

 Method:
 Paragon
 File:
 120202A
 Printed:
 2/2/2012
 17:32:43

 SampleId1:
 Analysis commenced:
 2/2/2012
 13:26:50

 Dilution ratio:
 1.00000 to 1.00000
 Tray:
 Position:
 TUBE11

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.108	73.527	0.391	0.119	0.022	$0.54\tilde{6}$	0.172	122.752	0.130
#2	0.109	73.754	0.387	0.118	0.022	0.540	0.170	123.339	0.132
Mean	0.108	73.641	0.389	0.119	0.022	0.543	0.171	123.045	0.131
%RSD	0.130	0.218	0.636	0.535	0.000	0.716	0.704	0.338	0.811

ted:	2/2/2012 17:3	2:43 Use	r: MIKE LUNDG	REEN					
	Со	Cr	Cu	Fe	ĸ	Li	Ма	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.128	0.261	0.077	102.45Š	66.895	263.192	100.921	0.026	0.188
#2	0.129	0.263	0.077	102.791	67.146	263.662	101.065	0.026	0.187
Mean	0.128	0.262	0.077	102.623	67.021	263.427	100.993	0.026	0.188
%RSD	0.220	0.568	0.183	0.232	0.265	0.126	0.101	0.271	0.264
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	148.479	0.251	0.129	4.539	1.377	0.014	0.538	0.915	0.631
#2	148.948	0.252	0.127	4.570	1.376	0.014	0.538	0.921	0.634
Mean	148.714	0.251	0.128	4.555	1.377	0.014	0.538	0.918	0.633
%RSD	0.223	0.169	1.326	0.487	0.051	0.507	0.000	0.401	0.335
	Si	Sn	Sr	Ti.	Tl	ប	v	Zn	Zr
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.425	0.146	0.115	0.284	0.513	0.287	0.204	0.059	0.285
#2	0.426	0.145	0.116	0.284	0.509	0.291	0.204	0.059	0.287
Mean	0.426	0.145	0.116	0.284	0.511	0.289	0.204	0.059	0.286
₹RSD	0.050	0.097	0.245	0.075	0.609	0.954	0.173	0.119	0.346
	Pb	Se							
	Reading	Reading							
#1 #2									
Mean	0.000	0.000							
%RSD	0.000	0.000							
Method	: Paragon		File : 12020.	2A	Printed:	2/2/2012 17	:32:43		
Sample	Id1 : C3		SampleId2	:		[STD]			

Analysis commenced: 2/2/2012 13:28:46
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE12

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.099	0.192	0.189	0.070	0.018	0.482	0.176	0.044	0.096
#2	0.100	0.192	0.189	0.070	0.019	0.481	0.179	0.045	0.099
Mean	0.099	0.192	0.189	0.070	0.018	0.482	0.177	0.044	0.098
%RSD	0.356	0.111	0.000	0.405	1.537	0.073	1.116	2.073	1.810
	Co	Cr	Cu	Fe	к	Li	Ма	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.104	0.190	0.071	0.051	$0.63\overline{4}$	0.101	0.108	0.012	0.079
#2	0.105	0.190	0.072	0.051	0.637	0.102	0.108	0.012	0.078
Mean	0.104	0.190	0.072	0.051	0.635	0.102	0.108	0.012	0.079
%RSD	0.474	0.074	0.296	0.693	0.356	0.625	0.328	0.592	0.540

	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
	Reading								
#1	0.112	0.213	0.080	2.131	0.619	0.025	0.158	0.392	0.271
#2	0.113	0.214	0.079	2.144	0.618	0.025	0.158	0.389	0.271
Mean	0.113	0.214	0.079	2.137	0.618	0.025	0.158	0.390	0.271
%RSD	0.942	0.530	0.624	0.427	0.023	1.411	0.045	0.562	0.104
	Si	Sn	Sr	Ti	T1	υ	v	Zn	Zr
	Reading								
#1	0.327	0.069	0.030	0.192	0.230	0.187	0.123	0.021	0.490
#2	0.328	0.069	0.031	0.194	0.229	0.187	0.123	0.021	0.495
Mean	0.327	0.069	0.031	0.193	0.229	0.187	0.123	0.021	0.492
%RSD	0.065	0.000	2.755	0.916	0.309	0.189	0.173	0.344	0.603
	Pb	Se							
	Reading	Reading							
#1 #2									
Mean	0.000	0.000							
%RSD	0.000	0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:43

[STD]

SampleId1: C2 SampleId2:
Analysis commenced: 2/2/2012 13:30:41
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE13

	Ag Reading	Al Reading	As Reading	B Reading	Ba Reading	Be Reading	Bi Reading	Ca Reading	Cd Reading
#1	0.113	0.198	0.189	0.073	0.018	0.496	0.409	0.045	0.101
#2	0.112	0.199	0.190	0.073	0.018	0.498	0.407	0.045	0.098
Mean	0.112	0.199	0.190	0.073	0.018	0.497	0.408	0.045	0.100
%RSD	0.440	0.320	0.373	0.193	0.387	0.341	0.277	0.473	1.988
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.106	0.218	0.077	0.050	0.638	0.099	0.129	0.013	0.078
#2	0.106	0.217	0.077	0.050	0.631	0.098	0.128	0.013	0.079
Mean	0.106	0.217	0.077	0.050	0.634	0.099	0.128	0.013	0.078
%RSD	0.133	0.260	0.277	0.847	0.758	0.861	0.385	0.555	1.532
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.107	0.218	0.082	2.181	0.637	0.172	0.158	0.390	$0.27\tilde{4}$
#2	0.106	0.215	0.083	2.169	0.635	0.173	0.157	0.386	0,272
Mean	0.106	0.216	0.082	2.175	0.636	0.173	0.158	0.388	0.273
%RSD	0.667	0.817	0.945	0.387	0.322	0.410	0.448	0.711	0.519
	Si	Sn	Sr	Ti.	T1	Ū	v	Zn	Zr

	Reading								
#1	0.348	0.070	0.031	0.211	0.234	0.624	0.132	0.021	3.066
#2	0.348	0.071	0.031	0.208	0.226	0.623	0.131	0.021	3.074
Mean	0.348	0.070	0.031	0.209	0.230	0.624	0.131	0.021	3.070
%RSD	0.020	0.703	0.907	0.879	2.336	0.147	0.593	2.374	0.180
	Pb	Se							
	Reading	Reading							
#1									
#2									
Mean	0.000	0.000							
%RSD	0.000	0.000							

SampleId1 : RL SampleId2 :

Analysis commenced: 2/2/2012 14:23:30
Dilution ratio: 1.00000 to 1.00000 Position : TUBE2

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.105	0.203	0.200	0.161	0.024	0.552	0.156	0.115	0.108
#2	0.104	0.203	0.198	0.162	0.024	0.553	0.153	0.115	0.107
Mean	0.104	0.203	0.199	0.161	0.024	0.552	0.154	0.115	0.108
%RSD	1.017	0.035	0.712	0.263	0.293	0.013	1.053	0.246	0.394
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
U	Reading								
#1	0.109	0.198	0.075	0.089	0.935	0.367	0.158	0.014	0.092
#2	0.109	0.196	0.075	0.088	0.933	0.367	0.157	0.014	0.093
Mean	0.109	0.197	0.075	0.089	0.934	0.367	0.157	0.014	0.092
%RSD	0.000	0.538	0.094	0.240	0.136	0.019	0.404	0.496	0.537
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	1.089	0.234	0.111	2.172	0.638	0.011	0.168	0.401	0.278
#2	1.091	0.235	0.109	2.177	0.630	0.011	0.169	0.392	0.280
Mean	1.090	0.234	0.110	2.175	0.634	0.011	0.168	0.396	0.279
%RSD	0.149	0.181	1.418	0.163	0.892	1.297	0.210	1.534	0.608
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	Reading								
#1	0.382	0.073	0.134	0.294	0.235	0.154	0.130	0.023	0.272
#2	0.382	0.072	0.134	0.293	0.236	0.153	0.129	0.023	0.271
Mean	0.382	0.073	0.134	0.294	0.235	0.153	0.130	0.023	0.271
%RSD	0.019	0.970	0.000	0.241	0.301	0.462	0.109	0.000	0.287
	Pb	Se							
#1	Reading	Reading							
#2									
Mean	0.000	0.000							
%RSD	0.000	0.000							

[STD]

•

Method : Paragon File : 120202A Printed: 2/2/2012 17:33:11

SampleId1 : BLANK SampleId2 : [STD]

Analysis commenced: 2/2/2012 14:26:32

Di tion ratio : 1.00000 to 1.00000 Tray : Position : TUBE1

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.101	0.182	0.191	0.069	0.018	0.465	0.151	0.038	0.098
#2	0.100	0.182	0.193	0.068	0.018	0.465	0.151	0.038	0.100
Mean	0.100	0.182	0.192	0.069	0.018	0.465	0.151	0.038	0.099
%RSD	0.565	0.117	0.700	0.822	0.000	0.000	0.375	0.369	1.355
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.106	0.189	0.073	0.046	0.642	0.093	0.103	0.012	0.078
#2	0.106	0.189	0.073	0.045	0.645	0.093	0.104	0.012	0.080
Mean	0.106	0.189	0.073	0.046	0.643	0.093	0.103	0.012	0.079
%RSD	0.134	0.112	0.097	0.620	0.385	0.303	0.137	0.597	1.706
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.091	0.215	0.080	2.156	0.623	0.009	0.158	0.393	0.271
#2	0.091	0.215	0.079	2.158	0.626	0.009	0.158	0.393	0.276
Mean	0.091	0.215	0.079	2.157	0.624	0.009	0.158	0.393	0.273
%RSD	0.389	0.000	1.161	0.062	0.385	0.000	0,045	0.126	1.216
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.330	0.070	0.030	0.192	0.227	0.140	0.124	0.021	0.236
#2	0.331	0.070	0.030	0.193	0.231	0.141	0.125	0.021	0.236
Mean	0.331	0.070	0.030	0.193	0.229	0.141	0.124	0.021	0.236
%RSD	0.150	0.304	0.711	0.441	1.081	0.452	0.909	0.687	0.030
#1	Pb Reading	Se Reading							
#2									
Mean %RSD	0.000 0.000	0.000 0.000							

Line calibration information

Analyte	Reporting name	Ç0	C1	C2	C3	Correlation coefficient	Lovr limit	High Iimit	Date of last regression
Ag 328.068	Ag	0.000181	0.5619375	-0.0028144		1.0000	0.000	3.081	2/2/2012 14:32:08
Al 308.215	Al	0.0093258	8.8405378	0.0036255	0	0.9999	-0.007	70.617	2/2/2012 14:32: 08
As 189,042/2	As	0.0051571	1.1099082	-0.000025	0	1.0000	-0.004	4.501	2/2/2012 14:32:08
B 249.678/2	8	-0.0078268	0.739431	0.0003145	0	1.0000	0.001	13.458	2/2/2012 14:32:08
Ba 493,409	Ba	-0.0009868	0.8984842	0.0008898	0	1.0000	0.000	14.111	2/2/2012 14:32:08
Be 313.042	Ве	-0.0082434	0.016717	0.0000014	Ū	1.0000	0.465	60.002	2/2/2012 14:32:08
Bi 223.061	Bi	-0.0028998	2.327283	-0.0024444	Ò	1.0000	0.001	2.155	2/2/2012 14:32:08
Ga 317. 933	Ca	-0.1079293	3.7598142	0.004273	0	1.0000	0.002	117.360	2/2/2012 14:32:08
Cd 228,502/2	Cd	-0.0010199	0.2023378	0.0003093	0	1.00 0 0	0.002	23.847	2/2/2012 14:32:08
Co 228.616	Co	0.0004707	0.8254113	0.0001684	0	1.0000	-0.002	6.050	2/2/2012 14:32:08
Or 267.716	Cr	-0.0006054	0.3968618	0.0000287	0	1.0000	-0.001	25.157	2/2/2012 14:32:08
Gu 324.753	Cu	-0.0306345	1.2602959	-0.0041439	0	1.0000	0.024	8.179	2/2/2012 14:32:08
Fe 259.94	Fø	-0.0157754	1.5446714	0.004334	Ō	1.0000	0.000	100.631	2/2/2012 14:32:09
K 768.491	К	-3.032715	4.0278127	-0.0037695	0	0.9595	0.643	67.021	2/2/2012 14:32:09
Li 570.7 84	Li	-0.0082958	0.0498561	-0.0000467	0	1.0000	0.093	253.427	2/2/2012 14:32:09
Mg 279.078	Mg	-0.0007409	5.2294065	-0.001206	0	1.0000	-0 .001	97.819	2/2/2012 14:32:09
Mn 257.61	Mo	-0.0008232	1.1834815	0.0042841	O	1.0000	0.000	8.207	2/2/2012 14:32:09
Mo 202.03/2	Mo	-0.0022848	1.016261	0.0012422	0	1.0000	-0.001	9.727	2/2/2012 14:32: 0 9
Na 588.995	Na	-0.2244274	0.8088045	0.0013533	0	0.99998	0.091	148.714	2/2/2012 14:32:09
Ni 231. ED4	Ni	-0.0030333	0.3844065	-0.0000233		1.0000	0.004	25.400	2/2/2012 14:32:09
F 178.287/2	P	-0.0109854	2.2178035	0.0107868	0	1.0000	-0.001	20.505	2/2/2012 14:32:09
Pb 220.351	Pb I	0.0040011	0.2709573	-0.0000003	0	1.0000	-0.022	36.893	2/2/2012 14:32:09
Pb 220.352/2	Pb II	-0.0039965	0.4643665	0.0000087	0	1.0000	0.008	21.535	2/2/2012 14:32:09
S 182.04/2	S	-0.0437811	31.1880343	0.0958129	0	1.0000	0.001	1.597	2/2/2012 14:32:09
5b 206.838/2	Sb	-0.0024561	1.3215983	0.0084922	0	1.0000	0.000	1.504	2/2/2012 14:32:09
Se 196.021	Sel	0.0012321	1.3390715	0.0001741	Ó	1.0000	-0.001	3.731	2/2/2012 14:32:09
Se 198.021/2	Se II	-0.003561	0.8600969	0.0025231	0	1.0000	0.003	5.721	2/2/2012 14:32:09
Si 288.158	Si	-0.223926	1.3981002	0.0001792	0	1.0000	0.151	35.759	2/2/2012 14:32:10
5n 1 89 .989	Sn	0.0002272	4.3839252	0.0193457	Ò	1.0000	-0.001	2.258	2/2/2012 14:32:10
Sr 421.552	⊙ r	-0.0042254	0.1800501	0.0001571	σ	1.0000	0.000	53.093	2/2/2012 14:32:10

ı	>	а	q	e

Meth	od report	Paragon								, age
Ti 334.94	1 Ti	-0.0006283	0.1261675	-0.0000041	0	1.0000	-0.012	79.472	2/2/2012 14:32:10	
TI 190.86	4/2 TI	0.0079779	1.1242362	-0.0007049	O	1.0000	-0.010	4.453	2/2/2012 14:32:10	
U 365.958	3 U	-0.019707	10.9145452	0.0045365	O	1.0000	0.000	4.574	2/2/2012 14:32:10	
V 292,402	2 V	-0.0005423	0.5398791	-0.0001936	0	1.0000	0.001	9.293	2/2/2012 14:32:10	
Z ⊓ 20 6.2	Zn	-0.0030254	2.9674357	0.0135176	O	1.0000	0.000	3.321	2/2/2012 14:32:10	

ū

1.0000

0.004

27.448 2/2/2012 14:32:10

Zr 339.198

ZΓ

-0.0011497

0.1836631

-0.0000531

Method: Paragon File: 120202A Printed: 2/2/2012 17:35:51
SampleId1: MIXBHIGH SampleId2: [CV]

Analysis commenced: 2/2/2012 14:37:45

Dilution ratio : 1.00000 to 1.00000 Tray : Position : TUBE6

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.97131	0.14770	4.92127	9.86862	9.74414	0.97137	0.01510	-0.07936	4.84673
#2	1.98654	0.14256	4.95578	9.93630	9.85295	0.98181	0.00827	-0.07898	4.88513
Mean	1.97893	0.14513	4.93852	9.90246	9.79854	0.97659	0.01168	-0.07917	4.86593
%RSD	0.54433	2.50228	0.49414	0.48326	0.78516	0.75583	41.34626	0.33583	0.55799
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	4.85395	9.68320	9.88710	-0.01933	-0.46491	-0.00312	-0.03264	9.66861	9.71782
#2	4.90814	9.81508	9.95154	-0.01979	-0.45767	-0.00307	-0.03369	9.79455	9.82015
Mean	4.88105	9.74914	9.91932	-0.01956	-0.46129	-0.00309	-0.03316	9.73158	9.76899
%RSD	0.78502	0.95655	0.45940	1.67522	1.11003	1.14096	2.23003	0.91515	0.74065
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	mqq	ppm						
#1	-0.11651	9.67919	49.03220	9.72013	9.57996	-0.01571	1.93890	4.94794	4.92285
#2	-0.11667	9.79858	49.49402	9.82598	9.71248	-0.01883	1.95353	4.97446	4.97386
Mean	-0.11659	9.73889	49.26311	9.77306	9.64622	-0.01727	1.94621	4.96120	4.94836
%RSD	0.09815	0.86687	0.66289	0.76589	0.97145	12.76887	0.53184	0.37802	0.72892
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	mqq	mqq	ppm	ppm
#1	49.43047	9.78886	9.73944	9.72721	4.90951	-0.06444	4.85926	9.59852	-0.01432
#2	49.88565	9.92238	9.83309	9.84176	4.94273	-0.08191	4.91944	9.75551	-0.01487
Mean	49.65806	9.85562	9.78627	9.78448	4.92612	-0.07317	4.88935	9.67701	-0.01459
%RSD	0.64816	0.95799	0.67672	0.82785	0.47686	16.87483	0.87033	1.14717	2.64845
	Pb	Se							
	calc	calc							
#1	9.62663	4.93121							
#2	9.75028	4.97406							
Mean	9.68846	4.95263							
%RSD	0.90240	0.61187							

Method: Paragon File: 120202A

SampleId1: MIXAHIGH SampleId2: Printed: 2/2/2012 17:35:52

[CV]

Analysis commenced: 2/2/2012 14:39:41
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE11

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
12.1	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm 495.54320	ppm -0.00056
#1 #2	0.00021 0.00087	498.27842 498.63928	0.00364 -0.00501	0.00378 0.00437	-0.00015 0.00020	0.00079 0.00081	0.00666 0.01318	493.34320	-0.00010
π2 Mean	0.00054	498.45885	-0.00069	0.00408	0.00020	0.00080	0.00992	496.98492	-0.00033
%RSD	86.75529	0.05119	893.10178	10.26200	1164.95077	1.75577	46.48830	0.41025	100.24430
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00006	0.00164	-0.01003	197.38833	248.79744	9.71879	498.26949	-0.01455	0.00381
#2	0.00089	0.00212	-0.00826	198.29100	248.41951	9.69645	499.02510	-0.01408	0.00442
Mean	0.00047	0.00188	-0.00914	197.83967	248.60848	9.70762	498.64729	-0.01431	0.00412
%RSD	123.48282	17.90578	13.64730	0.32263	0.10749	0.16273	0.10715	2.33829	10.47102
	Nа	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	150.97374	0.00103	0.00567	-0.00253	0.00284	-0.00324	-0.00024	-0.04031	0.01043
#2	150.35435	0.00099	0.01210	0.01065	-0.00741	0.00300	0.00425	-0.04930	-0.00134
Mean	150.66405	0.00101	0.00888	0.00406	-0.00228	-0.00012	0.00201	-0.04481	0.00455
%RSD	0.29069	2.76307	51.19127	229.32793	317.60528	3748.14956	158.31165	14.19919	182.92235
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
II a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00191	-0.00679	0.00755	-0.00104	0.01073	0.17333	-0.01984	-0.00658	0.00515
#2	-0.00173	0.00110	0.00790	-0.00069	0.02117	0.17272	-0.01961 -0.01973	-0.00480 - 0.00569	0.00568 0.00542
Mean %RSD	0.00009 2842.72405	-0.00284 196.42534	0.00772 3 . 13273	-0.00087 28.77889	0.01595 46.25763	0.17302 0.25118	0.82058	22.11026	6.96211
CCM	2042.72403	190,42554	3,13273	20.17009	40.23703	0.23110	0.02038	22.11020	0,90211
	Pb	Se							
	calc	calc							
#1	0.00106	-0.00646							
#2	-0.00140	-0.01731							
Mean %RSD	-0.00017 1020.80182	-0.01189 64.52984							
UCAS	1020.00182	04.34904							
Method	: Paragon		File : 1202	02A	Printed	: 2/2/2012 1	7:35:52		

SampleId1 : MIXCHIGH SampleId2 : [CV]

Analysis commenced: 2/2/2012 14:41:36
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE14

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01644	0.89200	-0.00568	0.00578	-0.00155	0.00337	5.05429	-0.06432	-0.00159
#2	-0.01772	0.87477	-0.00968	0.00629	-0.00148	0.00339	5.07235	-0.06996	-0.00126
Mean	-0.01708	0.88338	-0.00768	0.00604	-0.00151	0.00338	5.06332	-0.06714	-0.00142
%RSD	5.30660	1.37911	36.79889	6.06407	3.25907	0.46158	0.25221	5.94021	16.44640
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо

Mean %RSD	0.00409 8.58329	-0.00949 3.12380	-0.02929 1.32453	~0.01454 18.02936	-0.50272 2.03712	-0.00308 1.83441	-0.19345 0.57346	0.00320 5.22937	-0.00107 80.95186
#1 #2 Mean %RSD	Na ppm -0.11788 -0.12015 -0.11902 1.34607	ppm -0.00082 0.00036 -0.00023 359.01994	ppm 0.00700 0.01321 0.01010 43.45928	<pre>Pb I ppm -0.02582 -0.02702 -0.02642 3.21835</pre>	<pre>pb II ppm 0.02156 0.01987 0.02072 5.77111</pre>	s ppm 50.74174 50.79213 50.76693 0.07020	ppm 0.00275 0.00156 0.00215 38.90599	Se I ppm 0.01702 0.00774 0.01238 52.99693	Se II ppm -0.00253 0.00263 0.00005 7127.17614
#1 #2 Mean %RSD	ppm -0.05558 -0.05299 -0.05429 3.36696	\$n ppm 0.02346 0.01907 0.02126 14.57691	ppm -0.00241 -0.00239 -0.00240 0.53116	ppm 0.00571 0.00524 0.00547 6.03245	T1 ppm 0.00186 0.00599 0.00393 74.41562	ppm 51.12800 51.08637 51.10718 0.05760	ppm -0.01005 -0.00875 -0.00940 9.74238	Zn ppm -0.00332 -0.00480 -0.00406 25.82854	Zr ppm 5.06532 5.06214 5.06373 0.04442
#1 #2 Mean %RSD	Pb calc 0.00579 0.00426 0.00502 21.51811	Se calc 0.00398 0.00433 0.00416 5.99589							
SampleIo Analysis Dilution		: 2/2/2012 .00000 to 1.		:	Printed :	2/2/2012 17 [CV] Position:			
rinal Co	Jucentiation	112							

ppm

-0.49548

-0.50997

ppm 0.00308

0.00332

ppm

-0.00167

-0.00046

ppm -0.19266

-0.19423

ppm

-0.00304

-0.00312

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10395	25.49245	0.25459	0.49720	0.52954	0.25031	0.26164	25.09105	0.25371
#2	0.10395	25.41965	0.26336	0.49594	0.52745	0.25006	0.26443	25.07884	0.25324
Mean	0.10395	25.45605	0.25898	0.49657	0.52849	0.25019	0.26304	25.08494	0.25348
%RSD	0.00364	0.20221	2.39406	0.17910	0.28009	0.07238	0.74873	0.03443	0.13008
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq
#1	0.24874	0.51023	0.51332	10.24180	23.59254	0.22851	24.83834	0.51326	0.50107
#2	0.24964	0.51007	0.51090	10.22019	23.47166	0.22734	24.83521	0.51290	0.49720
Mean	0.24919	0.51015	0.51211	10.23099	23.53210	0.22792	24.83678	0.51308	0.49914
%RSD	0.25696	0.02201	0.33320	0.14939	0.36323	0.36395	0.00891	0.04908	0.54775
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm

ppm 0.00384

0.00434

#1 #2 ppm -0.00970

-0.00928

ppm -0.02956

-0.02902

ppm -0.01269

-0.01639

#1 #2 Mean %RSD	22.94115 22.82343 22.88229 0.36378	0.49735 0.49751 0.49743 0.02242	2.51184 2.48359 2.49772 0.79976	0.50566 0.50794 0.50680 0.31878	0.51185 0.50761 0.50973 0.58725	2.58917 2.56421 2.57669 0.68505	0.24654 0.24546 0.24600 0.31179	0.51326 0.50657 0.50992 0.92801	0.50647 0.51319 0.50983 0.93310
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	2.57920	0.52365	0.25902	0.25069	0.26657	2.55050	0.25012	0.49292	0.50742
#2	2.57933	0.51882	0.25803	0.25049	0.26477	2.55051	0.25136	0.49143	0.50604
Mean	2.57927	0.52124	0.25853	0.25059	0.26567	2.55050	0.25074	0.49217	0.50673
%RSD	0.00341	0.65485	0.27160	0.05695	0.48155	0.00041	0.34887	0.21349	0.19191
	Pb	Se							
	calc	ca1c							
#1	0.50979	0.50873							
#2	0.50772	0.51099							
Mean	0.50876	0.50986							
%RSD	0.28670	0.31328							

SampleId1: ICB SampleId2:
Analysis commenced: 2/2/2012 15:09:59
Dilution ratio: 1.00000 to 1.00000 Tray: [CB]

Position : STD2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00081	0.06997	-0.00468	-0.00598	-0.00085	-0.00025	-0.00991	-0.09101	-0.00085
#2	-0.00068	0.06408	0.00120	-0.00687	-0.00085	-0.00026	-0.00897	-0.09176	-0.00079
Mean	-0.00075	0.06703	-0.00174	-0.00642	-0.00085	-0.00026	-0.00944	-0.09139	-0.00082
%RSD	12.08577	6.22142	239.07654	9.76713	0.00000	3.32069	6.98636	0.58184	5.27599
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.00068	-0.00098	-0.00311	-0.00913	-0.32561	-0.00336	-0.00231	-0.00035	-0.00432
#2	-0.00085	-0.00122	-0.00312	-0.00836	-0.33063	-0.00340	-0.00492	-0.00059	-0.00239
Mean	-0.00076	-0.00110	-0.00312	-0.00875	-0.32812	-0.00338	-0.00362	-0.00047	-0.00335
%RSD	15.24774	15.58501	0.18598	6.24368	1.08171	0.97735	51.11554	35.74771	40.73443
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	-0.14070	-0.00248	-0.00986	-0.00042	0.00105	-0.02195	-0.00172	-0.00617	-0.00296
#2	-0.13942	-0.00161	-0.00564	-0.00652	-0.00062	-0.02819	-0.00343	-0.00068	-0.00167
Mean	-0.14006	-0.00205	-0.00775	-0.00347	0.00021	-0.02507	-0.00257	-0.00343	-0.00232
%RSD	0.64904	29.96872	38.44943	124.12172	553.42127	17.59464	46.75164	113.46069	39.40823
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	-0.02240	-0.00372	-0.00417	-0.00204	-0.00712	-0.04590	-0.00114	-0.00154	-0.00030

#2 Mean %RSD	-0.02297 -0.02268 1.75443	-0.00284 -0.00328 18.91973	-0.00412 -0.00414 0.92180	-0.00218 - 0.00211 4.64933	-0.00655 -0.00683 5.86470	-0.03826 - 0.04208 12.83884	-0.00071 -0.00092 33.13731	-0.00332 -0.00243 51.81269	-0.00039 -0.00035 18.72003
#1	Pb calc 0.00056	Se calc -0.00403							
#2	-0.00259	-0.00134							
Mean	-0.00101	-0.00268							
%RSD	219.67130	70.87346							

SampleId1 : CRI SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 15:12:05
Dilution ratio: 1.00000 to 1.00000

calc

0.00930

0.00547

calc

0.00816

0.01143

Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD3

Final concentrations

	Ag	Al	As	В	Ba	Ве	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02020	0.49597	0.00686	0.39585	0.41108	0.01167	0.04944	5.12119	0.01150
#2	0.01946	0.50465	0.00498	0.39969	0.41429	0.01174	0.04130	5.13062	0.01151
Mean	0.01983	0.50031	0.00592	0.39777	0.41268	0.01170	0.04537	5.12590	0.01151
%RSD	2.62690	1.22638	22.54280	0.68384	0.54977	0.40723	12.68422	0.13007	0.07944
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10129	0.02132	0.04686	0.20242	3.47105	0.01222	4.97604	0.03208	0.01977
#2	0.10122	0.02183	0.04805	0.20242	3.47105	0.01228	4.98492	0.03208	0.02068
Mean	0.10126	0.02158	0.04745	0.20242	3.47105	0.01225	4.98048	0.03208	0.02023
%RSD	0.05417	1.66775	1.78174	0.00000	0.00000	0.32926	0.12616	0.00000	3.19776
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.65156	0.08015	0.19339	0.01243	0.00773	0.19949	0.12118	0.01141	0.00654
#2	3.66946	0.08117	0.20049	0.00690	0.00475	0.20573	0.11933	0.01089	0.01170
Mean	3.66051	0.08066	0.19694	0.00967	0.00624	0.20261	0.12025	0.01115	0.00912
%RSD	0.34580	0.89896	2.55050	40.44954	33.75654	2.17702	1.08828	3.31827	40.00886
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09758	0.10104	0.01782	0.01999	0.02385	0.18098	0.10385	0.04891	0.05330
#2	0.10231	0.09666	0.01798	0.01976	0.02464	0.19408	0.10336	0.04921	0.05323
Mean	0.09994	0.09885	0.01790	0.01987	0.02424	0.18753	0.10361	0.04906	0.05326
%RSD	3.35212	3.13633	0.64037	0.80801	2.31884	4.93856	0.33157	0.42777	0.09867
	Pb	Se							

#1

#2

Mean 0.00738 0.00980er: MIKE LUNDGREEN

%RSD 36.67534 23.58845

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:52

SampleId1 : ZZZ SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 15:14:01
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD4

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00049	262.23941	0.00342	-0.00702	-0.00085	0.00037	0.00408	261.27052	-0.00036
#2	-0.00194	262.67862	-0.00335	-0.00731	-0.00085	0.00041	0.00058	260.20671	-0.00039
Mean	-0.00122	262.45902	0.00004	-0.00716	-0.00085	0.00039	0.00233	260.73861	-0.00037
%RSD	83.91587	0.11833	13296.05015	2.91964	0.00000	7.58691	106.12742	0.28850	6.55566
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	0.00047	-0.00143	-0.00612	106.58110	-0.43856	-0.00317	263.52913	0.00202	-0.00096
#2	0.00031	-0.00098	-0.00720	106.48028	-0.45780	-0.00322	264.14546	0.00190	-0.00117
Mean	0.00039	-0.00121	-0.00666	106.53069	-0.44818	-0.00320	263.83730	0.00196	-0.00107
%RSD	30.03816	25.97269	11.42377	0.06692	3.03596	1.03286	0.16518	4.27415	13.49197
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	-0.12871	0.00000	0.00811	0.00065	-0.00379	0.04355	-0.00064	-0.02323	-0.00210
#2	-0.12948	-0.00039	0.00855	-0.00369	0.00137	0.04978	-0.00474	-0.01573	-0.00126
Mean	-0.12909	-0.00019	0.00833	-0.00152	-0.00121	0.04666	-0.00269	-0.01948	-0.00168
%RSD	0.42254	144.05347	3.76543	201.29749	300.76977	9.45191	107.87977	27.24133	35.25616
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	mqq	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	-0.02422	0.00286	-0.00251	-0.00044	0.00392	0.05289	-0.00985	-0.00332	0.00328
#2	-0.02783	-0.00459	-0.00255	-0.00057	0.00814	0.04095	-0.01176	-0.00184	0.00238
Mean	-0.02603	-0.00087	-0.00253	-0.00050	0.00603	0.04692	-0.01081	-0.00258	0.00283
%RSD	9.82952	606.97836	1.00566	17.76788	49.43739	17.99132	12.49378	40.69246	22.45748
	Pb	Se							
	calc	calc							
#1	-0.00231	-0.00914							
#2	-0.00032	-0.00608							
Mean	-0.00132	-0.00761							
%RSD	107.10844	28.42436							

Method: Paragon File: 120202A
SampleId1: ICSA SampleId2: Printed: 2/2/2012 17:35:53

[FLEXQC]

Analysis commenced: 2/2/2012 15:18:06
Dilution ratio: 1.00000 to 1.00000 Tray:

Position : STD4

#1 #2 Mean %RSD	Ag ppm 0.00055 -0.00064 -0.0004 2057.49548	ppm 262.66309 262.72634 262.69471 0.01703	As ppm 0.00209 -0.00191 0.00009 3087.76566	ppm -0.00702 -0.00628 -0.00665 7.86759	Pa ppm -0.00071 -0.00036 -0.00054 45.93681	Be ppm 0.00047 0.00051 0.00049 6.34563	Bi ppm 0.00245 -0.00662 -0.00208 307.98771	Ca ppm 263.14455 262.62054 262.88254 0.14095	cd ppm -0.00029 0.00043 0.00007 701.84913
	Co ppm	Cr ppm	Cu ppm	Fe ppm	K ppm	Li ppm	Mg ppm	Mn ppm	Mo ppm
#1 #2	0.00121 0.00080	-0.00096 -0.00068	-0.00553 -0.00601	107.17118 107.04820	-0.43814 -0.45780	-0.00320 -0.00305	264.38902 264.37064	0.00202 0.00202	0.00117 -0.00167
#∠ Mean %RSD	0.00101 28.99039	-0.00088 -0.00082 24.10022	-0.00577 5.90088	107.04820 107.10969 0.08118	-0.43780 -0.44797 3.10341	-0.00303 -0.00313 3.28530	264.37983 0.00492	0.00202 0.00202 0.00000	-0.00167 -0.00025 797.75032
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
11.4	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.12845	0.00162	-0.00431	0.00889	-0.00531	0.04043	0.00175	-0.01837	0.00120
#2	-0.12793	0.00000	0.00722	0.00012	-0.00033	0.04666	-0.00052	-0.01889	0.00289 0.00204
Mean %RSD	-0.12819 0.28367	0.00081 140.79390	0.00145 560.61541	0.00450 137.65222	-0.00282 124.79584	0.04355 10.12887	0.00062 260.36202	-0.01863 1.95847	58.62095
2K2D	0.20307	140.79390	560.61541	137.63222	124.79364	10.12007	260.36202	1.93047	30.02093
	Si	Sn	Sr	Ti	Tl	σ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.02129	0.00637	-0.00239	-0.00035	0.01545	0.06558	-0.00893	-0.00362	0.00354
#2	-0.02256	0.00154	-0.00228	-0.00007	0.01146	0.06348	-0.00922	-0.00273	0.00365
Mean * B C D	-0.02193	0.00395	-0.00233	-0.00021	0.01346	0.06453	-0.00907	-0.00317	0.00359
%RSD	4.08615	86.24997	3.27301	92.61427	20.98939	2.30018	2.28948	19.84686	2.17323
	Pb	Se							
	calc	calc							
#1	-0.00058	-0.00532							
#2	-0.00018	-0.00436							
Mean	-0.00038	-0.00484							
%RSD	74.25825	14.00912							
Sample	: Paragon Id1 : ICSAB	. 2/2/2012	File: 1202 SampleId		Printed	: 2/2/2012 1 [FLEXQC]	7:35:53		

Analysis commenced: 2/2/2012 15:20:04
Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD5

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	0.20297	213.09320	0.10376	1.01963	0.55257	0.48549	0.54471	262.54889	1.00280
#2	0.20083	212.22352	0.09976	1.01659	0.55180	0.48365	0.54493	261.55952	1.00100
Mean	0.20190	212.65836	0.10176	1.01811	0.55218	0.48457	0.54482	262.05421	1.00190
%RSD	0.74836	0.28918	2.77652	0.21081	0.09830	0.26903	0.02729	0.26696	0.12708

ted:	2/2/2012 17:36	5:04 User:	MIKE LUND	GREEN					
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.48720	0.49328	0.55210	107.49761	-0.47370	1.08401	265.64604	0.51492	0.99719
#2	0.48406	0.49100	0.55035	107.14007	-0.47160	1.08008	264.88021	0.51361	0.98863
Mean	0.48563	0.49214	0.55122	107.31884	-0.47265	1.08205	265.26313	0.51427	0.99291
%RSD	0.45633	0.32678	0.22492	0.23558	0.31291	0.25682	0.20415	0.17956	0.60939
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.12742	0.99360	1.00326	0.04284	0.05766	1.07911	0.58493	0.04425	0.05822
#2	-0.12716	0.98923	0.98678	0.04143	0.04964	1.08847	0.58556	0.03837	0.05470
Mean	-0.12729	0.99141	0.99502	0.04214	0.05365	1.08379	0.58524	0.04131	0.05646
%RSD	0.14284	0.31215	1.17143	2.36539	10.56888	0.61058	0.07579	10.06203	4.39961
	Si	Sn	Sr	Ti	Т1	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.01897	1.03608	1.07948	0.99191	0.10197	10.81417	0.49728	0.92473	0.50166
#2	1.01440	1.03081	1.07604	0.98985	0.11133	10.76198	0.49290	0.91580	0.50032
Mean	1.01668	1.03344	1.07776	0.99088	0.10665	10.78807	0.49509	0.92026	0.50099
%RSD	0.31777	0.36054	0.22564	0.14758	6.20542	0.34208	0.62637	0.68597	0.18881
	Pb	Se							
	calc	calc							
#1	0.05273	0.05357							
#2	0.04691	0.04926							
Mean	0.04982	0.05142							
%RSD	8.25837	5.91464							

SampleId1 : CCV SampleId2 :
Analysis commenced : 2/2/2012 15:22:02
Dilution ratio : 1.00000 to 1.00000 Tray : SampleId1 : CCV [CV]

Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	0.20831	51.58678	0.51963	0.99557	1.06331	0.48887	0.52081	50.56437	0.50868
#2	0.20824	51.66391	0.51431	0.99675	1.06709	0.48795	0.53548	50.43074	0.50613
Mean	0.20828	51.62534	0.51697	0.99616	1.06520	0.48841	0.52814	50.49756	0.50741
%RSD	0.02248	0.10565	0.72868	0.08408	0.25062	0.13322	1.96368	0.18711	0.35578
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq
#1	0.49408	1.01136	1.03953	20.42173	51.49804	0.52007	50.07741	1.01311	1.00299
#2	0.49325	1.01014	1.04399	20.40335	51.58758	0.52113	50.08678	1.01264	1.00228
Mean	0.49367	1.01075	1.04176	20.41254	51.54281	0.52060	50.08209	1.01288	1.00264
%RSD	0.11763	0.08598	0.30233	0.06365	0.12283	0.14448	0.01323	0.03325	0.05029

	Na	Ni	P	Pb I	Pb II	s	Slo	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	48.21462	1.00559	4.93899	1.01315	1.00405	5.17354	0.49588	1.02084	1.01650
#2	48.27552	1.00563	4.92721	1.00885	1.00554	5.16729	0.49496	1.01334	1.01667
Mean	48.24507	1.00561	4.93310	1.01100	1.00480	5.17041	0.49542	1.01709	1.01659
%RSD	0.08925	0.00277	0.16885	0.30055	0.10520	0.08539	0.13143	0.52143	0.01179
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.10970	1.02962	0.52562	0.49617	0.51408	5.14199	0.50026	0.97056	1.01135
#2	5.11600	1.02479	0.52739	0.49660	0.52632	5.13873	0.49810	0.96163	1.01199
Mean	5.11285	1.02721	0.52651	0.49638	0.52020	5.14036	0.49918	0.96609	1.01167
%RSD	0.08712	0.33268	0.23824	0.06109	1.66346	0.04489	0.30620	0.65352	0.04470
	Pb	Se							
	calc	calc							
#1	1.00708	1.01795							
#2	1.00664	1.01556							
Mean	1.00686	1.01675							
%RSD	0.03047	0.16583							
91/31	0.03047	0.10303							

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 15:24:10
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00023	0.08311	-0.00335	-0.00605	-0.00078	-0.00015	-0.00804	-0.08499	-0.00029
#2	-0.00015	0.13380	-0.00757	-0.00561	-0.00036	0.00001	-0.00804	-0.02559	-0.00016
Mean	-0.00019	0.10845	-0.00546	-0.00583	-0.00057	-0.00007	-0.00804	-0.05529	-0.00022
%RSD	28.39116	33.04777	54.64105	5.37889	51.76151	166.22528	0.02060	75.97394	41.09889
	Co	Cr	Cu	Fe	к	Lî	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00093	-0.00012	-0.00302	-0.00635	-0.32060	-0.00338	0.00606	-0.00047	-0.00117
#2	-0,00027	0.00017	-0.00227	0.01790	-0.32436	-0.00327	0.06620	0.00001	-0.00025
Mean	-0.00060	0.00003	-0.00265	0.00577	-0.32248	-0.00332	0.03613	-0.00023	-0.00071
%RSD	77.97467	777.75054	19.90455	297.02095	0.82548	2.20747	117.70905	144.59595	91.14968
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.13899	-0.00055	-0.00542	0.00047	-0.00282	-0.01571	-0.00065	-0.00388	0.00315
#2	-0.13299	-0.00051	-0.00720	0.00463	0.00105	-0.01571	-0.00105	-0.00283	0.00203
Mean	-0.13599	-0.00053	-0.00631	0.00255	-0.00088	-0.01571	-0.00085	-0.00335	0.00259
%RSD	3.11959	5.27352	19.88915	115.56662	310.83454	0.00000	32.72258	22.16691	30.38142
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr

SampleId1 : CCV SampleId2 : [CV]

Analysis commenced: 2/2/2012 15:26:08

Pb

calc

Se

calc

Dilution ratio : 1.00000 to 1.00000 Tray : Position : STD6

	Ag	Al	As	В	Ва	Ве	Bi	Ca	Cd
#1	ppm 0.20853	ppm 51.44581	ppm 0.51719	ppm 0.98846	ppm 1.06017	ppm 0.48572	ppm 0.53336	ppm 50.20496	ppm 0.50466
#2	0.20945	51.57090	0.50809	0.98839	1.06436	0.48584	0.53330	50.13178	0.50538
	0.20899	51.50836		0.98842	1.06226	0.48578	0.52882	50.15178 50.16837	0.50500
Mean %RSD	0.20899	0.17173	0.51264 1.25534	0.98842	0.27923	0.48578	1.21194	0.10316	0.10008
91130	0.51254	0.1/1/3	1.23334	0.00550	0.21925	0.01/94	1.21194	0.10510	0,10000
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49234	1.00739	1.03375	20.29611	51.30955	0.51754	49.85822	1.00871	0.98680
#2	0.49243	1.00517	1.03749	20.30554	51.42894	0.51926	49.94413	1.00835	0.98394
Mean	0.49238	1.00628	1.03562	20.30082	51.36925	0.51840	49.90118	1.00853	0.98537
%RSD	0.01251	0.15581	0.25542	0.03285	0.16434	0.23467	0.12173	0.02505	0.20468
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
	Na ppm	Ni ppm	p ppm	Pb I ppm	Pb II ppm	s ppm	Sb ppm	Se I ppm	Se II ppm
#1									
#1 #2	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	ppm 48.10105	ppm 0.99147	ppm 4.92992	ppm 1.00689	ppm 1.00161	ppm 5.09861	ppm 0.48891	ppm 1.00547	ppm 0.99950
#2	ppm 48.10105 48.19276	ppm 0.99147 0.99072	ppm 4.92992 4.92562	ppm 1.00689 1.00179	ppm 1.00161 1.00186	ppm 5.09861 5.15793	ppm 0.48891 0.48931	ppm 1.00547 1.00626	ppm 0.99950 1.00565
#2 Mean	ppm 48.10105 48.19276 48.14691	ppm 0.99147 0.99072 0.99110	ppm 4.92992 4.92562 4.92777	ppm 1.00689 1.00179 1.00434	ppm 1.00161 1.00186 1.00174	ppm 5.09861 5.15793 5.12827	ppm 0.48891 0.48931 0.48911	ppm 1.00547 1.00626 1.00586	ppm 0.99950 1.00565 1.00258
#2 Mean	ppm 48.10105 48.19276 48.14691 0.13469	ppm 0.99147 0.99072 0.99110 0.05345	ppm 4.92992 4.92562 4.92777 0.06176	ppm 1.00689 1.00179 1.00434 0.35876	ppm 1.00161 1.00186 1.00174 0.01754	ppm 5.09861 5.15793 5.12827 0.81790	ppm 0.48891 0.48931 0.48911 0.05796	ppm 1.00547 1.00626 1.00586 0.05565	ppm 0.99950 1.00565 1.00258 0.43378
#2 Mean	ppm 48.10105 48.19276 48.14691 0.13469	ppm 0.99147 0.99072 0.99110 0.05345	ppm 4.92992 4.92562 4.9277 0.06176	ppm 1.00689 1.00179 1.00434 0.35876	ppm 1.00161 1.00186 1.00174 0.01754	ppm 5.09861 5.15793 5.12827 0.81790	ppm 0.48891 0.48931 0.48911 0.05796	ppm 1.00547 1.00626 1.00586 0.05565	ppm 0.99950 1.00565 1.00258 0.43378
#2 Mean %RSD	ppm 48.10105 48.19276 48.14691 0.13469 Si ppm	ppm 0.99147 0.99072 0.99110 0.05345 Sn ppm	ppm 4.92992 4.92562 4.92777 0.06176 Sr ppm	ppm 1.00689 1.00179 1.00434 0.35876	ppm 1.00161 1.00186 1.00174 0.01754	ppm 5.09861 5.15793 5.12827 0.81790 U ppm	ppm 0.48891 0.48931 0.48911 0.05796 V ppm	ppm 1.00547 1.00626 1.00586 0.05565	ppm 0.99950 1.00565 1.00258 0.43378 Zr ppm
#2 Mean %RSD #1	ppm 48.10105 48.19276 48.14691 0.13469 Si ppm 5.08681	ppm 0.99147 0.99072 0.99110 0.05345 Sn ppm 1.02435	ppm 4.92992 4.92562 4.92777 0.06176 Sr ppm 0.52305	ppm 1.00689 1.00179 1.00434 0.35876 Ti ppm 0.49501	ppm 1.00161 1.00186 1.00174 0.01754 T1 ppm 0.51909	ppm 5.09861 5.15793 5.12827 0.81790 U ppm 5.14972	ppm 0.48891 0.48931 0.48911 0.05796 V ppm 0.49646	ppm 1.00547 1.00626 1.00586 0.05565 Zn ppm 0.95211	ppm 0.99950 1.00565 1.00258 0.43378 Zr ppm 1.00469
#2 Mean %RSD #1 #2	ppm 48.10105 48.19276 48.14691 0.13469 Si ppm 5.08681 5.10851	ppm 0.99147 0.99072 0.99110 0.05345 Sn ppm 1.02435 1.02347	ppm 4.92992 4.92562 4.92777 0.06176 Sr ppm 0.52305 0.52464	ppm 1.00689 1.00179 1.00434 0.35876 Ti ppm 0.49501 0.49563	ppm 1.00161 1.00186 1.00174 0.01754 T1 ppm 0.51909 0.51549	ppm 5.09861 5.15793 5.12827 0.81790 U ppm 5.14972 5.13880	ppm 0.48891 0.48931 0.48911 0.05796 V ppm 0.49646 0.49749	ppm 1.00547 1.00626 1.00586 0.05565 Zn ppm 0.95211 0.95389	ppm 0.99950 1.00565 1.00258 0.43378 Zr ppm 1.00469 1.00691

#2 1.00184 1.00586 1.00260 Mean 1.00367 0.30759 %RSD 0.10798

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:54

SampleId1 : CCB SampleId2 :

Analysis commenced: 2/2/2012 15:30:12
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cđ
u a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq
#1	-0.00089	0.10960	0.00031	-0.00568	-0.00071	-0.00001	-0.00594	-0.05755	-0.00031
#2	-0.00043	0.11710	-0.00413	-0.00539	-0.00057	0.00002	0.00453	-0.04965	-0.00045
Mean	-0.00066	0.11335	-0.00191	-0.00554	-0.00064	0.00000	-0.00071	-0.05360	-0.00038
%RSD	49.80510	4.67781	164.67715	3.77749	15.37770	506.15948	1047.60822	10.41652	24.48559
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00043	0.00048	-0.00253	0.00400	-0.31725	-0.00329	0.03534	-0.00011	0.00036
#2	-0.00200	-0.00003	-0.00229	0.00832	-0.32018	-0.00327	0.03743	-0.00011	-0.00167
Mean	-0.00122	0.00022	-0.00241	0.00616	-0.31871	-0.00328	0.03639	-0.00011	-0.00066
%RSD	91.09200	163.34831	7.14470	49.65304	0.64963	0.44708	4.06480	0.00000	218.17990
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.13291	-0.00015	-0.00431	0.00239	-0.00114	-0.01883	-0.00276	0.00188	-0.00003
#2	-0.13111	-0.00011	-0.00764	0.00076	0.00072	-0.01571	-0.00092	-0.00080	0.00143
Mean	-0.13201	-0.00013	-0.00598	0.00157	-0.00021	-0.01727	-0.00184	0.00054	0.00070
%RSD	0.96415	20.74454	39.36850	73.30928	629.52266	12.76887	70.67653	354.16395	148.17993
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq
#1	-0.02143	-0.00152	-0.00394	-0.00237	0.00212	-0.02735	-0.00065	-0.00332	-0.00017
#2	-0.02046	-0.00547	-0.00388	-0.00218	-0.00114	-0.02844	-0.00113	-0.00273	0.00012
Mean	-0.02095	-0.00350	-0.00391	-0.00227	0.00049	-0.02790	-0.00089	-0.00302	-0.00003
%RSD	3.28102	79.79591	0.97699	5.88286	469.96944	2.77397	38.44849	13.88057	818.43264
	Pb	Se							
	calc	calc							
#1	0.00004	0.00060							
#2	0.00073	0.00069							
Mean	0.00038	0.00064							
%RSD	127.95485	9.16677							

[CB]

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:54

SampleId1 : ZZZ SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:32:10

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00008	0.07821	-0.00635	-0.00635	-0.00071	-0.00032	-0.00851	-0.07484	-0.00049
#2	0.00024	0.07570	-0.00446	-0.00694	-0.00064	-0.00031	-0.00152	-0.07484	0.00004
Mean	0.00008	0.07695	-0.00540	-0.00665	-0.00068	-0.00031	-0.00502	-0.07484	-0.00022
%RSD	288.07250	2.31007	24.69578	6.29407	7.29238	2.67296	98.51378	0.00000	168.26089
	Co	Cr	Cu	Fe	K	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00216	-0.00074	-0.00203	0.02192	-0.39798	-0.00354	-0.00388	-0.00023	0.00026
#2	-0.00216	-0.00015	-0.00058	0.02269	-0.39965	-0.00354	0.00240	-0.00035	-0.00239
Mean	-0.00216	-0.00044	-0.00130	0.02230	-0.39882	-0.00354	-0.00074	-0.00029	-0.00107
%RSD	0.01013	94.18488	78.41259	2.44895	0.29666	0.00000	598.92542	28.78991	175.39598
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	mqq	ppm	mqq	ppm	ppm	ppm
#1	-0.09159	-0.00051	-0.01407	-0.00286	0.00054	-0.02819	-0.00235	-0.00765	-0.00356
#2	-0.09210	0.00012	-0.00853	-0.00151	-0.00016	-0.01883	0.00000	-0.00309	-0.00166
Mean	-0.09185	-0.00019	-0.01130	-0.00218	0.00019	-0.02351	-0.00118	-0.00537	-0.00261
%RSD	0.39597	230.48554	34.70108	43.69475	259.99647	28.14263	141.39336	60.00107	51.27061
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	mqq
#1	-0.02196	-0.00415	-0.00410	-0.00344	-0.01295	-0.04483	-0.00146	-0.00065	0.00001
#2	-0.02171	-0.00240	-0.00408	-0.00354	-0.00710	-0.03828	0.00006	-0.00213	0.00010
Mean	-0.02184	-0.00328	-0.00409	-0.00349	-0.01002	-0.04155	-0.00070	-0.00139	0.00006
%RSD	0.83908	37.85360	0.31133	2.04369	41.27428	11.14352	152.72125	75.41022	112.92948
	Pb	Se							
	calc	calc							
#1	-0.00059	-0.00492							
#2	-0.00061	-0.00214							
Mean	-0.00060	-0.00353							
%RSD	2.29344	55.69565							

SampleId1 : IP120202-2MB SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:36:22
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE1

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00128	0.07636	0.00054	-0.00379	-0.00085	-0.00029	-0.00781	-0.07033	-0.00027
#2	-0.00099	0.08082	-0.00279	-0.00365	-0.00085	-0.00028	-0.00828	-0.07184	-0.00023

Mean %RSD	-0.00114 17.76446	0.07859 4.01504	-0.00113 208.87549	-0.00372 2.81132	-0.00085 0.00000	-0.00029 1.23020	-0.00804 4.15105	-0.07108 1.49607	-0.00025 12.00951
#1 #2 Mean %RSD	Co ppm -0.00134 -0.00175 -0.00155 18.86697	Cr ppm -0.00078 -0.00089 -0.00083 8.80324	Cu ppm -0.00167 -0.00140 -0.00153 12.57421	Fe ppm 0.02393 0.02315 0.02354 2.32038	ppm -0.35406 -0.34611 -0.35009 1.60528	ppm -0.00344 -0.00341 -0.00342 0.64317	Mg ppm -0.00283 -0.00440 -0.00362 30.66933	Mn ppm -0.00035 -0.00035 -0.00035 0.00000	Mo ppm -0.00218 -0.00157 -0.00188 22.95563
#1 #2 Mean %RSD	Na ppm -0.08936 -0.08919 -0.08928 0.13579	Ni ppm -0.00035 -0.00177 -0.00106 94.60101	ppm -0.00365 -0.00276 -0.00320 19.58524	<pre>pb I ppm 0.00055 -0.00307 -0.00126 203.23999</pre>	Pb II ppm 0.00374 0.00060 0.00217 102.11426	s ppm -0.02819 -0.02819 -0.02819 0.00000	ppm -0.00224 -0.00329 -0.00276 26.90200	Se I ppm -0.00778 0.00639 -0.00070 1436.30463	Se II ppm -0.00356 -0.00227 -0.00291 31.35218
#1 #2 Mean %RSD	Si ppm -0.02073 -0.02459 -0.02266 12.07498	\$n ppm 0.00549 0.00418 0.00483 19.24006	\$r ppm -0.00214 -0.00210 -0.00212 1.20286	Ti ppm -0.00282 -0.00281 -0.00282 0.31667	T1 ppm -0.00738 -0.00065 -0.00402 118.48454	ppm -0.03937 -0.06775 -0.05356 37.46539	ppm -0.00151 -0.00146 -0.00148 2.56781	Zn ppm -0.00065 -0.00124 -0.00095 44.35498	Zr ppm 0.00001 -0.00017 -0.00008 161.42009
#1 #2 Mean %RSD	Pb calc 0.00268 -0.00062 0.00103 226.62334	Se calc -0.00496 0.00062 -0.00217 181.48564							

SampleId1 : IP120202-2LCS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:38:14
Dilution ratio: 1.00000 to 1.00000 Tray:

Position : TUBE2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09280	2.17288	1.90251	0.46106	2.07601	0.04733	-0.00901	37.01795	0.04979
#2	0.09405	2.18342	1.90573	0.46003	2.08366	0.04750	-0.00574	37.29277	0.04965
Mean	0.09343	2.17815	1.90412	0.46055	2.07984	0.04742	-0.00737	37.15536	0.04972
%RSD	0.94484	0.34224	0.11952	0.15903	0.26002	0.26585	31.37078	0.52300	0.20417
	Со	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	mqq	mqq	ppm	mqq
#1	0.47282	0.19401	0.25652	1.03583	37.53146	0.46907	36.08522	0.49355	0.96316
#2	0.47836	0.19520	0.25772	1.04343	37.76719	0.47170	36.27235	0.49688	0.96377
Mean	0.47559	0.19461	0.25712	1 03963	37 64932	0 47038	36 17879	0 49521	0 96347

%RSD	0.82302	0.43073	0.32940	0.51677	0.44273	0.39553	0.36575	0.47460	0.04485
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	35.82368	0.48134	-0.00342	0.48733	0.48099	-0.00324	0.45578	1.79901	1.77620
#2	35.98586	0.48288	-0.00342	0.48803	0.48688	-0.00947	0.45564	1.81067	1.78935
Mean	35.90477	0.48211	-0.00342	0.48768	0.48393	-0.00636	0.45571	1.80484	1.78277
%RSD	0.31939	0.22557	0.00000	0.10136	0.86117	69.40134	0.02181	0.45690	0.52142
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	1.76293	0.49266	0.53584	0.48154	1.96976	-0.05970	0.48588	0.46201	0.00088
#2	1.77704	0.49222	0.53790	0.48474	1.98928	-0.04989	0.49133	0.46706	0.00112
Mean	1.76998	0.49244	0.53687	0.48314	1.97952	-0.05480	0.48860	0.46453	0.00100
%RSD	0.56372	0.06355	0.27181	0.46891	0.69739	12.66944	0.78883	0.76899	16.72419
	Pb	Se							
	calc	calc							
#1	0.48310	1.78380							
#2	0.48726	1,79645							
Mean	0.48518	1.79012							
%RSD	0.60685	0.49976							
	0.00000	0.13370							

SampleId1 : 1201354-1 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:40:09
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE3

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
11 .0	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm
#1	-0.00223	59.71556	0.06258	0.51589	3.00723	0.00473	-0.00234	86.17257	0.00070
#2	-0.00204	59.65524	0.05503	0.51692	3.00484	0.00472	-0.00257	86.19984	0.00040
Mean	-0.00214	59.68540	0.05881	0.51640	3.00603	0.00472	-0.00245	86.18621	0.00055
%RSD	6.34747	0.07147	9.07497	0.14183	0.05630	0.14242	6.61738	0.02237	37.57627
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03514	0.04520	0.06650	118.19187	12.18095	0.07187	22.51038	1.65166	0.03390
#2	0.03547	0.04515	0.06649	118.13838	12.11771	0.07153	22.47750	1.65142	0.03593
Mean	0.03531	0.04517	0.06649	118.16513	12,14933	0.07170	22,49394	1.65154	0.03491
%RSD	0.65400	0.07217	0.01375	0.03201	0.36805	0.34192	0.10336	0.01024	4.11703
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	7.31988	0.03897	2.39348	0.14181	0.14538	5.91663	0.00243	0.07772	0.11191
#2	7.30086	0.04031	2.37802	0.14440	0.14444	5.88853	0.00020	0.07493	0.10811
Mean	7.31037	0.03964	2.38575	0.14310	0.14491	5.90258	0.00131	0.07633	0.11001
%RSD	0.18392	2.39197	0.45830	1,27914	0.45842	0.33665	120.31213	2.58581	2.44104

ted:	2/2/2012 17:3	36:05 User	: MIKE LUNDG	REEN					
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.52455	0.00618	0.39036	0.15464	0.02206	0.36369	0.80613	1.11732	0.05362
#2	1.52370	-0.00127	0.39020	0.15477	0.01597	0.37574	0.80563	1.12179	0.05322
Mean	1.52412	0.00246	0.39028	0.15470	0.01901	0.36971	0.80588	1.11956	0.05342
%RSD	0.03940	214.36378	0.02948	0.05766	22.64736	2.30329	0.04350	0.28210	0.53456
	Pb	Se							
	ca1c	calc							
#1	0.14419	0.10053							
#2	0.14443	0.09706							
Mean	0.14431	0.09880							
%RSD	0.11535	2.47829							

Printed: 2/2/2012 17:35:55 Method : Paragon File : 120202A

SampleId1 : 1201354-1D SampleId2 : Analysis commenced : 2/2/2012 15:42:39
Dilution ratio : 1.00000 to 1.00000 Tray : [SAMPLE]

Position : TUBE4

	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd
#1	ppm -0.00105	ppm 55.28562	ppm 0.05093	ppm 0.16422	ppm 1.37782	ppm 0.00439	ppm -0.00192	ppm 72.21347	mqq 0.00080
#2	-0.00103	55.47794	0.05614	0.16607	1.38230	0.00439	-0.00309	72.75070	0.00096
#∠ Mean	-0.00087 -0.00096	55.38178	0.05354	0.16515	1.38006	0.00442	-0.00309 -0.00251	72.48209	0.00090
%RSD	13.65129	0.24554	6.89010	0.79166	0.22952	0.48386	32.80146	0.52409	13.39464
6110D	13.03123	0.24334	0.09010	0.75100	0.22752	0.40500	32.00140	0.52405	13.33404
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03199	0.04140	0.06144	112.96626	9.36851	0.06296	20.72951	1.47770	0.03593
#2	0.03291	0.04286	0.06021	113.59655	9.39475	0.06326	20.81303	1.48439	0.03196
Mean	0.03245	0.04213	0.06083	113.28141	9.38163	0.06311	20.77127	1.48104	0.03395
%RSD	1.99005	2.45136	1.42476	0.39343	0.19779	0.33638	0.28431	0.31928	8.25652
				_	_				
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
11 -	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.32470	0.03755	2.32581	0.13076	0.12996	7.08456	-0.00175	0.13380	0.13857
#2	1.33056	0.03869	2.31349	0.13852	0.13353	7.10643	0.00402	0.11348	0.14902
Mean	1.32763	0.03812	2.31965	0.13464	0.13175	7.09550	0.00114	0.12364	0.14380
%RSD	0.31208	2.12147	0.37561	4.07572	1.91300	0.21787	358.54606	11.61992	5.14232
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.48796	0.00577	0.32387	0.13615	0.01752	0.34324	0.80700	0.52561	0.04377
#2	1.49114	0.00840	0.32534	0.13661	0.01412	0.35809	0.80853	0.53096	0.04445
Mean	1.48955	0.00708	0.32460	0.13638	0.01582	0.35066	0.80777	0.52828	0.04411
%RSD	0.15085	26.25460	0.31877	0.24202	15.20876	2.99482	0.13344	0.71611	1.08833

Pb Seer: MIKE LUNDGREEN calc calc

#1 0.13023 0.13698 #2 0.13519 0.13719 **Mean 0.13271 0.13708** %RSD 2.64366 0.10799

Method: Paragon File: 120202A Printed: 2/2/2012 17:35:55

SampleId1: 1201354-1L 5X SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 15:44:53

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE5

	Ag	Al	As	В	Ba	Be	Bi.	Ca	Cd
	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00078	11.56677	0.01430	0.08309	0.51000	0.00081	-0.00188	17.14923	-0.00039
#2	-0.00150	11.58847	0.01197	0.08184	0.51454	0.00079	-0.00165	17.10896	-0.00102
Mean	-0.00114	11.57762	0.01314	0.08247	0.51227	0.00080	-0.00176	17.12909	-0.00071
%RSD	44.67716	0.13257	12.54751	1.07796	0.62605	1.18904	9.26785	0.16623	63.31840
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm		mqq	ppm	ppm	mqq	mag	ppm	ppm
#1	0.00624	0.00834	0.00973	22.68907	1.52167	0.00822	4.35922	0.33184	0.00706
#2	0.00616	0.00874	0.00950	22.72542	1.50997	0.00822	4.36863	0.33160	0.00371
Mean	0.00620	0.00854	0.00962	22.70725	1.51582	0.00822	4.36393	0.33172	0.00539
%RSD	0.87372	3.31541	1.72747	0.11319	0.54592	0.00000	0.15246	0.05056	44.01261
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.78307	0.00722	0.49392	0.02744	0.02647	1.17582	0.00051	0.01724	0.01832
#2	0.78969	0.00695	0.48881	0.02762	0.03015	1.16334	-0.00124	0.00571	0.02409
Mean	0.78638	0.00708	0.49136	0.02753	0.02831	1.16958	-0.00037	0.01147	0.02121
%RSD	0.59544	2.75611	0.73568	0.46127	9.17281	0.75441	337.19521	71.06633	19.24177
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.29039	0.00282	0.07409	0.02907	0.00360	0.04670	0.16224	0.19467	0.01009
#2	0.29444	-0.00288	0.07429	0.02929	0.00620	0.04013	0.16230	0.19467	0.00974
Mean	0.29242		0.07419	0.02918	0.00490	0.04342	0.16227	0.19467	0.00992
%RSD	0.97959	15538.67552	0.18895	0.51977	37.48679	10.70598	0.02659	0.00000	2.49375
	Pb								
	calc								
#1	0.02679								
#2	0.02930	0.01797							
Mean	0.02805	0.01797							
%RSD	6.32566	0.03996							

SampleId1 : 1201354-1MS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:47:12
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE6

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1	ppm 0.09514	ppm 89.08904	ppm	ppm 0 37577	ppm	ppm	ppm 0.01095	ppm 111.42373	ppm 0.05231
#1 #2	0.09514	88.81946	1.96955 1.97832	0.37577 0.37347	3.38149 3.36401	0.05359 0.05360	0.01093	111.42373	0.05260
Mean	0.09575	88.95425	1.97393	0.37462	3.37275	0.05360	0.00698	111.61500	0.05245
%RSD	0.89925	0.21429	0.31407	0.43286	0.36648	0.00630	80.50656	0.24235	0.38319
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.51734	0.25713	0.33861	126.56492	53.79988	0.61079	63.15000	2.06278	0.97977
#2	0.51824	0.25663	0.33466	126.76957	53.59116	0.60687	63.03716	2.06601	0.98048
Mean	0.51779	0.25688	0.33664	126.66725	53.69552	0.60883	63.09358	2.06439	0.98012
%RSD	0.12216	0.13688	0.82929	0.11424	0.27485	0.45541	0.12647	0.11082	0.05144
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	40.11078	0.53056	2.32626	0.63536	0.60959	6.02904	0.25490	1.90693	1.88241
#2	39.90385	0.53383	2.32514	0.63142	0.61943	6.10710	0.25703	1.88302	1.90362
Mean	40.00731	0.53219	2.32570	0.63339	0.61451	6.06807	0.25596	1.89497	1.89302
%RSD	0.36575	0.43488	0.03406	0.44074	1.13221	0.90967	0.58806	0.89233	0.79217
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
n -1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	14.09943	0.51487	0.89332	0.63275	2.00513	0.44422	1.51182	0.75515	0.05667
#2	14.11056	0.50829	0.88918	0.62761	1.99231	0.40915	1.51046	0.76229	0.05585
Mean %RSD	14.10499 0.05582	0.51158 0.90903	0.89125 0.32858	0.63018 0.57741	1.99872	0.42669 5.81138	1.51114	0.75872	0.05626 1.04102
3K3D	0.05562	0.90903	0.32030	0.57741	0.45353	5.81138	0.06370	0.66529	1.04102
	₽b	Şe							
11 -1	calc	calc							
#1	0.61817	1.89058							
#2	0.62342	1.89676							
Mean %RSD	0.62080 0.59779	1.89367 0.23084							

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:55

SampleId1 : 1201354-1MSD SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:49:29
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE7

Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
ppm								

Man O.09669 91.20298 1.97349 0.37203 3.44556 0.05345 -0.00378 116.34026 0.05210	#1	0.09726	91.24915	1.96500	0.37288	3.44924	0.05350	-0.00029	116.36556	0.05245
Co	#2	0.09612	91.15681	1.98198	0.37118	3.44388	0.05340	-0.00727	116.31496	0.05176
Co	Mean	0.09669	91.20298	1.97349	0.37203	3.44656	0.05345	-0.00378	116.34026	0.05210
Ppm	%RSD	0.82969	0.07159	0.60841	0.32339	0.10993	0.14355	130.60976	0.03075	0.92752
Ppm			_						.,	34.
#1 0.51625 0.25741 0.34027 129.62779 54.62351 0.62170 63.87644 2.12702 0.98109 #2 0.51501 0.25677 0.34062 129.52556 54.44060 0.61931 63.84369 2.12666 0.97804 Mean 0.51563 0.25709 0.34045 129.57668 54.53206 0.62050 63.86007 2.12684 0.97956 RRSD 0.17055 0.17723 0.07135 0.05579 0.23718 0.27273 0.03627 0.01196 0.22060 Na								_		
#2 0.51501 0.25677 0.34062 129.52556 54.44060 0.61931 63.84369 2.12666 0.97804 Mean 0.51563 0.25709 0.34045 129.57668 54.53206 0.62050 63.86007 2.12684 0.97956 RRSD 0.17055 0.17723 0.07135 0.05579 0.23718 0.27273 0.03627 0.01196 0.22060 Na	11.1									
Mean 0.51563 0.25709 0.34045 129.57668 54.53206 0.62050 63.86007 2.12684 0.97956										
RSD 0.17055 0.17723 0.07135 0.05579 0.23718 0.27273 0.03627 0.01196 0.22060 Na Ni P Pb I Pb II S Sb Se I Se II ppm ppm <td></td>										
Na Ni ppm ppm										
#1 40.49746 0.53462 2.34598 0.63543 0.63036 6.06551 0.25835 1.88407 1.88931 #2 40.38669 0.53600 2.35628 0.63826 0.62556 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.53531 2.35113 0.63685 0.62796 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.18232 0.30999 0.31428 0.54075 0.00000 0.29458 0.37171 0.61915 Si	*KSD	0.17055	0.17723	0.07135	0.05579	0.23/18	0.27273	0.03627	0.01196	0.22060
#1 40.49746 0.53462 2.34598 0.63543 0.63036 6.06651 0.25835 1.88407 1.88931 #2 40.38669 0.53600 2.35628 0.63826 0.62556 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.53531 2.35113 0.63685 0.62796 6.06651 0.25781 1.87913 1.89762 %RSD 0.19368 0.18232 0.30999 0.31428 0.54075 0.00000 0.29458 0.37171 0.61915 Si Sn Sr Ti Tl U V V Zn Zr ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
#2 40.38669 0.53600 2.35628 0.63826 0.62556 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.53531 2.35113 0.63685 0.62796 6.06651 0.25781 1.87913 1.89762 % RSD 0.19368 0.18232 0.30999 0.31428 0.54075 0.00000 0.29458 0.37171 0.61915 Si		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Mean %RSD 40.44208 0.19368 0.53531 0.30999 0.31428 0.54075 0.62796 0.00000 6.06651 0.25781 0.37171 1.87913 0.61915 Si ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		40.49746	0.53462	2.34598	0.63543	0.63036	6.06651	0.25835	1.88407	1.88931
**RSD	#2	40.38669	0.53600	2.35628	0.63826	0.62556	6.06651	0.25727	1.87419	1.90592
Si	Mean	40.44208	0.53531	2.35113	0.63685	0.62796	6.06651	0.25781	1.87913	1.89762
#1 12.88649 0.49998 0.91540 0.60796 1.98712 0.35700 1.56382 0.74979 0.05607 #2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 **Pb	%RSD	0.19368	0.18232	0.30999	0.31428	0.54075	0.00000	0.29458	0.37171	0.61915
#1 12.88649 0.49998 0.91540 0.60796 1.98712 0.35700 1.56382 0.74979 0.05607 #2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 **Pb		Si	Sn	Sr	Тì	ጥገ	TJ	v	7n	2r
#1 12.88649 0.49998 0.91540 0.60796 1.98712 0.35700 1.56382 0.74979 0.05607 #2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 **Pb calc calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
#2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 Pb calc calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 RSD 0.25335 0.29134	#1									
Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD D Se Calc C										
*RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 Pb										
calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134		Ph	So							
#1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
#2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134	# 1									
Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
%RSD 0.25335 0.29134										
M + b = A , $D = 0.00000$										

SampleId1 : 1201354-2 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:51:21
Dilution ratio: 1.00000 to 1.00000 Tray:

Position : TUBE8

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00167	41.80258	0.09299	0.00693	0.89725	0.00365	-0.00407	103.79595	0.00016
#2	-0.00180	41.98890	0.09355	0.00737	0.90207	0.00363	-0.00523	103.73412	0.00030
Mean	-0.00173	41.89574	0.09327	0.00715	0.89966	0.00364	-0.00465	103.76504	0.00023
%RSD	5.27712	0.31446	0.42072	4.38763	0.37894	0.35568	17.70839	0.04213	41.83516
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02594	0.02839	0.04792	92.95195	5.96450	0.05413	17.35177	1.92682	0.07140

#2	0.02561	0.02796	0.04768	93.08753	6.03250	0.05446	17.40869	1.93065	0.06845
Mean	0.02577	0.02817	0.04780	93.01974	5.99850	0.05429	17.38023	1.92874	0.06993
%RSD	0.89288	1.08538	0.34564	0.10306	0.80154	0.42487	0.23155	0.14047	2.98071
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.26113	0.02442	1.84619	0.12034	0.12031	4.35876	0.00379	0.22983	0.24860
#2	0.25993	0.02611	1.84797	0.11335	0.11782	4.36500	-0.00019	0.23354	0.24552
Mean	0.26053	0.02527	1.84708	0.11685	0.11907	4.36188	0.00180	0.23169	0.24706
%RSD	0.32615	4.74647	0.06847	4.22580	1.47960	0.10121	156.45925	1.13486	0.87971
	Si	Sn	sr	Ti	Tl	บ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.19711	0.00698	0.44857	0.22305	0.01757	1.44622	0.95083	0.17774	0.03726
#2	5.23825	0.00435	0.45095	0.22403	0.01359	1.43849	0.95075	0.17804	0.03782
Mean	5.21768	0.00567	0.44976	0.22354	0.01558	1.44235	0.95079	0.17789	0.03754
%RSD	0.55759	32.83905	0.37537	0.30727	18.09558	0.37913	0.00607	0.11802	1.05800
	Pb	Se							
	calc	calc							
#1	0.12032	0.24235							
#2	0.11633	0.24154							
Mean	0.11833	0.24194							
%RSD	2.38264	0.23729							

SampleId1 : 1201354-3 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:53:14
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE9

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00133	37.16636	0.10065	0.00885	1.08093	0.00368	-0.00356	97.30603	0.00072
#2	-0.00140	37.35885	0.10254	0.00782	1,09002	0.00372	-0.00217	97.21619	0.00040
Mean	-0.00136	37.26261	0.10159	0.00833	1.08548	0.00370	-0.00286	97.26111	0.00056
%RSD	3.91569	0.36528	1.31325	8.78430	0.59211	0.84072	34.39271	0.06531	39.92816
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	mqq
#1	0.02038	0.02486	0.06012	65.73685	5.55398	0.04730	15.90170	1.43806	0.11165
#2	0.01941	0.02378	0.06059	65.82323	5.55607	0.04751	15.95914	1.44045	0.11084
Mean	0.01989	0.02432	0.06035	65.78004	5.55503	0.04740	15.93042	1.43925	0.11125
%RSD	3,43950	3.14134	0.54636	0.09286	0.02656	0.30904	0.25497	0.11731	0.51690
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.37995	0.01976	1.57313	0.18101	0.17451	4.83949	-0.00052	0.51389	0.52226
#2	0.38167	0.01783	1.58207	0.17129	0.17799	4.83637	0.00121	0.52126	0.51839

Mean %RSD	0.38081 0.31890	0.01880 7.26999	1.57760 0.40038	0.17615 3.90141	0.17625 1.39712	4.83793 0.04563	0.00034 353.87032	0.51757 1.00633	0.52032 0.52547
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
#1 #2	ppm 12.16782 12.22034	ppm 0.00463 0.00245	ppm 0.43997 0.44312	ppm 0.35875 0.35397	ppm 0.00610 0.01268	ppm 4.05096 4.06728	ppm 1.64857 1.65123	ppm 0.12846 0.12490	ppm 0.04389 0.04337
Mean %RSD	12.19408 0.30458	0.00354 43.68522	0.44155 0.50397	0.35636 0.94864	0.00939 49.49837	4.05912 0.28427	1.64990 0.11385	0.12668 1.98845	0.04363 0.84894
	Pb calc	Se calc							
#1 #2 Mean %RSD	0.17667 0.17576 0.17622 0.36661	0.51947 0.51934 0.51941 0.01718							

Method : Paragon Printed: 2/2/2012 17:35:56 File : 120202A

SampleId1 : CCV SampleId2 : [CV]

Analysis commenced: 2/2/2012 15:55:23
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD6

	Ag	Al	As	В	Ba	Be	Bi ppm	Ca ppm	Cd ppm
#1	ppm 0.21103	ppm 51.98046	ppm 0.52286	ppm 1.00145	ppm 1.07723	ppm 0.48669	0.53087	50.45902	0.51009
#2	0.20837	51.53632	0.51309	0.99931	1.06835	0.48477	0.53804	50.25066	0.50536
Mean	0.20970	51.75839	0.51797	1.00038	1.07279	0.48573	0.53445	50.35484	0.50773
%RSD	0.89770	0.60676	1.33334	0.15175	0.58527	0.27971	0.94848	0.29259	0.65801
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49402	1.00879	1.05571	20.38779	52.07730	0.52685	50.10604	1.01085	0.99647
#2	0.49178	1.00413	1.04601	20.28585	51.59126	0.52085	49.78481	1.00633	0.99535
Mean	0.49290	1.00646	1.05086	20.33682	51.83428	0.52385	49.94543	1.00859	0.99591
%RSD	0.32078	0.32753	0.65251	0.35446	0.66305	0.80988	0.45478	0.31724	0.07956
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	48.69245	1.01004	4.95711	1.01499	1.00399	5.18602	0.49453	1.02505	1.01329
#2	48.17450	1.00472	4.92789	1.00548	1.00557	5.14232	0.49391	1.00347	1.01613
Mean	48.43348	1.00738	4.94250	1.01023	1.00478	5.16417	0.49422	1.01426	1.01471
%RSD	0.75619	0.37363	0.41811	0.66592	0.11064	0.59847	0.08911	1.50487	0.19776
	Si	Sn	Sr	Ti	Tl	ប	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.13002	1.03006	0.53377	0.49467	0.52281	5.19880	0.49993	0.95032	1.01441
#2	5.09356	1.02392	0.52994	0.49204	0.52240	5.15628	0.49759	0.94705	1.01070
Mean	5.11179	1.02699	0.53186	0.49335	0.52261	5.17754	0.49876	0.94868	1.01255

0.37603 0.58063 0.33170 0.24401 0.25906 &RSD 0.50440 0.42324 0.51021 0.05520

Se Pb calc calc 1.00766 1.01721 #1 1.00554 #2 1.01191 1.00660 1.01456 Mean %RSD 0.14889 0.36905

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:56

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 15:57:27
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cđ
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00015	0.15284	-0.00279	-0.00268	-0.00022	0.00003	-0.01316	-0.05304	-0.00047
#2	-0.00074	0.15104	0.00143	-0.00202	-0.00001	0.00005	-0.00153	-0.03724	-0.00016
Mean	-0.00044	0.15194	-0.00068	-0.00235	-0.00012	0.00004	-0.00735	-0.04514	-0.00032
%RSD	93.45318	0.83958	436.49214	20.00986	125.04034	28.84629	111.98458	24.73760	70.24163
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00101	-0.00019	-0.00275	0.01018	- 0.37330	-0.00328	0.02854	0.00001	-0.00188
#2	-0.00118	-0.00050	-0.00274	0.02022	- 0.36703	-0.00325	0.03482	0.00024	-0.00005
Mean	-0.00109	-0.00034	-0.00275	0.01520	-0.37016	-0.00326	0.03168	0.00012	-0.00096
%RSD	10.63185	64.44907	0.33183	46.72227	1.19859	0.78674	14.00597	135.47279	134.23420
	Na	Ni	Р	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.12999	-0.00079	-0.00653	0.00146	-0.00335	-0.01259	-0.00264	-0.00082	0.00117
#2	-0.12596	-0.00240	-0.00808	0.00100	0.00139	-0.01883	-0.00249	-0.00043	0.00014
Mean	-0.12798	-0.00159	-0.00731	0.00123	-0.00098	-0.01571	-0.00257	-0.00062	0.00066
%RSD	2.22581	71.74550	15.02562	26.08348	341.98745	28.07239	4.08472	44.00395	110.79412
	Si	Sn	Sr	Ti	Tl	Ū	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01639	0.00023	-0.00190	-0.00186	-0.00289	-0.04263	-0.00016	-0.00243	0.00005
#2	-0.01650	-0.00547	-0.00179	-0.00203	0.00745	-0.05465	0.00011	-0.00124	0.00016
Mean	-0.01644	-0.00262	-0.00185	-0.00195	0.00228	-0.04864	-0.00003	-0.00184	0.00010
%RSD	0.49072	153.80140	4.13629	5.95760	321.02420	17.46340	725.36560	45.70523	76.15229
	Pb	Se							
	calc	calc							
#1	-0.00175	0.00051							

#2

Mean

&RSD

0.00126

-0.00024

871.50925

-0.00005

171.04039

0.00023

ted: 2/2/2012 17:36:05 User: MIKE LUNDGREEN

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:56

SampleId1 : 1201354-4 SampleId2 :

Analysis commenced: 2/2/2012 15:59:27

Dilution ratio : 1.00000 to 1.00000 Tray: Position: TUBE10

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
11.1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00025	29.35629	0.03850	0.00892	0.58314	0.00259	-0.00306	110.01119	0.00042
#2	-0.00199	29.41332	0.03783	0.00900	0.58474	0.00256	0.00273	109.68463	0.00000
Mean	-0.00112	29.38481	0.03816	0.00896	0.58394	0.00258	-0.00016	109.84791	0.00021
%RSD	110.26830	0.13723	1.23388	0.58344	0.19439	0.77189	2503.96867	0.21021	144.42025
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03240	0.02263	0.02810	57.76040	4.96645	0.03995	11.80842	1.53443	0.03268
#2	0.03266	0.02195	0.02805	57.66783	4.94391	0.03998	11.80999	1.53180	0.03288
Mean	0.03253	0.02229	0.02808	57.71411	4.95518	0.03997	11.80921	1.53312	0.03278
%RSD	0.57064	2.16637	0.14555	0.11341	0.32160	0.05499	0.00938	0.12121	0.43851
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.62393	0.02864	1.17107	0.09465	0.08889	4.36812	-0.00052	0.12643	0.13049
#2	0.62359	0.02670	1.16037	0.09021	0.09089	4.40558	-0.00434	0.13121	0.13934
Mean	0.62376	0.02767	1.16572	0.09243	0.08989	4.38685	-0.00243	0.12882	0.13491
%RSD	0.03897	4.93850	0.64906	3.39212	1.56856	0.60378	111.22805	2.62448	4.63792
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	11.98836	0.00205	0.25949	0.31545	0.00795	0.40484	0.65898	0.14232	0.02938
#2	12.05935	-0.00013	0.26019	0.30943	0.00978	0.34596	0.65713	0.14202	0.02929
Mean	12.02385	0.00096	0.25984	0.31244	0.00886	0.37540	0.65806	0.14217	0.02934
%RSD	0.41753	160.98006	0.19162	1.36181	14.65616	11.09016	0.19900	0.15064	0.20843
	Pb	Se							
	calc	calc							
#1	0.09081	0.12914							
#2	0.09066	0.13663							
Mean	0.09074	0.13288							
%RSD	0.11421	3.98794							

[SAMPLE]

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:56

SampleId1 : 1201354-5 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:01:28
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE11

	Ag	Al	As	В	Ba	Ве	Bi	Ca	Cd
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00107	36.09753	0.12185	0.01107	1.53640	0.00347	0.00271	85.32053	0.00055
#2	-0.00230	36.22416	0.11852	0.01040	1.54326	0.00350	-0.01103	85.84743	0.00082
Mean	-0.00168	36.16084	0.12019	0.01074	1.53983	0.00348	-0.00416	85.58398	0.00069
%RSD	51.68351	0.24762	1.95902	4.38304	0.31516	0.47586	233.33898	0.43533	27.38084
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02622	0.03195	0.04803	93.22595	5.88316	0.04455	14.72197	1.32898	0.09752
#2	0.02457	0.03149	0.04613	93.71216	5.91695	0.04458	14.74234	1.33673	0.09793
Mean	0.02540	0.03172	0.04708	93.46906	5.90005	0.04456	14.73216	1.33285	0.09773
%RSD	4.60191	1.01969	2.85044	0.36782	0.40497	0.04931	0.09776	0.41143	0.29420
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.90014	0.02852	1.62204	0.15146	0.14127	5.00807	0.00605	0.38183	0.38464
#2	0.90255	0.02607	1.63857	0.14127	0.14199	4.99246	0.00170	0.37596	0.39078
Mean	0.90134	0.02730	1.63031	0.14637	0.14163	5.00027	0.00387	0.37889	0.38771
%RSD	0.18899	6.33449	0.71693	4.92511	0.36048	0.22074	79.47700	1.09687	1.11890
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	14.28974	0.00727	0.39819	0.35615	0.00783	2.35863	1.11144	0.15868	0.04319
#2	14.29778	-0.00063	0.39967	0.36163	0.00972	2.32336	1.11617	0.16141	0.04269
Mean	14.29376	0.00332	0.39893	0.35889	0.00877	2.34099	1.11381	0.16004	0.04294
%RSD	0.03977	168.36106	0.26277	1.07865	15.24743	1.06516	0.30031	1.20441	0.81924
	Pb	Se							
	calc	calc							
#1	0.14466	0.38371							
#2	0.14175	0.38584							
Mean	0.14321	0.38477							
%RSD	1.43842	0.39232							

SampleId1 : 1201354-6 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:03:21
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE12

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00118	34.02411	0.05170	0.00841	1.49361	0.00307	-0.00850	124.48653	-0,00008
#2	-0.00067	34.03096	0.05270	0.00959	1.49326	0.00297	0.00569	125.17833	0.00048
Mean	-0.00093	34.02753	0.05220	0.00900	1.49344	0.00302	-0.00141	124.83243	0.00020
%RSD	39.06002	0.01424	1.35304	9.29675	0.01658	2.33861	714.45149	0.39187	197.21701
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо

#1 #2 Mean %RSD	ppm 0.02549 0.02706 0.02627 4.23722	ppm 0.02599 0.02609 0.02604 0.29505	ppm 0.03986 0.04020 0.04003 0.60410	ppm 68.42955 68.63033 68.52994 0.20717	ppm 5.60781 5.61073 5.60927 0.03682	ppm 0.04466 0.04467 0.04466 0.00820	ppm 14.55485 14.56007 14.55746 0.02537	ppm 1.36000 1.36322 1.36161 0.16732	ppm 0.08594 0.08482 0.08538 0.92605
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.14725	0.02702	1.56398	0.13179	0.13404	4.13089	-0.00216	0.37297	0.39074
#2	1.14381	0.02761	1.53740	0.13427	0.12813	4.14962	-0.00085	0.37857	0.38992
Mean	1.14553	0.02732	1.55069	0.13303	0.13109	4.14026	-0.00151	0.37577	0.39033
%RSD	0.21262	1.53143	1.21167	1.31812	3.19193	0.31986	61.60388	1.05523	0.14890
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	11.99391	0.00073	0.41806	0.32380	0.00791	2.52834	1.03450	0.15171	0.04207
#2	11.95744	0.00205	0.41813	0.32064	0.00757	2.54786	1.03718	0.15414	0.04307
Mean	11.97568	0.00139	0.41809	0.32222	0.00774	2.53810	1.03584	0.15293	0.04257
%RSD	0.21530	67.24778	0.01223	0.69207	3.12696	0.54364	0.18300	1.12039	1.65858
	Pb	Se							
	calc	calc							
#1	0.13329	0.38482							
#2	0.13017	0.38614							
Mean	0.13173	0.38548							
%RSD	1.67533	0.24197							
Method	: Paragon		File : 12020	2A	Printed:	2/2/2012 17	:35:57		

SampleId1: 1201354-7 SampleId2: Analysis commenced: 2/2/2012 16:05:14 Dilution ratio: 1.00000 to 1.00000 Tray: [SAMPLE]

Position : TUBE13

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00005	40.05348	0.08156	0.01033	1.18058	0.00339	0.00578	296.84764	0.00079
#2	-0.00117	40.00234	0.07424	0.00937	1.17743	0.00337	-0.00563	296.96774	0.00041
Mean	-0.00061	40.02791	0.07790	0.00985	1.17901	0.00338	0.00008	296.90769	0.00060
%RSD	129.83681	0.09034	6.64948	6.90144	0.18877	0.30928	10621.35086	0.02860	44.06531
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02983	0.03360	0.04838	82.75483	7.48455	0.05972	17.31888	1.85296	0.04325
#2	0.02983	0.03316	0.04826	82.71242	7.48788	0.05965	17.28285	1.85057	0.04192
Mean	0.02983	0.03338	0.04832	82.73363	7.48621	0.05968	17.30087	1.85176	0.04259
%RSD	0.00019	0.91868	0.16851	0.03625	0.03150	0.08587	0.14725	0.09140	2.19390
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	mqq	ppm	mqq	mag	mag	mag	mag	mag

#1 #2 Mean %RSD	0.67680 0.67791 0.67735 0.11666	0.04390 0.04433 0.04412 0.69535	1.84171 1.84328 1.84250 0.06006	0.13048 0.12274 0.12661 4.32131	0.12550 0.12104 0.12327 2.55790	4.58351 4.62097 4.60224 0.57555	0.00103 -0.00188 -0.00043 480.40602	0.29046 0.27747 0.28396 3.23404	0.30383 0.30357 0.30370 0.06218
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	16.16795	-0.00214	0.49302	0.52382	0.01164	1.35601	0.84909	0.19685	0.04632
#2	16.12140	0.00137	0.49202	0.52168	0.01173	1.35058	0.85043	0.19836	0.04627
Mean	16.14467	-0.00038	0.49252	0.52275	0.01169	1.35330	0.84976	0.19760	0.04630
%RSD	0.20389	651.58577	0.14288	0.28834	0.53938	0.28367	0.11150	0.54199	0.07086
	Pb	Se							
	calc	calc							
#1	0.12716	0.29938							
#2	0.12161	0.29488							
Mean	0.12438	0.29713							
%RSD	3.15564	1.07161							

SampleId1: 1201354-8 SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 16:07:07
Dilution ratio: 1.00000 to 1.00000

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE14

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppm 0.00064	ppm	ppm
#1 #2	-0.00158 -0.00185	51.81947 51.95146	0.07113 0.06680	0.01632 0.01713	0.72066 0.72332	0.00483 0.00478	0.00064 -0.00471	80.27883 80.20676	0.00019 0.00055
Mean	-0.00172	51.88546	0.06896	0.01673	0.72199	0.00480	-0.00204	80.24279	0.00037
%RSD	11.04794	0.17987	4.43830	3.43872	0.25988	0.79070	186.10325	0.06351	67.69514
	Co	Cr	Cu	Fe	К	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.04651	0.04646	0.07865	110.41670	11.24635	0.06428	19.80504	1.57457	0.10342
#2	0.04661	0.04682	0.07876	110.46129	11.27964	0.06465	19.84419	1.57720	0.10342
Mean	0.04656	0.04664	0.07871	110.43899	11.26300	0.06447	19.82462	1.57589	0.10342
%RSD	0.14314	0.53361	0.09922	0.02855	0.20904	0.40877	0.13965	0.11795	0.00000
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.02827	0.05585	2.13657	0.13142	0.13452	9.98995	0.00171	0.12628	0.15136
#2	1.03490	0.05585	2.15269	0.13245	0.13568	10.06808	0.00343	0.12695	0.15550
Mean	1.03159	0.05585	2.14463	0.13194	0.13510	10.02901	0.00257	0.12662	0.15343
%RSD	0.45431	0.00000	0.53144	0.55066	0.60816	0.55083	47.17948	0.37473	1.90852
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	13.50315	0.00326	0.61014	0.40892	0.01847	2.67770	0.54058	0.28531	0.05018

#2	13.60602	0.00019	0.61199	0.40512	0.01524	2.68749	0.54555	0.28501	0.04935
Mean	13.55458	0.00173	0.61106	0.40702	0.01685	2.68260	0.54307	0.28516	0.04977
%RSD	0.53664	125.50203	0.21382	0.65962	13.56855	0.25818	0.64740	0.07513	1.17502
#1 #2 Mean %RSD	Pb calc 0.13349 0.13461 0.13405 0.58931	Se calc 0.14301 0.14599 0.14450 1.46098							

SampleId1 : 1201354-9 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:09:08
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE15

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00137	44.10507	0.09865	0.01070	0.73295	0.00403	-0.00319	150.82734	0.00065
#2	-0.00267	43.88158	0.09410	0.00892	0.73072	0.00392	-0.00995	148.55993	-0.00023
Mean	-0.00202	43.99332	0.09638	0.00981	0.73184	0.00398	-0.00657	149.69363	0.00021
%RSD	45.35659	0.35922	3.33869	12.78913	0.21591	1.96504	72.78695	1.07105	293,73697
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03087	0.03580	0.04705	110.77206	7.67964	0.05973	19.44588	1.87941	0.07201
#2	0.02897	0.03447	0.04455	109.39208	7.63837	0.05957	19.26003	1.85907	0.07059
Mean	0.02992	0.03514	0.04580	110.08207	7.65900	0.05965	19.35296	1.86924	0.07130
%RSD	4.49655	2.67911	3.86592	0.88642	0.38100	0.19024	0.67904	0.76974	1.41127
	Na	Ni.	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.37471	0.03846	2.07927	0.11973	0.11946	4.50859	0.00015	0.22255	0.25333
#2	0.37016	0.03578	2.05063	0.10693	0.12460	4.49298	0.00042	0.20830	0.24891
Mean	0.37244	0.03712	2.06495	0.11333	0.12203	4.50079	0.00028	0.21543	0.25112
%RSD	0.86406	5.10928	0.98091	7.98864	2.98188	0.24521	67.00638	4.67797	1.24289
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
41	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	7.47164	-0.00365	0.40932	0.31862	0.01538	1.46247	1.54276	0.23078	0.04451
#2	7.38782	0.00292	0.40744	0.31912	0.00347	1.42848	1.53021	0.22593	0.04404
Mean	7.42973	-0.00036	0.40838	0.31887	0.00942	1.44547	1.53649	0.22835	0.04428
%RSD	0.79772	1281,18332	0.32558	0.10910	89.41091	1.66280	0.57765	1.50097	0.73770
	Pb	Se							
	calc	calc							
#1	0.11955	0.24308							
#2	0.11872	0.23539							

Mean 0.11913 0.23923er: MIKE LUNDGREEN

%RSD 0.49336 2.27294

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:57

SampleId1 : 1201354-10 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:11:09

Dilution ratio : 1.00000 to 1.00000 Tray : Position: TUBE16

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00199	67.10127	0.04793	0.01795	0.77583	0.00574	-0.00121	136.86737	0.00070
#2	-0.00172	66.88770	0.04926	0.01735	0.77360	0.00570	0.00389	136.21801	0.00059
Mean	-0.00185	66.99448	0.04860	0.01765	0.77472	0.00572	0.00134	136.54269	0.00064
%RSD	10.16221	0.22542	1.93797	2.36992	0.20399	0.56679	269.12930	0.33629	12.18239
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	0.05921	0.06290	0.11267	140.87651	15.29077	0.08603	22.50829	2.00239	0.00920
#2	0.05889	0.06135	0.11025	140.25346	15.21931	0.08572	22.43888	1.99640	0.01022
Mean	0.05905	0.06213	0.11146	140.56499	15.25504	0.08588	22.47359	1.99940	0.00971
%RSD	0.37750	1.76122	1.53399	0.31342	0.33124	0.25978	0.21840	0.21182	7.40294
01.02	0.07.00	1.,0122	1.00000	0.01012	0.00124	0.23570	0.21040	0.21102	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.68728	0.08551	3.01801	0.12542	0.12511	5.85730	-0.00308	-0.01057	0.01946
#2	0.68849	0.08350	2.94791	0.12489	0.12259	5.86042	0.00157	-0.01006	0.02948
Mean	0.68788	0.08450	2.98296	0.12515	0.12385	5.85886	-0.00076	-0.01032	0.02447
%RSD	0.12372	1.68310	1.66167	0.29771	1.43505	0.03768	433.49067	3.50036	28.96430
	Si	Sn	Sr	Ti	T1	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	14.41718	0.00540	0.44421	0.45357	0.01382	0.28276	0.21634	0.37440	0.05645
#2	14.33000	0.00015	0.44256	0.44499	0.01892	0.28209	0.21541	0.37259	0.05612
Mean	14.37359	0.00277	0.44338	0.44928	0.01637	0.28242	0.21588	0.37350	0.05629
%RSD	0.42889	133.87600	0.26248	1.34996	22.04782	0.16706	0.30474	0.34428	0.41769
	Pb	Se							
	calc	calc							
#1	0.12521	0.00946							
#1 #2	0.12336	0.01631							
π 2 Mean	0.12336	0.01031							
%RSD	1.05366	37.62081							
OL 01/0	T.0000	37.02001							

Method: Paragon File: 120202A SampleId1: 1201354-11 SampleId2: Printed: 2/2/2012 17:35:58

[SAMPLE]

Analysis commenced: 2/2/2012 16:13:02
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE17

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
u a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00113	47.89922	0.16713	0.00989	0.74043	0.00435	-0.00485	72.48128	0.00057
#2	-0.00132	47.44356	0.16747	0.01018	0.73240	0.00430	-0.00230	71.66935	0.00071
Mean	-0.00123	47.67139	0.16730	0.01003	0.73641	0.00433	-0.00357	72.07532	0.00064
%RSD	10.92824	0.67589	0.14073	2.08440	0.77111	0.79534	50.42539	0.79655	15.48530
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03950	0.03493	0.07291	114.18188	9.17855	0.06991	19.22401	1.95173	0.18638
#2	0.03768	0.03346	0.07316	112.80308	9.04441	0.06895	19.05956	1.93389	0.18302
Mean	0.03859	0.03420	0.07304	113.49248	9.11148	0.06943	19.14179	1.94281	0.18470
%RSD	3.33049	3.02425	0.24571	0.85905	1.04102	0.97509	0.60748	0.64939	1.28451
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.67069	0.04414	2.13142	0.16121	0.15810	7.98412	0.00149	0.63222	0.65633
#2	0.66167	0.04217	2.10300	0.16208	0.15573	7.90603	0.00373	0.64611	0.65191
Mean	0.66618	0.04315	2.11721	0.16165	0.15692	7.94507	0.00261	0.63917	0.65412
%RSD	0.95805	3.23146	0.94943	0.37902	1.06731	0.69502	60.71284	1.53691	0.47838
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	8.67589	0.00733	0.36655	0.30346	0.02385	2.95352	1.36560	0.26198	0.05460
#2	8.54524	0.01215	0.36216	0.29890	0.02488	2.94245	1.34987	0.25956	0.05426
Mean	8.61056	0.00974	0.36436	0.30118	0.02437	2.94798	1.35773	0.26077	0.05443
%RSD	1.07288	35.04556	0.85230	1.07213	3.00147	0.26553	0.81944	0.65725	0.44544
	Pb	Se							
	calc	ca1c							
#1	0.15914	0.64830							
#2	0.15785	0.64998							
Mean	0.15849	0.64914							
%RSD	0.57609	0.18240							

SampleId1 : 1201354-12 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:15:03
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE18

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00111	27.71180	0.01463	0.00678	0.47281	0.00248	-0.00029	9.96767	0.00013
#2	-0.00039	27.57958	0.01918	0.00700	0.46905	0.00243	0.00156	9.93816	0.00065
Mean	-0.00075	27.64569	0.01691	0.00689	0.47093	0.00245	0.00064	9.95291	0.00039
%RSD	67.76122	0.33818	19,03019	2.27620	0.56568	1.56756	206.49208	0.20961	92.95031

ted:	2/2/2012 17:3	36:05 User	: MIKE LUNDG	REEN					
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.01996	0.03225	0.03167	71.62442	7.07805	0.02047	8.91189	1.15583	0.00280
#2	0.02120	0.03280	0.03323	71.37194	6.99799	0.02029	8.89465	1.15214	0.00117
Mean	0.02058	0.03252	0.03245	71.49818	7.03802	0.02038	8.90327	1.15399	0.00198
8RSD	4.28603	1.19643	3.40388	0.24971	0.80433	0.64761	0.13695	0.22639	57.96526
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.04268	0.03688	1.51128	0.06262	0.05702	2.30522	0.00155	-0.00359	0.00982
#2	0.04080	0.03739	1.49476	0.06168	0.05877	2.30834	-0.00203	0.00088	0.01382
Mean	0.04174	0.03714	1.50302	0.06215	0.05789	2.30678	-0.00024	-0.00136	0.01182
%RSD	3.19635	0.97626	0,77721	1.07256	2.13585	0.09565	1049.03180	233.07069	23.87623
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
ii a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	4.75623	0.00552	0.07470	0.35149	0.01065	0.01447	0.08190	0.17231	0.03168
#2	4.69297	-0.00193	0.07420	0.34460	0.02010	0.02447	0.08115	0.17170	0.03248
Mean	4.72460	0.00180	0.07445	0.34804	0.01538	0.01947	0.08152	0.17201	0.03208
%RSD	0.94688	293.24766	0.47929	1.39931	43.44228	36.29557	0.65113	0.24904	1.76695
	Pb	Se							
	calc	ca1c							
#1	0.05889	0.00536							
#2	0.05974	0.00951							
Mean	0.05931	0.00743							
%RSD	1.01632	39.49886							

Method : Paragon
SampleId1 : 1201354-13 Printed: 2/2/2012 17:35:58 File: 120202A

SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:16:56
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE19

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00098	57.44101	0.06791	0.01491	0.98292	0.00606	0.01092	43.39259	0.00086
#2	-0.00182	57.33626	0.06347	0.01381	0.98187	0.00599	0.00696	43.06513	0.00091
Mean	-0.00140	57.38864	0.06569	0.01436	0.98240	0.00602	0.00894	43.22886	0.00089
%RSD	42.71662	0.12907	4.77900	5.46185	0.07546	0.81828	31.38251	0.53564	4.03624
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1.	0.06599	0.07072	0.09299	266.48378	21.55162	0.06054	26.32953	2.57416	0.00158
#2	0.06484	0.06910	0.09240	264.55440	21.55162	0.06053	26.23145	2.55998	0.00087
Mean	0.06542	0.06991	0.09269	265.51909	21.55162	0.06054	26.28049	2.56707	0.00122
%RSD	1.24463	1.63716	0.44809	0.51382	0.00000	0.00605	0.26391	0.39067	41.18575

	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
14 .00	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.22080	0.07202	4.04853	0.10736	0.10092	18.08377	0.00670	-0.03590	0.01591
#2	1.22528	0.07186	4.00226	0.09628	0.10840	18.03056	-0.00135	-0.04615	0.02025
Mean	1.22304	0.07194	4.02540	0.10182	0.10466	18.05717	0.00267	-0.04102	0.01808
%RSD	0.25896	0.15506	0.81266	7.69371	5.05189	0.20836	213,18598	17.67544	16.96675
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	4.56468	0.00342	0.38694	0.26896	0.03545	0.13938	0.18525	0.37471	0.04358
#2	4.48872	0.00342	0.38627	0.26630	0.03396	0.12323	0.18315	0.36986	0.04267
Mean	4.52670	0.00342	0.38661	0.26763	0.03470	0.13131	0.18420	0.37228	0.04313
%RSD	1.18654	0.06396	0.12233	0.70327	3.03229	8.69697	0.80662	0.92106	1.48225
	Pb	Se							
	calc	calc							
#1	0.10307	-0.00134							
#2	0.10437	-0.00186							
Mean	0.10372	-0.00160							
%RSD	0.88504	23.02152							

SampleId1 : CCV SampleId2 : [CV]

Analysis commenced: 2/2/2012 16:19:19
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.21312	52.22613	0.53451	1.01034	1.08177	0.48999	0.54090	50.45437	0.50878
#2	0.21115	52.08788	0.52463	1.00886	1.07904	0.48934	0,53531	50.37962	0.50824
Mean	0.21214	52.15701	0.52957	1.00960	1.08041	0.48967	0.53811	50.41700	0.50851
%RSD	0.65553	0.18742	1.31895	0.10370	0.17846	0.09368	0.73501	0.10484	0.07565
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49426	1.01034	1.06484	20.39408	52.06422	0.52699	50.43820	1.01216	1.00248
#2	0.49492	1.00780	1.06196	20.38034	51.95059	0.52569	50.30804	1.01026	0.99790
Mean	0.49459	1.00907	1.06340	20.38721	52.00740	0.52634	50.37312	1.01121	1.00019
%RSD	0.09393	0.17768	0.19124	0.04765	0.15450	0.17364	0.18270	0.13323	0.32409
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	48.75992	1.00559	4.98815	1.01701	1.00276	5.24222	0.50318	1.01743	1.00584
#2	48.58353	1.00701	5.01738	1.00841	1.00698	5.19539	0.49668	1.02586	1.01052
Mean	48.67172	1.00630	5.00277	1.01271	1.00487	5.21881	0.49993	1.02164	1.00818
%RSD	0.25627	0.09974	0.41317	0.60000	0.29692	0.63452	0.92022	0.58353	0.32780
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 16:21:26

Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD2

Final concentrations

m ppm
9 -0.00057
2 -0.00060
1 -0.00059
3.96192
in Mo
mqq ppm
.2 0.00005
0.00137
0.00071
130.98072
I Se II
om ppm
0.00134
-0.00545
-0.00205
28 234.09425
In Zr
om ppm
.2 0.00043
0.00027
0.00035
33.53769
5 94 Mp1004 p2242 2 2274

Pb Se calc calc

#1 -0.00111 0.00197er: MIKE LUNDGREEN

#2 0.00133 -0.00444 0.00011 -0.00123 Mean %RSD 1582.94962 368.15725

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:59

SampleId1 : EX120201-2MB SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:23:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE20

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00043	0.11005	-0.00146	0.00737	-0.00008	-0.00007	-0.01386	-0.06620	-0.00063
#2	-0.00016	0.11903	-0.00168	0.00796	-0.00001	-0.00006	-0.01130	-0.06544	-0.00097
Mean	-0.00029	0.11454	-0.00157	0.00767	-0.00005	-0.00007	-0.01258	-0.06582	-0.00080
%RSD	64.15243	5.54282	9.99027	5.45526	101.52161	7.45568	14.39037	0.80786	30.39365
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	mqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00192	-0.00079	-0.00374	-0.01222	-0.39422	-0.00351	0.00083	-0.00059	-0.00249
#2	-0.00101	-0.00150	-0.00362	-0.01176	-0.41597	-0.00354	-0.00440	-0.00070	-0.00350
Mean	-0.00146	-0.00115	-0.00368	-0.01199	-0.40509	-0.00353	-0.00179	-0.00065	-0.00300
%RSD	43.90974	44.13379	2.28137	2.73272	3.79692	0.62424	206.95301	12.95993	23.98437
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	141.25450	-0.00153	-0.00453	-0.00035	-0.00091	-0.02507	-0.00198	-0.00375	0.00383
#2	140.58168	-0.00019	-0.00032	0.00021	0.00271	-0.01259	-0.00264	0.00201	0.00117
Mean	140.91809	-0.00086	-0.00243	-0.00007	0.00090	-0.01883	-0.00231	-0.00087	0.00250
%RSD	0.33761	109.73584	122.78921	569.69493	282.99484	46.84578	20.24512	469.64467	75.39252
	Si	Sn	Sr	Ti	T1	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00191	-0.00021	-0.00205	-0.00237	-0.00110	-0.02843	-0.00098	-0.00181	0.00003
#2	0.00288	0.00330	-0.00210	-0.00279	0.00464	-0.02625	-0.00135	-0.00333	-0.00056
Mean	0.00239	0.00155	-0.00207	-0.00258	0.00177	-0.02734	-0.00117	-0.00257	-0.00027
%RSD	28.71565	160.49657	1.84348	11.42188	228.84105	5.64515	22.92225	41.66066	154.84777
	Pb	Se							
	calc	calc							
#1	-0.00072	0.00131							
#2	0.00188	0.00145							
Mean	0.00058	0.00138							
%RSD	317.31919	7.15797							

Method: Paragon File : 120202A Printed: 2/2/2012 17:35:59

SampleId1 : EX120201-2RVS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:25:38

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
11.1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	0.00956	1.07265	0.04660	0.04420	0.04979	0.00947	0.08819	4.71126	0.01938
	0.01002	1.08606	0.04305	0.04560	0.05000	0.00952	0.09099	4.71955	0.01898
Mean %RSD	0.00979 3.28139	1.07935 0.87850	0.04482	0.04490	0.04989	0.00949	0.08959	4.71540	0.01918
dens	3.20139	0.87830	5.60300	2.21269	0.29617	0.32779	2,20925	0.12440	1.47705
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.01770	0.04792	0.04595	0.96172	7.52874	0.03429	4.66607	0.04806	0.09752
#2	0.01803	0.04867	0.04715	0.96622	7.56584	0.03448	4.67757	0.04842	0.09813
Mean	0.01786	0.04830	0.04655	0.96397	7.54729	0.03438	4.67182	0.04824	0.09783
%RSD	1.30737	1.09462	1.81821	0.32976	0.34761	0.39432	0.17406	0.52059	0.44084
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	7.66860	0.04745	0.91618	0.04725	0.04816	0.94498	0.09156	0.04274	0.04368
#2	7.71532	0.04832	0.93155	0.04868	0.04727	0.95745	0.09010	0.05133	0.04334
Mean	7.69196	0.04788	0.92386	0.04796	0.04772	0.95121	0.09083	0.04703	0.04351
%RSD	0.42946	1.28131	1.17604	2.10983	1.31757	0.92755	1.13525	12.90001	0.55811
	Si	Sn	Sr	Ti	T1	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.25223	0.09312	0.04778	0.04440	0.09752	0.46207	0.04796	0.04754	0.04912
#2	0.25025	0.09532	0.04791	0.04449	0.10067	0.47407	0.04904	0.04330	0.04925
Mean	0.25124	0.09422	0.04784	0.04444	0.09910	0.46807	0.04850	0.04542	0.04919
%RSD	0.55536	1.64528	0.18641	0.14051	2.25198	1.81333	1.57534	6.59951	0.18532
	Pb	Se							
	calc	calc							
#1	0.04786	0.04337							
#2	0.04774	0.04600							
Mean	0.04780	0.04468							
%RSD	0.17229	4.15924							

SampleId1 : EX120201-2LCS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:27:32
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE22

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1	ppm 0.09934	ppm 2.36891	ppm 1.98475	ppm 0.49569	ppm 2.15138	ppm 0.04833	ppm -0.00547	ppm 38.62788	ppm 0.05184
#2	0.09736	2.35415	1.97698	0.49154	2.14156	0.04821	-0.00594	38.43786	0.05178

Mean %RSD	0.09835 1.42704	2.36153 0.44211	1.98087 0.27732	0.49362 0.59351	2.14647 0.32368	0.04827 0.18169	-0.00571 5.76384	38.53287 0.34871	0.05181 0.09322
#1 #2	Co ppm 0.49000 0.48628	Cr ppm 0.20048 0.19909	Cu ppm 0.26691 0.26762	Fe ppm 1.01056 1.00420	K ppm 50.27689 50.01138	Li ppm 0.58627 0.58328	Mg ppm 37.35758 37.27627	Mn ppm 0.50388 0.50103	Mo ppm 1.00289 0.99087
Mean %RSD	0.48814 0.53963	0.19978 0.49289	0.26726 0.18994	1.00420 1.00738 0.44619	50.14414 0.37440	0.58478 0.36161	37.31692 0.15407	0.50246 0.40095	0.99688 0.85265
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
#1 #2 Mean %RSD	ppm 173.87868 172.75541 173.31705 0.45827	ppm 0.50055 0.50224 0.50139 0.23914	ppm -0.00276 -0.00542 -0.00409 46.01145	ppm 0.50178 0.49439 0.49808 1.04906	ppm 0.48743 0.48356 0.48550 0.56317	ppm -0.00324 -0.00947 -0.00636 69.40134	ppm 0.48066 0.47834 0.47950 0.34278	ppm 1.94409 1.93981 1.94195 0.15582	ppm 1.90648 1.91336 1.90992 0.25477
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
#1 #2 Mean %RSD	ppm 2.03203 2.02051 2.02627 0.40223	ppm 0.52074 0.51197 0.51636 1.20165	ppm 0.53808 0.53528 0.53668 0.36970	ppm 0.48787 0.48609 0.48698 0.25824	ppm 2.07204 2.06049 2.06626 0.39529	ppm -0.05423 -0.04768 -0.05095 9.09396	ppm 0.50271 0.50136 0.50203 0.19015	ppm 0.48353 0.47989 0.48171 0.53404	ppm 0.00134 0.00057 0.00096 56.68070
#1 #2 Mean %RSD	Pb calc 0.49221 0.48717 0.48969 0.72774	Se calc 1.91900 1.92217 1.92058 0.11652							

SampleId1 : 1201363-11 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:29:26
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE23

	Agr	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00076	1.81216	0.00187	0.00981	0.08629	0.00003	-0.00793	21.95283	-0.00010
#2	-0.00055	1.81417	-0.00290	0.00944	0.08643	0.00004	-0.00747	21.84998	-0.00045
Mean	-0.00065	1.81317	-0.00052	0.00963	0.08636	0.00003	-0.00770	21.90140	-0.00028
%RSD	22.98847	0.07818	653.05382	2.71556	0.11409	22.34226	4.25114	0.33208	89.51437
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	0.00130	0.00108	-0.00120	1.16859	1.07692	-0.00023	9.57235	0.38568	-0.00208
#2	0.00072	0.00081	-0.00166	1.16502	1.05560	-0.00027	9.56295	0.38521	-0.00096
Mean	0.00101	0.00094	-0.00143	1.16681	1.06626	-0.00025	9.56765	0.38545	-0.00152

9.D.C.D	40 66006	10 00756	22 22421	0.01600	1 41200	11 61075	0.00051	0 00705	E1 01714
%RSD	40.66026	19.98756	22.89431	0.21623	1.41388	11.61875	0.06951	0.08705	51.91714
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
u a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	129.30372	0.00095	0.05957	0.00235	0.00230	0.17766	-0.00107	-0.00047	0.00313
#2	129.15974 129.23173	0.00134 0.00115	0.06201 0.06079	-0.00108	0.00761	0.17766	-0.00145 -0.00126	-0.00357 -0.00202	0.00528 0.00420
Mean %RSD	0.07878	24.30642	2.83852	0.00063 383.95648	0.00495 75.77844	0.17766 0.00000	21.63849	108.28031	36.17988
02102	0,0,0,0	21,00012	2,00002	303.33010	, 3 , , , 3 , 1	0,0000	44,00015	100.20001	00,200
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.67718	-0.00334	0.07731	0.05381	0.00085	-0.02923	0.00174	0.12082	0.00131
#2	3.67763	0.00104	0.07719	0.05601	-0.00108	-0.04997	0.00114	0.12112	0.00138
Mean	3.67740	-0.00115	0.07725	0.05491	-0.00012	-0.03960	0.00144	0.12097	0.00134
%RSD	0.00872	268.96659	0.11548	2.82695	1162.43703	37.02346	29.22803	0.17702	3.85827
	Pb	Se							
	calc	calc							
#1	0.00232	0.00193							
#2	0.00471	0.00233							
Mean	0.00352	0.00213							
%RSD	48.22869	13.35588							
Method	: Paragon		File : 12020)2A	Printed	: 2/2/2012 17	7:36:00		
	[d1 : 120136;		SampleId2	2 :		[SAMPLE]			
	s commenced						m: 70 0 4		
Dilutio	on ratio : 1	.00000 to 1.0	00000 Tray	<i>;</i> :		Position :	TUBEZ4		

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00044	1.83582	-0.00568	0.01055	0.08734	0.00005	-0.00443	22.20009	0.00015
#2	0.00023	1.84249	-0.00046	0.01055	0.08762	0.00003	-0.00606	22.13875	-0.00041
Mean	-0.00011	1.83915	-0.00307	0.01055	0.08748	0.00004	-0.00525	22.16942	-0.00013
%RSD	441.21602	0.25645	120.16969	0.00000	0.22526	21.08859	22.03068	0.19566	308.31729
	Co	Cr	Cu	Fe	к	Li	Ма	Mn	Мо
	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm
#1	0.00088	0.00056	-0.00157	1.17604	1.10534	-0.00025	9.68991	0.39007	-0.00228
#2	0.00105	0.00131	-0.00144	1.17821	1,09280	-0.00024	9.67162	0.38936	0.00127
Mean	0.00097	0.00093	-0.00151	1.17712	1.09907	-0.00025	9.68077	0.38972	-0.00051
%RSD	12.46882	57.29373	5.89695	0.13047	0.80685	2.96560	0.13357	0.12915	496.77887
	Na	Ní	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	130.51198	0.00182	0.05868	0.00280	0.00137	0.17142	-0.00490	0.00087	0.00003
#2	130.02998	0.00091	0.05735	0.00286	0.00137	0.17454	-0.00118	0.00542	0.00055
Mean	130.27098	0.00136	0.05802	0.00283	0.00137	0.17298	-0.00304	0.00315	0.00029
%RSD	0.26163	47.01594	1.62227	1.53831	0.19788	1.27495	86.52907	102.16396	125.91361

ted:	2/2/2012 17:3	36:05 User	: MIKE LUNDGE	REEN					
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.72025	0.00279	0.07775	0.05814	-0.00465	-0.01832	0.00168	0.12234	0.00172
#2	3.74294	-0.00597	0.07766	0.05560	-0.00038	-0.02269	0.00212	0.12203	0.00170
Mean	3.73159	-0.00159	0.07770	0.05687	-0.00252	-0.02051	0.00190	0.12218	0.00171
%RSD	0.42994	389.17854	0.08201	3.15297	119.91184	15.05791	16.09538	0.17527	0,93078
	Pb	Se							
	calc	calc							
#1	0.00184	0.00031							
#2	0.00187	0.00217							
Mean	0.00186	0.00124							
%RSD	0.87868	105.86465							

[SAMPLE]

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:00

SampleId1: 1201363-11L 5X Sampl
Analysis commenced: 2/2/2012 16:33:35
Dilution ratio: 1.00000 to 1.00000 SampleId2 :

Tray : Position : TUBE25

	Ag ppm	Al ppm	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca ppm	Cd ppm
#1	-0.00087	0.40057	0.00187	-0.00098	0.01573	-0.00015	-0.00082	4.33573	-0.00047
#2	-0.00044	0.40134	0.00276	-0.00098	0.01601	-0.00014	-0.00429	4.33158	-0.00023
Mean	-0.00065	0.40095	0.00231	-0.00098	0.01587	-0.00015	-0.00255	4.33366	-0.00035
%RSD	46.69366	0.13672	27.13888	0.00000	1.24164	1.84972	96.24560	0.06766	48.12334
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.00109	-0.00014	-0,00395	0.22283	-0.12191	-0,00272	1,88796	0.07695	-0.00239
#2	-0.00010	0.00008	-0.00303	0.22221	-0.12903	-0.00273	1.88378	0.07707	-0.00279
Mean	-0.00060	-0.00003	-0.00349	0.22252	-0.12547	-0.00273	1.88587	0.07701	-0.00259
%RSD	117.14999	474.59528	18.70941	0.19651	4.00718	0.26903	0.15683	0.10872	11.09973
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	25.59960	0.00111	0.00722	0.00459	0.00164	0.01548	-0.00185	0.00757	0.00139
#2	25.60885	-0.00090	0.00057	0.00643	-0.00145	0.03107	-0.00437	-0.00645	0.00319
Mean	25.60423	0.00010	0.00389	0.00551	0.00010	0.02327	-0.00311	0.00056	0.00229
%RSD	0.02556	1391.64426	120.81488	23.48988	2276.15840	47.37890	57.23282	1773.09140	55.74370
	Si	Sn	Sr	Ti	Tl	ប	v	Zn	Zr
	ppm	mqq	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.64163	-0.00285	0.01312	0.00761	0.00081	-0.05369	-0.00055	0.02241	-0.00046
#2	0.65149	-0.00241	0.01316	0.00843	0.00094	-0.01222	0.00058	0.02180	0.00027
Mean	0.64656	-0.00263	0.01314	0.00802	0.00088	-0.03296	0.00001	0.02211	-0.00009
%RSD	1.07867	11.75348	0.19389	7.23008	10.91422	88.99078	5862.15544	1.93698	548.79452

calc ca1c #1 0.00263 0.00345 #2 0.00117 -0.00002 0.00190 Mean 0.00171 54.11151 142.94746 %RSD

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:01

SampleId1 : 1201363-11MS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:35:29
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE26

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
N	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09868	4.76942	1.95978	0.49591	2.20318	0.04822	-0.00537	60.90493	0.05210
#2	0.09828	4.77781	1.97443	0.49917	2.20964	0.04835	-0.00768	60.95441	0.05175
Mean	0.09848	4.77362	1.96711	0.49754	2.20641	0.04828	-0.00652	60.92967	0.05192
%RSD	0.28742	0.12430	0.52660	0.46266	0.20697	0.18472	24.98123	0.05742	0.46766
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.48756	0.19897	0.26304	2.30584	50.50187	0.57743	46.95582	0.88503	0.98883
#2	0.48904	0.20032	0.26774	2.31114	50.61312	0.57875	47.11414	0.88622	0.98476
Mean	0.48830	0.19964	0.26539	2.30849	50.55749	0.57809	47.03498	0.88563	0.98680
%RSD	0.21515	0.47712	1.25429	0.16222	0.15560	0.16151	0.23800	0.09500	0.29198
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	162.25698	0.49889	0.06778	0.50062	0.49157	0.19325	0.47037	1.92163	1.89419
#2	161.78894	0.49641	0.05913	0.49941	0.49198	0.19325	0.47099	1.94762	1.90325
Mean	162.02296	0.49765	0.06345	0.50002	0.49177	0.19325	0.47068	1.93463	1.89872
%RSD	0.20427	0.35301	9.64173	0.17038	0.05981	0.00000	0.09323	0.94997	0.33745
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	6.88931	0.51980	0.60860	0.54716	2.04117	-0.05075	0.50004	0.60391	0.00191
#2	6.88060	0.51233	0.60998	0.55162	2.04409	-0.04638	0.49940	0.60300	0.00206
Mean	6.88495	0.51606	0.60929	0.54939	2.04263	-0.04857	0.49972	0.60346	0.00198
%RSD	0.08942	1.02293	0.15978	0.57306	0.10106	6.35135	0.09147	0.10661	5.28818
	Pb	Se							
	calc	ca1c							
#1	0.49458	1.90333							
#2	0.49446	1.91803							
Mean	0.49452	1.91068							
%RSD	0.01770	0.54398							

File: 120202A Printed: 2/2/2012 17:36:01

Method : Paragon

SampleId1 : 1201363-11MSD SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:38:09
Dilution ratio: 1.00000 to 1.00000 Tray:

Position: TUBE27

Final concentrations

#1 #2 Mean %RSD	Ag ppm 0.09999 0.09980 0.09990 0.13635	Al ppm 4.84979 4.87479 4.86229 0.36355	As ppm 1.98808 1.99641 1.99224 0.29543	ppm 0.50094 0.50568 0.50331 0.66525	ppm 2.22108 2.22424 2.22266 0.10050	ppm 0.04894 0.04896 0.04895 0.02867	ppm -0.00394 -0.00114 -0.00254 77.82238	Ca ppm 61.50034 61.48047 61.49040 0.02286	Cd ppm 0.05233 0.05229 0.05231 0.04970
#1 #2 Mean %RSD	Co ppm 0.49325 0.49383 0.49354 0.08308	Cr ppm 0.20166 0.20179 0.20173 0.04337	Cu ppm 0.26870 0.26968 0.26919 0.25636	Fe ppm 2.34058 2.34152 2.34105 0.02823	K ppm 50.93949 50.84052 50.89000 0.13751	Li ppm 0.58265 0.58250 0.58258 0.01849	Mg ppm 47.51824 47.55469 47.53647 0.05422	Mn ppm 0.89646 0.89681 0.89663 0.02815	Mo ppm 0.99199 0.99729 0.99464 0.37659
#1 #2 Mean %RSD	Na ppm 163.24278 162.87352 163.05815 0.16013	Ni ppm 0.50122 0.49854 0.49988 0.37932	ppm 0.06734 0.06734 0.06734 0.00000	<pre>pb I ppm 0.50369 0.49939 0.50154 0.60654</pre>	pb II ppm 0.50026 0.49948 0.49987 0.11010	s ppm 0.19949 0.20261 0.20105 1.09695	Sb ppm 0.47699 0.47610 0.47655 0.13244	Se I ppm 1.93784 1.94547 1.94166 0.27776	Se II ppm 1.93349 1.92739 1.93044 0.22341
#1 #2 Mean %RSD	Si ppm 7.14969 7.19508 7.17238 0.44752	\$n ppm 0.51540 0.52066 0.51803 0.71865	\$r ppm 0.61418 0.61499 0.61459 0.09380	Ti ppm 0.55822 0.55939 0.55881 0.14684	ppm 2.06608 2.08144 2.07376 0.52378	ppm -0.04095 -0.04968 -0.04531 13.62665	ppm 0.50518 0.50539 0.50528 0.03023	Zn ppm 0.61241 0.61059 0.61150 0.21043	Zr ppm 0.00162 0.00172 0.00167 4.29761
#1 #2 Mean %RSD	Pb calc 0.50140 0.49945 0.50042 0.27578	Calc 1.93494 1.93341 1.93418 0.05587							

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:01

SampleId1: 1201363-13 SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 16:40:44

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE28

Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
ppm								

#1 #2 Mean %RSD	0.00024 -0.00180 -0.00078 184.69365	1.44649 1.44708 1.44678 0.02916	0.00020 -0.00412 -0.00196 156.19227	0.01425 0.01151 0.01288 15.01938	0.08748 0.08755 0.08751 0.05629	0.00001 0.00001 0.00001 42.85208	0.00043 -0.00680 - 0.00319 160.31593	20.88990 20.81261 20.85125 0.26209	-0.00013 -0.00063 -0.00038 92.55553
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
#1	ppm 0.00149	ppm 0.00096	ppm -0.00155	ppm 0.94033	ppm 0,93938	ppm -0.00041	ppm 9.23951	ppm 0.39055	ppm 0.00046
#2	0.00149	-0.00038	-0.00133	0.93754	0.92516	-0.00038	9.24265	0.38984	-0.00086
Mean	0.00125	0.00029	-0.00166	0.93894	0.93227	-0.00040	9.24108	0.39019	-0.00020
%RSD	27.85178	322.04136	9.31984	0.21012	1.07812	6.49684	0.02399	0.12899	463.82363
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	135.53099	0.00261	0.04094	0.00141	0.00409	0.07473	-0.00052	0.00157	0.00368
	135.10150	-0.00035	0.03872	-0.00308	0.00540	0.07785	-0.00303	0.00074	0.00394 0.00381
Mean %RSD	135.31625 0.22443	0.00113 185.48616	0.03983 3.93837	-0.00083 381.84498	0.00474 19.57297	0.07629 2.89062	-0.00177 99.92446	0.00115 50.44182	4.78239
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
11 -1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	2.90188 2.89702	-0.00728 -0.00201	0.06811 0.06802	0.04361 0.04160	-0.00061 0.00140	-0.03781 -0.05964	0.00088 0.00099	0.12930 0.12476	0.00125 0.00050
π∠ Mean	2.89945	-0.00201	0.06806	0.04160	0.00140	-0.03964	0.00099	0.12703	0.00030
%RSD	0.11869	80.12440	0.09361	3.32954	358.77061	31.67659	8.12196	2.52878	60.89817
	Pb	Se							
11 -	calc	calc							
#1	0.00320	0.00298							
#2 Mean	0.00258 0.00289	0.00288 0.00293							
%RSD	15.19057	2.47175							

Method : Paragon Printed: 2/2/2012 17:36:01 File: 120202A

SampleId1 : 1201363-15 [SAMPLE] SampleId2 :

Analysis commenced: 2/2/2012 16:42:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE29

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00010	1.46093	0.00065	0.01395	0.09082	0.00007	0.00206	23.38814	0.00009
#2	-0.00069	1.45549	0.00009	0.01351	0.09103	0.00002	-0.01632	23.41941	-0.00003
Mean	-0.00029	1.45821	0.00037	0.01373	0.09093	0.00004	-0.00713	23.40378	0.00003
%RSD	189.66010	0.26417	105.72478	2.28474	0.16254	90.55535	182.36993	0.09446	280.14124
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00232	0.00029	-0.00046	0.94917	1.10827	-0.00019	9.48770	0.37453	-0.00259

#2 Mean %RSD	0.00239 0.00235 2.27446	0.00033 0.00031 9.02764	-0.00095 -0.00071 48.66344	0.94824 0.94870 0.06932	1.11120 1.10973 0.18646	-0.00015 -0.00017 15.37790	9.47987 9.48379 0.05844	0.37442 0.37447 0.02240	-0.00137 -0.00198 43.55465
	Na ppm	Ni ppm	P ppm	Pb I ppm	Pb II ppm	s ppm	Sb ppm	Se I ppm	Se II ppm
#1 #2	129.71648 129.63076	0.00146 0.00308	0.05181 0.05159	0.00582 0.00105	0.00325	0.13399	0.00145	0.00103	0.00274
Mean %RSD	129.67362 0.04674	0.00227 50.33979	0.05170 0.30344	0.00344 98.08474	0.00444 37.76556	0.13555 1.62697	0.00072 141.03539	-0.00037 531.25541	0.00037 896.59890
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
II a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	2.94859	0.00061	0.07932	0.04638	0.00366	-0.03563	0.00153	0.14293	0.00221
#2	2.96677	-0.00071	0.07906	0.04976	0.00422	-0.03454	0.00223	0.14263	0.00116
Mean %RSD	2.95768 0.43478	-0.00005 1946.48072	0.07919 0.22531	0.04807 4.97355	0.00394 10.03713	-0.03509 2.20084	0.00188 26.36259	0.14278 0.15000	0.00169 43.97863
	Pb	Se							
ш 1	calc	calc							
#1 #2	0.00411	0.00217 -0.00192							
_т г Mean	0.00410	0.000132							
%RSD	0.12215	2328.01080							

SampleId1: CCV SampleId2:
Analysis commenced: 2/2/2012 16:44:33
Dilution ratio: 1.00000 to 1.00000 Tray: [CV]

Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	mqq	mqq	ppm	ppm
#1	0.21174	51.71560	0.53218	1.00123	1.06338	0.49086	0.52851	50.79601	0.51212
#2	0.21100	51.73992	0.52574	1.00138	1.06163	0.49131	0.53618	51.00946	0.51288
Mean	0.21137	51.72776	0.52896	1.00130	1.06251	0.49108	0.53234	50.90273	0.51250
%RSD	0.24753	0.03324	0.86053	0.01046	0.11632	0.06548	1.01853	0.29652	0.10455
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49581	1.01414	1.04843	20.31414	51.34962	0.51698	50.17841	1.01216	1.00686
#2	0.49895	1.01708	1.04433	20.36297	51.42118	0.51720	50.28357	1,01478	1.00758
Mean	0.49738	1.01561	1.04638	20.33855	51.38540	0.51709	50.23099	1.01347	1.00722
%RSD	0.44549	0.20434	0.27676	0.16974	0.09846	0.02924	0.14804	0.18278	0.05006
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	47.83492	0.99999	4.97501	1.00972	1.00439	5.17978	0.49455	1.02394	1.00254
#2	47.94731	1.00831	4.96255	1.01998	1.00550	5.14544	0.49254	1.02461	1.00393

Mean %RSD	47.89112 0.16595	1.00415 0.58584	4.96878 0.17734	1.01485 0.71504	1.00494 0.07827	5.16261 0.47037	0.49354 0.28871	1.02428 0.04599	1.00323 0.09835
	Si ppm	Sn ppm	Sr ppm	Ti ppm	T1 ppm	U mqq	V mqq	Zn mqq	Zr ppm
#1	5.13504	1.04061	0.52760	0.49516	0.52690	5.14425	0.50057	0.98414	1.01031
#2	5.13014	1.04324	0.52820	0.49579	0.53423	5.14968	0.50112	0.98627	1,01289
Mean	5.13259	1.04192	0.52790	0.49547	0.53056	5.14696	0.50084	0.98521	1.01160
%RSD	0.06756	0.17883	0.08001	0.09001	0.97683	0.07455	0.07751	0.15254	0.18050
	Pb calc	Se calc							
#1	1.00616	1.00967							
#2	1.01032	1.01082							
Mean %RSD	1.00824 0.29170	1.01024 0.08067							

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 16:46:42
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00010	0.15457	-0.00168	-0.00239	-0.00001	0.00010	-0.00059	-0.04025	-0.00020
#2	-0.00081	0.15259	-0.00168	-0.00254	-0.00022	0.00011	-0.00967	-0.04251	-0.00046
Mean	-0.00035	0.15358	-0.00168	-0.00246	-0.00012	0.00010	-0.00513	-0.04138	-0.00033
%RSD	182.05018	0.91122	0.00000	4.24636	125.04034	3.97564	125.09750	3.85506	56.26456
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00019	0.00104	-0.00350	0.01636	-0.29424	-0.00304	0.03586	0.00036	-0.00056
#2	-0.00052	-0.00050	-0.00324	0.01512	-0.29592	-0.00309	0.03064	0.00024	-0.00035
Mean	-0.00035	0.00027	-0.00337	0.01574	-0.29508	-0.00306	0.03325	0.00030	-0.00046
%RSD	66.61191	408.11574	5.47579	5.55289	0.40094	0.95773	11.12094	27.79609	31.55404
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.07890	-0.00110	-0.00742	0.00159	-0.00104	0.00300	0.00040	-0.00281	-0.00390
#2	-0.08439	-0.00153	-0.00897	-0.00084	-0.00326	-0.01571	-0.00183	0.01378	-0.00072
Mean	-0.08165	-0.00132	-0.00819	0.00037	-0.00215	-0.00636	-0.00072	0.00548	-0.00231
%RSD	4.75159	23.28193	13.39863	459.60898	72.88939	208.20428	219.59231	213.99621	97,40871
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01948	0.00417	-0.00179	-0.00194	0.00409	-0.02627	0.00000	-0.00423	0.00023
#2	-0.01903	-0.00109	-0.00187	-0.00190	0.00588	-0.04373	-0.00076	-0.00181	-0.00039
Mean	-0.01926	0.00154	-0.00183	-0.00192	0.00498	-0.03500	-0.00038	-0.00302	-0.00008

%RSD 1.63981 240.83196 2.78468 1.39289 25.37223 35.28138 141.68909 56.64495 546.59103

[SAMPLE]

 Pb
 Se

 calc
 calc

 #1
 -0.00017
 -0.00354

 #2
 -0.00245
 0.00411

 Mean
 -0.00131
 0.00028

 %RSD
 123.56403
 1901.38320

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:02

SampleId1 : 1201363-17 SampleId2 :

Analysis commenced: 2/2/2012 16:48:59

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE30

	3 ~	7.7	3 -	ъ	n -	D-	D:	C -	Cd
	Ag	Al	As	В	Ba	Be	Bi	Ca	
#1	ppm 0.00024	ppm 1.48002	ppm 0.00587	ppm 0.00796	ppm 0.08532	ppm 0.00016	ppm -0.00260	ppm 19.19576	ppm -0.00047
#2	-0.00024	1.48206	-0.00301	0.00798	0.08532	0.00015	-0.01285	19.09725	-0.00009
π2 Mean	-0.00001	1.48104	0.00143	0.00822	0.08532	0.00015			-0.00003
%RSD	320.91015	0.09770	440.42472	4.45140	0.00000	3.64568	-0.00772 93.74782	19.14651 0.36380	96.75668
ONOD	320.31013	0.09110	440.42472	4.42140	0.00000	3.04300	93.14102	0.30300	30.73000
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00190	0.00108	-0.00215	0.92204	0.86454	-0.00073	7.66193	0.28180	-0.00218
#2	0.00149	0.00022	-0.00213	0.91770	0.85158	-0.00080	7.65305	0.28121	-0.00239
Mean	0.00170	0.00065	-0.00214	0.91987	0.85806	-0.00077	7.65749	0.28150	-0.00228
%RSD	17.38972	93.79695	0.69548	0.33360	1.06804	6.70309	0.08204	0.14890	6.29044
	Na	Ni	Р	77b 7	7% T.T		m1_	0 - T	O- TT
				Pb I	Pb II	S	Sb	Se I	Se II
#1	ppm 133.94292	ppm 0.00123	ppm 0.04316	ppm 0.00168	ppm 0.00423	ppm 0.14335	ppm 0.00025	ppm 0.00344	ppm 0.00265
#2	133.19879	0.00123	0.04316	0.00100	0.00423	0.13399	-0.00331	0.00344	0.00203
Mean	133.57086	0.00152	0.04116	0.00341	0.00603	0.13399	-0.00331	0.00598	0.00093
%RSD	0.39394	27.48439	3.34873	48.29627	44.02142	4.77112	164.82299	59.96112	68.10639
01(0)	0.33334	27.40433	3.34073	40.23021	44.02142	4.//112	104.02299	59.50112	00.10035
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	mqq	ppm	mqq	mag	mqq	mqq	ppm	mqq	ppm
#1	2.94664	-0.00026	0.06776	0.04218	-0.00423	-0.03780	0.00109	0.12355	0.00177
#2	2.98220	-0.00421	0.06724	0.04426	0.00182	-0.05744	0.00061	0.12203	0.00122
Mean	2.96442	-0.00223	0.06750	0.04322	-0.00121	-0.04762	0.00085	0.12279	0.00149
%RSD	0.84820	124.94734	0.54746	3.40576	355.24993	29.16828	40.45912	0.87202	26.37876
	Pb	Se							
	anla	2010							

	PD	Se
	calc	calc
#1	0.00338	0.00291
#2	0.00651	0.00345
Mean	0.00494	0.00318
%RSD	44.75414	12.01239

ted: 2/2/2012 17:36:05 User: MIKE LUNDGREEN

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:02

SampleId1: 1201363-19 SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 16:50:52

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE31

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00155	1.90881	0.00076	0.00759	0.10288	0.00022	-0.01491	22.16885	-0.00042
#2	-0.00070	1.90447	0.00120	0.00833	0.10322	0.00020	-0.00606	22.27058	0.00045
Mean	-0.00112	1.90664	0.00098	0.00796	0.10305	0.00021	-0.01048	22,21972	0.00002
%RSD	53.73409	0.16089	31.98098	6.56580	0.23904	6.83572	59,72477	0.32375	3984.51609
		0.10003	01130030	0.0000	0.4000	0,000,2	334.22.	0.020.0	4 3 3 3 3 3 3 3 3 3 3
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	mag	ppm	mqq
#1	0.00149	0.00041	-0.00130	1.88668	1.02633	-0.00034	9.93653	0.34832	-0.00035
#2	0.00189	0.00072	-0.00095	1.89415	1.06229	-0.00033	9.94854	0.34927	-0.00188
Mean	0.00169	0.00057	-0.00113	1.89042	1.04431	-0.00033	9.94253	0.34880	-0.00112
%RSD	16.97181	38.82870	21.91262	0.27925	2.43432	1.10163	0.08546	0.19235	96.58271
VI.02	. 0. 7, 101	50.02070	21.712.02	0.27929	2.10102	1.10103	0.00010	0.15255	30.000.1
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	135.52481	0.00304	0.06445	0.00483	0.00476	0.09345	-0.00290	-0.00061	0.00224
#2	135.48142	0.00265	0.06268	0.00431	0.00499	0.08409	-0.00318	-0.00087	0.00353
Mean	135.50312	0.00284	0.06356	0.00457	0.00488	0.08877	-0.00304	-0.00074	0.00289
%RSD	0.02264	9.80848	1.97434	8.07348	3.24887	7.45316	6.47460	24.43543	31.64202
******	0,02201	3.00010	1.5,151	0.01010	3.21007	,,,,,,,,,,	0.1,100	21110010	01,01202
	Si	Sn	Sr	Ti	Т1	U	v	Zn	Zr
	mqq	ppm	ppm	mqq	ppm	ppm	ppm	ppm	mqq
#1	3.69161	0.00235	0.07422	0.05644	-0.00097	-0.04391	0.00133	0.15081	0.00193
#2	3.69522	-0.00247	0.07445	0.06013	0.00399	-0.03082	0.00279	0.15111	0.00174
Mean	3.69342	-0.00006	0.07433	0.05828	0.00151	-0.03737	0.00206	0.15096	0.00184
%RSD	0.06908	5707.79755	0.22288	4,48469	231.70838	24.77574	49.97527	0.14187	7.10041
	Pb	Se							
	calc	calc							
#1	0.00479	0.00129							
#2	0.00476	0.00207							
Mean	0.00477	0.00168							
%RSD	0.36210	32.70467							

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:03

SampleId1 : ZZZ SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 16:52:46

Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD3

	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02019	0.56956	0.01297	0.40550	0.41708	0.01179	0.04782	5.09026	0.01158
#2	0.02046	0.56662	0.01186	0.40402	0.41770	0.01175	0.04526	5.07517	0.01187
Mean	0.02033	0.56809	0.01241	0.40476	0.41739	0.01177	0.04654	5.08272	0.01172
%RSD	0.92967	0.36535	6.32225	0.25847	0.10635	0.25275	3.89129	0.20988	1.75462
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10048	0.02191	0.04829	0.20056	3.41802	0.01239	4.96349	0.03161	0.01977
#2	0.10089	0.02132	0.04830	0.19995	3.41676	0.01238	4.96193	0.03149	0.02028
Mean	0.10069	0.02161	0.04829	0.20025	3.41739	0.01239	4.96271	0.03155	0.02002
%RSD	0.29027	1.93797	0.00858	0.21834	0.02592	0.08882	0.02234	0.26531	1.79457
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.72213	0.08251	0.20204	0.00537	0.00554	0.19637	0.12144	0.00594	0.01067
#2	3.72752	0.08358	0.19916	0.00692	0.00420	0.21197	0.12290	0.00446	0.01024
Mean	3.72482	0.08304	0.20060	0.00614	0.00487	0.20417	0.12217	0.00520	0.01045
%RSD	0.10230	0.90671	1.01724	17.80819	19.48900	5.40098	0.84780	20.10763	2.90946
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10077	0.10192	0.02020	0.01914	0.02874	0.19736	0.10266	0.04754	0.05288
#2	0.09938	0.09929	0.02031	0.01928	0.01918	0.19190	0.10293	0.04875	0.05321
Mean	0.10007	0.10061	0.02025	0.01921	0.02396	0.19463	0.10280	0.04814	0.05304
%RSD	0.98075	1.84921	0.37735	0.51081	28.20828	1.98256	0.18558	1.77886	0.44096
	Pb	Se							
	calc	calc							
#1	0.00549	0.00909							
#2	0.00511	0.00831							
Mean	0.00530	0.00870							
%RSD	5.07956	6.32957							

SampleId1 : 1201354-1A SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:58:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE32

	Ag	A1	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00181	60.71775	2.04091	0.99338	5.04354	0.05284	0.00020	121,98443	0.05359
#2	-0.00177	60.51100	2.03336	0.98657	5.01568	0.05273	-0.00096	121.67875	0.05352
Mean	-0.00179	60.61438	2.03714	0.98998	5.02961	0.05279	-0.00038	121.83159	0.05355
%RSD	1.75904	0.24118	0.26195	0.48645	0.39170	0.14440	218.39178	0.17742	0.09220
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо

#1 #2 Mean %RSD	ppm 0.52149 0.52162 0.52156 0.01798	ppm 0.24119 0.24101 0.24110 0.05120	ppm 0.33655 0.33591 0.33623 0.13370	ppm 111.46442 111.18333 111.32388 0.17854	ppm 54.93582 54.61698 54.77640 0.41159	ppm 0.60946 0.60583 0.60764 0.42326	ppm 59.13733 59.02184 59.07959 0.13822	ppm 2.05151 2.04684 2.04918 0.16125	ppm 1.02357 1.02459 1.02408 0.07034
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
#1	ppm 46.85944	ppm 0.54061	ppm 2.22860	ppm	ppm	ppm	ppm	ppm	ppm
#2	46.56271	0.53876	2.22322	0.63121 0.63467	0.62882 0.62076	5.55131 5.57941	0.47986 0.47668	2.01666 2.02169	1.99498 2.01514
Mean	46.71107	0.53969	2.22591	0.63294	0.62479	5.56536	0.47827	2.01917	2.00506
%RSD	0.44919	0.24284	0.17074	0.38664	0.91278	0.35703	0.46928	0.17629	0.71116
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
#1	ppm	ppm	ppm 0.91236	ppm	ppm 2.07545	ppm	ppm	ppm	ppm
# 1			11 91/36	0.63062	7 11/545	0.34208	1.26230	1.54692	0.05185
	3.47278 3.45623	0.52145							0 05209
#2 Mean	3.45623 3.46451	0.52014 0.52080	0.90749 0.90993	0.62755 0.62908	2.05661 2.06603	0.37174 0.35691	1.25982 1. 26106	1.54084 1.54388	0.05209 0.05197
#2	3.45623	0.52014	0.90749	0.62755	2.05661	0.37174	1.25982	1.54084	

[SAMPLE]

SampleId1 : 1201354-13 5X SampleId2 : Analysis commenced : 2/2/2012 17:00:39
Dilution ratio : 1.00000 to 1.00000 Tray : Position : TUBE33

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00067	11.26495	0.01752	-0.00113	0.19458	0.00122	-0.00067	8,70587	-0.00043
#2	-0.00083	11.26049	0.01352	0.00123	0.19444	0.00118	-0.00369	8.71079	-0.00016
Mean	-0.00075	11.26272	0.01552	0.00005	0.19451	0.00120	-0.00218	8.70833	-0.00030
%RSD	14.30175	0.02799	18.20301	3251.43292	0.05067	1.93795	97.91234	0.03990	64.39492
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.01293	0.01428	0.01463	51.31836	3.16159	0.00701	5.21805	0.52074	-0.00025
#2	0.01211	0.01387	0.01496	51.23023	3.17412	0.00702	5.19714	0.52026	-0.00279
Mean	0.01252	0.01407	0.01479	51.27429	3.16785	0.00701	5.20760	0.52050	-0.00152
%RSD	4.65531	2.07048	1.58929	0.12154	0.27968	0.05230	0.28390	0.06452	117.99363
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	mqq	mag	maa	mag	maa	mag	maa

#1 #2 Mean %RSD	0.08531 0.08574 0.08553 0.35459	0.01326 0.01464 0.01395 6.99923	0.82913 0.82935 0.82924 0.01898	0.01901 0.02241 0.02071 11.63000	0.02240 0.02020 0.02130 7.30777	3.78131 3.75946 3.77039 0.40974	0.00105 -0.00121 -0.00008 2123.15072	-0.01195 -0.00321 - 0.00758 81.60344	0.00279 0.00440 0.00360 31.76988
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.84764	-0.00246	0.07549	0.05116	0.00716	-0.00117	0.03661	0.07328	0.00811
#2	0.87919	0.00192	0.07531	0.05058	0.01197	0.02727	0.03611	0.07509	0.00800
Mean	0.86341	-0.00027	0.07540	0.05087	0.00957	0.01305	0.03636	0.07419	0.00806
%RSD	2.58389	1146.71854	0.16901	0.80667	35.53964	154.08086	0.97808	1.73178	1.01855
#1 #2 Mean %RSD	Pb calc 0.02127 0.02094 0.02110 1.11990	Se calc -0.00212 0.00187 -0.00012 2258.54964							

SampleId1 : CRI SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 17:02:40
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD3

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02008	0.54549	0.01053	0.40484	0.41129	0.01177	0.05200	5.14080	0.01119
#2	0.02000	0.54948	0.01497	0.40099	0.41205	0.01174	0.04898	5.15212	0.01126
Mean	0.02004	0.54748	0.01275	0.40292	0.41167	0.01176	0.05049	5.14646	0.01123
%RSD	0.28167	0.51544	24.62840	0.67511	0.13179	0.17776	4.23129	0.15547	0.44577
	Co	Cr	Cu	Fe	к	Li	Ма	Mn	Мо
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10154	0.02133	0.04795	0.20520	3.49486	0.01235	4.95827	0.03184	0.02028
#2	0.10105	0.02211	0.04781	0.20582	3.49068	0.01242	4.96977	0.03208	0.01946
Mean	0.10130	0.02172	0.04788	0.20551	3.49277	0.01239	4.96402	0.03196	0.01987
%RSD	0.34502	2.55560	0.20461	0.21276	0.08454	0.44410	0.16381	0.52375	2.89333
			, ,			0.11120	0,10001	0.020,0	5,403000
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.68058	0.08172	0.19894	0.00885	0.00653	0.21509	0.11999	0.01368	0.01110
#2	3.68953	0.08322	0.19738	0.00987	0.00838	0.20261	0.11998	0.01343	0.01144
Mean	3.68506	0.08247	0.19816	0.00936	0.00746	0.20885	0.11999	0.01355	0.01127
%RSD	0.17176	1.28496	0.55449	7.72731	17.51030	4.22400	0.00815	1.31674	2.15760
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09493	0.10148	0.01998	0.01939	0.02705	0.17443	0.10212	0.04845	0.05194

#2	0.09672	0.10894	0.01995	0.01942	0.02750	0.19081	0.10320	0.04814	0.05251
Mean	0.09583	0.10521	0.01996	0.01941	0.02728	0.18262	0.10266	0.04830	0.05223
%RSD	1.32056	5.00988	0.12760	0.09194	1.18954	6.33914	0.74369	0.44332	0.77027
#1 #2 Mean %RSD	Pb calc 0.00730 0.00888 0.00809 13.74069	Se calc 0.01196 0.01210 0.01203 0.85427							

SampleId1 : ICSA SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 17:04:39
Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD4

	Ag ppm	Al ppm	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca ppm	Cd ppm
#1	-0.00192	260.36265	-0.00301	-0.00505	-0.00099	0.00050	0.00081	259.41016	-0.00084
#2	-0.00219	259.35871	-0.00079	-0.00527	-0.00071	0.00047	0.00732	258.53680	-0.00053
Mean	-0.00205	259.86068	-0.00190	-0.00516	-0.00085	0.00048	0.00406	258.97348	-0.00068
%RSD	9.15084	0.27318	82.43304	3.03895	23.19043	5.23202	113.35159	0.23846	31.93536
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm								
#1	-0.00085	-0.00248	-0.00766	104.60093	-0.41053	-0.00304	262.26165	0.00107	-0.00472
#2	-0.00135	-0.00312	-0.00827	104.18100	-0.41304	-0.00303	261.22845	0.00083	-0.00533
Mean	-0.00110	-0.00280	-0.00796	104.39097	-0.41178	-0.00304	261.74505	0.00095	-0.00503
%RSD	31.86698	16.08432	5.39757	0.28444	0.43099	0.12084	0.27912	17,58122	8.57408
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm								
#1	-0.12211	-0.00106	-0.00342	-0.00384	0.00170	0.04666	-0.00396	-0.01288	0.00730
#2	-0.11979	-0.00236	-0.00342	- 0.01375	0.00502	0.03107	-0.00647	-0.03356	0.00601
Mean	-0.12095	-0.00171	-0.00342	-0.00879	0.00336	0.03887	-0.00521	-0.02322	0.00666
%RSD	1.35299	53.75549	0.00000	79.72955	69.78967	28.37001	34.03731	62.98164	13.69711
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm								
#1	-0.03746	-0.00547	-0.00055	-0.00043	0.01752	0.01603	-0.01142	-0.00363	0.00198
#2	-0.03635	-0.00503	-0.00059	-0.00046	0.00979	0.01850	-0.01075	-0.00454	0.00178
Mean	-0.03690	-0.00525	-0.00057	-0.00045	0.01365	0.01727	-0.01109	-0.00408	0.00188
%RSD	2.13140	5.90267	4.47957	6.00993	40.03972	10.10989	4.30244	15.72915	7.61271

-0.00069 Mean -0.00329er: MIKE LUNDGREEN

%RSD 112.14307 166.36241

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:03

SampleId1 : ICSAB SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 17:06:58
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD5

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.20352	209.54168	0.10376	1.00678	0.53889	0.47958	0.54017	261.87315	1.00863
#2	0.20163	209.12352	0.10287	1.00826	0.53729	0.47883	0.54085	261.20539	1.00274
Mean	0.20257	209.33260	0.10331	1.00752	0.53809	0.47920	0.54051	261.53927	1.00569
&RSD	0.65986	0.14125	0.60771	0.10391	0.21092	0.11020	0.08969	0.18054	0.41404
	_	_	_	_					
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
11 1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm o cocor	ppm
#1	0.48152	0.48921	0.54418	105.37331	-0.36242	1.05187	262.76008	0.50637	0.98303
#2	0.48169	0.48823	0.54312	105.19231	-0.35950	1.04809	262.35255	0.50542	0.98191
Mean	0.48161	0.48872	0.54365	105.28281	-0.36096	1.04998	262.55631	0.50590	0.98247
%RSD	0.02424	0.14139	0.13726	0.12157	0.57360	0.25425	0.10975	0.13274	0.08065
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	mqq	ppm	mag	mqq	mqq	mag	ppm	ppm	ppm
#1	-0.11902	0.98087	0.99034	0.04575	0.05354	1.05728	0.58567	0.04063	0.05074
#2	-0.10676	0.98260	0.97698	0.05026	0.05339	1.07911	0.57983	0.03340	0.05216
Mean	-0.11289	0.98173	0.98366	0.04801	0.05347	1.06819	0.58275	0.03701	0.05145
%RSD	7.67751	0.12496	0.96073	6.64925	0.19961	1.44549	0.70837	13.80490	1.96028
		_	_	_,				_	
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
и 1	mqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.99667	1.03258	1.05797	0.97218	0.11380	10.55126	0.48808	0.92798	0.49299
#2	0.99349	1.02028	1.05449	0.97113	0.11067	10.52299	0.48729	0.92676	0.49189
Mean	0.99508	1.02643	1.05623	0.97166	0.11223	10.53712	0.48768	0.92737	0.49244
%RSD	0.22578	0.84728	0.23263	0.07617	1.97627	0.18976	0.11461	0.09259	0.15790
	Pb	Se							
	calc	calc							
#1	0.05095	0.04737							
#2	0.05235	0.04591							
Mean	0.05165	0.04664							
%RSD	1.92012	2.20575							

Method: Paragon Fin File : 120202A Printed: 2/2/2012 17:36:04

SampleId2 : [CV]

Analysis commenced: 2/2/2012 17:09:05

Dilution ratio : 1.00000 to 1.00000 Tray : Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1.1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm o Flago
#1 #2	0.21185 0.21325	51.65307 51.43325	0.52618 0.52308	1.00316 1.00005	1.05877 1.05297	0.48782 0.48762	0.52685 0.53987	50.86109 50.72550	0.51229 0.50882
Mean	0.21323	51.54316	0.52463	1.00160	1.05587	0.48772	0.53336	50.72330	0.51055
%RSD	0.46506	0.30156	0.41886	0.21950	0.38860	0.02857	1.72562	0.18875	0.47997
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49523	1.01076	1.04548	20.29528	51.15704	0.51371	50.21746	1.00716	1.00534
#2	0.49473	1.01028	1.04223	20.23820	50.88632	0.51072	50.05606	1.00716	1.00116
Mean	0.49498	1.01052	1.04386	20.26674	51.02168	0.51222	50.13676	1.00716	1.00325
%RSD	0.07152	0.03346	0.22024	0.19916	0.37518	0.41327	0.22762	0.00000	0.29438
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	47.84778	1.00153	4.93151	1.01242	1.00284	5.14544	0.49497	1.01305	0.98773
#2	47.66714	1.00456	4.91860	1.00810	0.99687	5.08924	0.49813	1.01360	0.98953
Mean	47.75746	1.00304	4.92505	1.01026	0.99985	5.11734	0.49655	1.01332	0.98863
%RSD	0.26746	0.21403	0.18539	0.30259	0.42191	0.77650	0.44990	0.03830	0.12922
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.09915	1.03622	0.52681	0.49242	0.52360	5.09076	0.49776	0.97564	1.00909
#2	5.09060	1.03007	0.52413	0.49107	0.54628	5.09408	0.49823	0.97868	1.00546
Mean %RSD	5.09488	1.03314	0.52547	0.49175	0.53494	5.09242	0.49799	0.97716	1.00727
5KSD	0.11877	0.42083	0.36050	0.19407	2.99688	0.04602	0.06738	0.21971	0.25436
	Pb	Se							
u =	calc	calc							
#1	1.00603	0.99616							
#2	1.00061	0.99755							
Mean %RSD	1.00332	0.99685							
OUSD	0.38190	0.09845							

Printed: 2/2/2012 17:36:04 Method : Paragon File : 120202A

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 17:10:58
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00056	0.26650	0.00265	0.00020	0.00117	0.00103	-0.00222	0.07782	0.00040
#2	-0.00070	0.22775	-0.00324	-0.00039	0.00075	0.00076	0.00081	0.03570	0.00068
Mean	-0.00063	0.24713	-0.00029	-0.00010	0.00096	0.00090	-0.00070	0.05676	0.00054
%RSD	15.19194	11.08673	1411.06685	433.77828	30.73605	21.59662	303.50254	52.46665	37.06518

ted: 2	2/2/2012 17:		r: MIKE LUND						
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
и 1	ppm	ppm	mqq	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.00060	0.00187	-0.00204	0.06425	-0.26538	-0.00270	0.15196	0.00166	0.00198
#2	-0.00085	0.00080	-0.00253	0.04911	-0.29131	-0.00289	0.11483	0.00131	-0.00056
Mean	-0.00072	0.00134	-0.00228	0.05668	-0.27835	-0.00279	0.13339	0.00148	0.00071
%RSD	24.21491	56.93275	15.20288	18.89021	6.58811	4.86155	19.68153	16.91123	251.88550
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.05996	0.00166	0.00500	0.00425	-0.00029	-0.00324	-0.00052	0.00534	0.00015
#2	-0.08319	-0.00090	0.00012	0.00000	-0.00015	-0.00636	0.00331	-0.00202	0.00152
Mean	-0.07157	0.00038	0.00256	0.00213	-0.00022	-0.00480	0.00139	0.00166	0.00084
%RSD	22.95256	479.20183	134.58831	141.21894	42.03095	45.98375	194.09834	312.81483	115.93188
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01289	0.00505	-0.00096	-0.00091	0.00096	-0.03285	0.00141	0.00091	0.00209
#2	-0.01347	-0.00416	-0.00129	-0.00127	0.01242	-0.02629	0.00109	-0.00121	0.00170
Mean	-0.01318	0.00045	-0.00113	-0.00109	0.00669	-0.02957	0.00125	-0.00015	0.00189
%RSD	3.10722	1454.06129	20.34173	23.76226	121.13656	15.68532	18.48638	1017.48426	14.40696
	Pb	Se							
	calc	calc							
		0 0000							
#1	0.00123	0.00188							
#1 #2	0.00123 -0.00010	0.00188							

Header Information for Analytical Sequence 12B03m00

Instrument: Agilent ICPMS Model 7700X; Serial No. JP09400112

Software Revision: B.01.01 Date of Analysis: 02/03/2012

Analyst: Ross Miller

Calibration Standards

High Calibration Standard: ST100324-6 (expires 2/28/2015)
This standard contains the following elements at the listed concentrations (ng/ml).

100000	50000	10000	5000	2000	1000	500	200	100	50	30	10	2
Na	Ca	Mg	Fe	Zn	В	Cr	Mn	V	Pb	Sb	Th	Tl
	K	-	Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		Pr		
								Sr		Nd		

1/10,1/100, and 1/1000 dilutions of the High Calibration Standard are prepared daily to provide additional calibration standards.

<u>ICV</u>

The ICV is prepared by diluting 1ml of the 2nd Source intermediate (ST110707-8, expires 06/20/2012) to 5ml giving the following concentrations (ng/ml).

20000	10000	2000	1000	400	200	100	40	20	10	6	2	0.4
Na	Ca	Mg	Fe	Zn	В	Cr	Mn	V	Рb	Sb	Th	T1
	K		Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		Pr		
								Sr		Nd		

CRI1

The RL1 is prepared by diluting 0.05ml of the Reporting Limit Verification Spike Solution (ST100324-9 expires 2/28/2015) to 50ml giving the following concentrations (ng/ml).

_	100	50	10	5	2	1_	0.5	0.2	0.1	0.05	0.03	0.02	0.01
	Na	Ca	Mg	Al	Zn	В	Cr	Mn	V	Pb	Sb	Th	U
		K		Fe	Ti	Cu	Ni		Co	Be	Cd	Tl	Ag
						Li	Sn		As		Y		
									Se		La		
									Mo)	Ce		
									Ba		Pr		
									Sr		Nd		

CRI2

The RL2 is prepared by diluting 0.1ml of the Reporting Limit Verification Spike Solution (ST100324-9 expires 2/28/2015) to 50ml giving the following concentrations (ng/ml).

20	00	100	20	10	4	2	1	0.4	0.2	0.1	0.06	0.04	0.02
1	Na	Ca	Mg	Al	Zn	В	Cr	Mn	V	Pb	Sb	Th	U
		K		Fe	Ti	Cu	Ni		Co	Be	Cd	Tl	Ag
						Li	Sn		As		Y		_
									Se		La	L.	
									Mo	ı	Ce	:	
									Ba		\mathbf{Pr}		
									Sr		Nd		

<u>ICSA</u>

The ICSA is prepared by diluting 0.5ml of ICSA intermediate (ST111103-1, expires 12/01/12) to a final volume of 50ml giving the following concentrations (ng/ml).

42.5 X 10 ⁶	30000	25000	20000	10000	200
C1	Ca	Fe	С	Al	Mo
		Na		K	Ti
				Mg	
				P	
				S	

<u>ICSAB</u>

The ICSAB is prepared by diluting 0.5ml of ICSA intermediate (ST111103-1, expires 12/01/12) and 5ml of High Calibration Standard: ST100324-6 (expires 2/28/2015) to a final volume of 50ml. The ICSAB contains the following elements at the listed concentrations (ng/ml).

 \underline{CCV}

The CCV is prepared by diluting 5ml of the High Calibration Standard: ST100324-6 (expires 2/28/2015) to a final volume of 50ml. The CCV contains the following elements at the listed concentrations (ng/ml).

10000	5000	1000	500	200	100_	50	20	10	5	3	1	0.2
Na	Ca	Mg	Fe	Zn	В	\mathbf{Cr}	Mn	V	Pb	Sb	Th	Tl
	K	_	Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		$\mathbf{P}\mathbf{r}$		
								\mathbf{Sr}		Nd		

Linear Dynamic Range Standards

LDR-Ca,Na,K

The LDR-Ca,Na,K standard is prepared by diluting 1ml of the High Calibration Standard Intermediate Mix (ST100324-5, expires 2/28/2015) to a final volume of 10ml. The LDR-Ca,Na,K standard contains the following elements at the listed concentrations (ng/ml).

100000	50000	20000	10000	5000	2000	1000	500	300	100	20
Mg	Fe	Zn	В	Cr	Mn	V	Pb	Sb	Th	Tl
	Al	Ti	Cu	Ni		Co	Be	Cd	U	
			Li	Sn		As		Y	Ag	
						Se		La		
						Mo		Ce		
						Ba		Pr		
						Sr		Nd		

1000 Na

The 1000 Na standard is prepared by diluting 1ml of the 10000mg/L Na stock solution (ST100301-26, expires 2/28/2015) to a final volume of 10ml. The 1000 Na standard contains Na at 1000000 ng/ml.

500 Ca

The 500 Ca standard is prepared by diluting 0.5ml of the 10000mg/L Ca stock solution (ST100301-9, expires 2/28/2015) to a final volume of 10ml. The 500 Ca standard contains Ca at 500000 ng/ml.

500 K

The 500 K standard is prepared by diluting 0.5ml of the 10000mg/L K stock solution (ST100301-22, expires 2/28/2015) to a final volume of 10ml. The 500 K standard contains K at 500000 ng/ml.

Linear Dynamic Range

The instrument Linear Dynamic Range (LDR) is determined at least every 6 months. The current LDR was determined on 9/22/2011 The instrument LDR is given below (ng/ml).

1000000	500000	100000	50000	20000	10000	5000	2000	1000	500	300	100	20
Na	Ca	Mg	Fe	Zn	В	Cr	Mn	V	Pb	Sb	Th	Tl
	K		Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		Pr		
								Sr		Nd		

ICB/CCB and all diluent

1% HNO₃, 1%HCl in double deionized water

HNO₃ Lot No. K23022 HCl Lot No. K33031

Internal Standards

The internal standard intermediate contains 2 PPM each of Ga, Ge and Pt; 1 PPM each of In and Rh and 0.5 PPM of Bi. This intermediate is added to all standards and samples in the same proportion of 1 on top of 100. Most often this is done by adding 0.05ml of internal standard intermediate on top of 5ml of sample or standard. The final concentration of internal standard added to the standards or samples is about 20ppb each of Ga, Ge and Pt; 10ppb each of In and Rh; and 5ppb of Bi.

Pipet ID Numbers

1.0 to 5.0 ml -- M-66 0.1 to 1.0ml -- M-60 0.01 to 0.1ml -- M-56 0.5ml -- M-14

Dilutions

2X dilutions made by diluting 5ml of sample to 10ml final volume 5X dilutions made by diluting 1ml of sample to 5ml final volume 10X dilutions made by diluting 1ml of sample to 10ml final volume 50X dilutions made by diluting 0.1ml of sample to 5ml final volume 100X dilutions made by diluting 0.1ml of sample to 10ml final volume 200X dilutions made by diluting 0.05ml of sample to 10ml final volume 500X dilutions made by diluting 0.02ml of sample to 10ml final volume

Analytical Spikes

None in this sequence.

Daily Maintenance Items

- 1. Check / change pump tubing
- 2. Check / clean drain containers
- 3. Tune instrument per manufacturer's procedures
- 4. Perform resolution / mass calibration / stability test and print QC tune report

Monthly Maintenance Items

- 1. Check / clean torch and cones
- 2. Check / clean nebulizer and spray chamber
- 3. Check / fill water recirculating reservoir4. Check / fill vacuum pump oil

Additional Comments

No additional comments.

C:\ICPMH\1\7500\QCTUNE.D

QC Tune Report

Data File: C:\ICPMH\1\7500\QCTUNE.D
Date Acquired: 3 Feb 2012 08:38:47 am

Operator: Misc Info:

Vial Number:

Current Method: C:\ICPMH\1\METHODS\2008TUNE.m

Minimum Response (CPS)

Elemen	ıt	Actual	Required	Flag
RSD (%	:)			
Elemen	t	Actual	Required	Flag
9	Be	0.92	5.00	
24	Mg	0.46	5.00	
25	Mg	0.61	5.00	
26	Mg	1.35	5.00	
59	Co	0,60	5.00	
115	In	0.63	5.00	
206	Pb	0.91	5.00	
207	Pb	0.62	5.00	
208	Pb	1.32	5.00	
Ion Ra	tio			
Elemen	t	Actual	Required	Flag
Maximu	m Bkg.	. Count (CPS)		
Elemen	t	Actual	Required	Flag

165 of 195 2/3/2012 AM 08:43

C:\ICPMH\1\7500\QCTUNE.D

9 Be
Mass Calib.
Actual: 9.05
Required: 8.90-9.10
Flag:
Peak Width
Actual: 0.50
Required: 0.80
Flag:

24 Mg
Mass Calib.
Actual: 24.00
Required: 23.90-24.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

25 Mg
Mass Calib.
Actual: 25.00
Required: 24.90-25.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

26 Mg
Mass Calib.
Actual: 26.00
Required: 25.90-26.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

C:\ICPMH\1\7500\QCTONE.D

59 Co
Mass Calib.
Actual: 58.95
Required: 58.90-59.10
Flag:
Peak Width
Actual: 0.60
Required: 0.80
Flag:

115 In
Mass Calib.
Actual: 114.95
Required: 114.90-115.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

206 Pb
Mass Calib.
Actual: 206.00
Required: 205.90-206.10
Flag:
Peak Width
Actual: 0.50
Required: 0.80
Flag:

207 Pb
Mass Calib.
Actual: 207.00
Required: 206.90-207.10
Flag:
Peak Width
Actual: 0.50
Required: 0.80
Flag:

2/3/2012 AM 08:43 167 of 195

C:\ICPMH\1\7500\QCTUNE.D

208 Pb
Mass Calib,
Actual: 208.00
Required: 207.90-208.10
Flag:
Peak Width
Actual: 0.45
Required: 0.80
Flag:

QC Tune Result: Pass

Batch Summary Report

Batch Folder:

C:¥ICPMH¥1¥DATA¥12B03m00.B¥

Analysis File:

12B03m00.batch.xml

Tune Step:

#1 hehe.u

	Rjot	Acq. Date-Time	Data File	Sample Name	Туре	Level	Dilution
1		2/3/2012 9:56:16 AM	001SMPL_12B03j00,D	blank	Sample		1.0000
2		2/3/2012 9:58:36 AM	002CALB_12B03j00.D	blank	CalBik	1	1,0000
3		2/3/2012 10:00:57 AM	003CALB_12B03j00.D	blank .	CalBlk	1	1.0000
4		2/3/2012 10:03:18 AM	004CALS_12B03j00.D	H/1000	CalStd	2	1,0000
5		2/3/2012 10:05:37 AM	005CALS_12B03j00.D	H/100	CalStd	3	1.0000
6		2/3/2012 10:07:55 AM	006CALS_12B03j00.D	H/10	CalStd	4	1,0000
7		2/3/2012 10:10:11 AM	007CALS_12B03j00,D	HIGH	CalStd	5	1,0000
8		2/3/2012 10:12:27 AM	008SMPL_12B03j00.D	ICV	6-ICV		1.0000
9		2/3/2012 10:14:46 AM	009SMPL_12B03j00.D	ICB	6-CCB		1.0000
10		2/3/2012 10:17:06 AM	010SMPL_12B03j00,D	CRI1	Sample		1.0000
11		2/3/2012 10:19:25 AM	011SMPL_12B03j00.D	CRI2	Sample		1,0000
12		2/3/2012 10:21:44 AM	012SMPL_12B03j00.D	ICSA	Sample		1.0000
13		2/3/2012 10:24:01 AM	013SMPL_12B03j00.D	ICSAB	Sample		1.0000
14		2/3/2012 10:26:20 AM	014SMPL_12B03j00.D	CCV	6-CCV		1.0000
15		2/3/2012 10:28:38 AM	015SMPL_12B03j00.D	CCB	6-CCB		1.0000
16		2/3/2012 10;30:55 AM	016SMPL_12B03j00.D	EX120201-2MB 10X	6-CCB		1,0000
17		2/3/2012 10:33:12 AM	017SMPL_12B03j00.D	EXM120201-2RVS 10X	Sample		1,0000
18		2/3/2012 10:35:28 AM	018SMPL_12B03j00.D	EXM120201-2LCS 10X	6-LCS		1,0000
19		2/3/2012 10:37:44 AM	019SMPL_12B03j00.D	1201363-11 10X	Sample		1,0000
20		2/3/2012 10:40:01 AM	020SMPL_12B03j00.D	1201363-11D 10X	Sample		1.0000
21		2/3/2012 10:42:18 AM	021SMPL_12B03j00.D	1201363-11L 50X	Sample		1.0000
22		2/3/2012 10:44:36 AM	022SMPL_12B03j00.D	1201363-11MS 10X	Sample		1,0000
23		2/3/2012 10:47:06 AM	023SMPL_12B03j00.D	1201363-11MSD 10X	Sample		1.0000
24		2/3/2012 10:49:27 AM	024SMPL_12B03j00.D	1201358-2 50X	Sample		1,0000
25		2/3/2012 10:51:48 AM	025SMPL_12B03j00.D	CCV	6-CCV		1.0000
26		2/3/2012 10:54:08 AM	026SMPL_12B03j00.D	CCB	6-CCB		1,0000
27		2/3/2012 10:56:27 AM	027SMPL_12B03j00_D	IP120202-2MB 10X	6-CCB		1.0000
28		2/3/2012 10:58:45 AM	028SMPL_12B03j00.D	IM120202-2LCS 10X	6-LCS		1.0000

169 of 195

Page 1 / 12 2/3/2012 1:07:43 PM

	Rjct	Acq. Date-Time	Data File	Sample Name	Туре	Level	Dilution
29		2/3/2012 11:01:05 AM	029SMPL_12B03j00.D	1201354-1 10X	Sample		1.0000
3 0		2/3/2012 11:03:24 AM	030SMPL_12B03j00.D	1201354-1D 10X	Sample		1.0000
31		2/3/2012 11:05:44 AM	031SMPL_12B03j00.D	1201354-1L 50X	Sample		1,0000
32		2/3/2012 11:08:02 AM	032SMPL_12B03j00.D	1201354-1MS 10X	Sample		1,0000
33		2/3/2012 11:10:18 AM	033SMPL_12B03j00,D	1201354-1MSD 10X	Sample		1.0000
34		2/3/2012 11:12:36 AM	034SMPL_12B03j00.D	ZZZZZ Z	Sample		1,0000
35		2/3/2012 11:14:55 AM	035SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
36		2/3/2012 11:17:13 AM	036SMPL_12B03j00.D	ZZZZZZ	Sample		1,0000
37		2/3/2012 11:19:30 AM	037SMPL_12B03j00.D	CCV	6-CCV		1.0000
38		2/3/2012 11:21:48 AM	038SMPL_12B03j00.D	CCB	6-CCB		1,0000
39		2/3/2012 11:24:07 AM	039SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
40		2/3/2012 11:26:27 AM	040SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
41		2/3/2012 11:28:48 AM	041SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
42		2/3/2012 11:31:09 AM	042SMPL_12B03j00,D	ZZZZZZ	Sample		1.0000
43		2/3/2012 11:33:29 AM	043SMPL_12B03j00,D	ZZZZZZ	Sample		1.0000
44		2/3/2012 11:35:49 AM	044SMPL_12B03j00,D	ZZZZZZ	Sample		1,0000
45		2/3/2012 11:38:07 AM	045SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
46		2/3/2012 11:40:24 AM	046SMPL_12B03j00,D	ZZZZZZ	Sample		1.0000
47		2/3/2012 11:42:42 AM	047SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
48		2/3/2012 11:45:03 AM	048SMPL_12B03j00.D No A5.5e	1201358-1 50X	Sample		1,0000
49		2/3/2012 11:47:22 AM	049SMPL_12B03j00.D	CCV	6-CCV		1.0000
50		2/3/2012 11:49:42 AM	050SMPL_12B03j00.D	CCB	6-CCB		1.0000
51		2/3/2012 12:16:05 PM	001SMPLD	1201354-12 10X	Sample		1.0000
52		2/3/2012 12:18:24 PM	002SMPLD	1201354-13 10X	Sample		1,0000
53		2/3/2012 12:20:44 PM	003SMPLD	1201354-2 100X	Sample		1,0000
54		2/3/2012 12:23:04 PM	004SMPLD	1201354-3 100X	Sample		1.0000
55		2/3/2012 12:25:24 PM	005SMPLD	1201354-4 10X	Sample		1.0000
56		2/3/2012 12:27:42 PM	006SMPLD	1201354-5 100X	Sample		1.0000
57		2/3/2012 12:30:02 PM	007SMPLD	1201354-6 100X	Sample		1.0000
58		2/3/2012 12:32:22 PM	008SMPLD	1201354-7 100X	Sample		1.0000
59		2/3/2012 12:34:42 PM	009SMPLD	1201354-8 100X	Sample		1,0000
60		2/3/2012 12:37:02 PM	010SMPLD	1201354-9 100X	Sample		1.0000
61		2/3/2012 12:39:22 PM	011SMPLD	CCV	6-CCV		1,0000

Batch Summary Report

	Rjot	Acq. Date-Time		Data File	Sample Name	Туре	Level	Dilution
62		2/3/2012 12:41:40 PM	012SMPLD		CCB	6-CCB		1,0000
63		2/3/2012 12:43:59 PM	013SMPLD		1201354-10 10X	Sample		1.0000
64		2/3/2012 12:46:17 PM	014SMPLD	1	1201354-11 100X	Sample		1.0000
65		2/3/2012 12:55:04 PM	015SMPLD	HS.Se onla	1201358-1 50X	Sample		1.0000
66		2/3/2012 12:57:22 PM	016SMPLD	J	ccv	6-CCV		1,0000
67		2/3/2012 12:59:40 PM	017SMPLD		CCB	6-CCB		1,0000

Analyte Table

		52 Gr	[1]	75 As [1]		78 Se [1]		109 A	[1]	111 Cd [1]		
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	
1	blank	·	586,71		7.33		2.67		3,33		2.66	
2	blank	0.006	510.03	0,000	5.33	-0.006	2.67	0.000	2.22	-0 ,001	1.33	
3	blank	0.000	496.70	0.000	5.67	0.000	3,20	0.000	4.44	0 .000	2.66	
4	H/1000	0.519	2763.69	0.094	75.67	0.089	11.47	0.013	82.23	0.039	57.28	
5	H/100	4.954	22830.20	0.994	776.02	0.982	96.27	0.112	722.25	0.312	462.81	
6	H/10	50.260	219037.12	9,646	7231.30	9.916	908.16	1.043	6463.64	3.116	4461.47	
7	HIGH	499.974	2183608.20	100.035	75274.60	100.009	9167.52	9.996	62249.47	29.988	44082.74	
8	ICV	99.494	453452.35	18.500	14517.48	19.580	1873.98	1.907	12381.65	5.856	8773.19	
9	ICB	0.019	566.70	0.008	11,00	0.007	3.73	0.002	15.56	0.008	13.29	
10	CRI1	0.480	2590.34	0.104	82.67	0.099	12.40	0.011	74.44	0,034	50.61	
11	CRI2	0.929	4544.15	0.209	161.00	0.199	21.47	0.015	95.56	0.073	106,55	
12	ICSA	0.283	1820.19	0.015	18,00	-0.012	2.53	0.012	83.34	0.092	141.23	
13	ICSAB	50.915	230137.16	10.037	7804.89	10.287	976.96	1.042	6703.74	3.141	4712.45	
14	CCV	49.822	216843.81	9.714	7272.98	10.028	917.23	1.020	6321.35	3.167	4608.63	
15	CCB	0.009	526.70	0.005	9.00	-0.001	3.07	0.001	10.00	0.003	5.94	
16	EX120201-2MB	0.020	630.04	0,002	8.00	-0.014	2.27	0.001	13.33	0,003	7.30	
17	EXM120201-2RV	0.518	2586.99	0.082	62,33	0.100	11.73	0.011	68.89	0.022	31.93	
18	EXM120201-2LC	49.596	218281_90	9.477	7175.94	9.903	915.63	1,010	6332.48	3.001	4334.18	
19	1201363-11 10X	0.109	1016.76	0.037	34.00	0.018	5.20	0.002	17.78	0.022	33.97	
20	1201363-11D 10X	0.084	916.74	0.037	34.00	0.008	4.27	0.001	12.22	0.022	33.95	
21	1201363-11L 50X	0.032	673.38	0.012	14.67	-0.021	1.60	0.001	10.00	0.005	9,99	
22	1201363-11MS	49.906	214737.91	9.697	7178.60	10.083	911.50	0.990	6061.24	3.022	4380.93	
23	1201363-11MSD	49.861	209332.35	9.602	6935.16	9.802	864.82	0.997	5962.32	3.006	4262.35	
24	1201358-2 50X	0.016	613.38	0.725	542.68	0.652	62.27	0.000	2.22	0.006	11.98	
25	CCV	50,344	218271.54	9.819	7323.67	10.018	912.83	1.045	6452.54	3.068	4429.46	
26	CCB	0.015	553.37	-0.001	5.00	-0.018	1.73	0.002	15.55	0.002	5.31	
27	IP120202-2MB	0.018	570.03	0.003	8.00	-0.011	2.27	0.000	6.67	0.002	5.32	
28	IM120202-2LCS	50.702	220994.81	9.704	7276.31	10.264	940.16	0.985	6114.61	3.099	4474.87	
29	1201354-1 10X	4.679	20997.66	5.597	4219,23	11.497	1057.50	0.038	244.45	0.101	150.20	
30	1201354-1D 10X	4.471	19913.04	5.312	3971.84	15.758	1436.33	0.064	400.01	0.123	178.93	
31	1201354-1L 50X	0.947	4524.18	1.091	798.69	2.198	197.87	0.015	92.23	0.021	31.63	

Analyte Table

Allalyto											
		52 Cr	[1]	75 As	[1]	78 Se	[1]	109 A	[1]	111 Cd	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
32	1201354-1MS 10X	55,010	236342.34	15.096	11157.84	22.338	2012.93	1.042	6378.04	3,143	4440.53
33	1201354-1MSD	55.437	237056.07	15.325	11271,92	21.055	1889.18	1.055	6421.39	3,123	4437.07
34	<u> </u>	2.993	13369.50	8.739	6459.30	25.905	2332.84	0.024	148.89	0,065	97.22
35	ZZZZZZ	2.467	11191.00	9.897	7367.02	55. 3 18	5013.44	0.019	124.45	0,097	142.42
36	ZZZZZZ	2.103	9499.84	3.961	2913,27	15.014	1345,13	0.016	102,22	0.052	7 7. 6 8
37	CCV	50,257	215699.49	9.744	7193.95	10. 0 87	909.76	1.026	6266.89	3.106	4356.84
38	CCB	0.041	653.38	0.002	7.33	-0.011	2.27	0.000	4.44	0.003	5.98
39	777777	3.151	13969.96	11.687	8590.96	42.683	3821.52	0.028	176.67	0.087	126.43
40	777777	2.605	11634.63	5.779	4247.57	41.995	3757.77	0.018	115.56	0.071	103.67
41	7777 77	3.386	14717.31	7.746	5599.65	33,751	2971.48	0.018	114.45	0,070	101.86
42	ZZ ZZZZ	4.731	20547.01	6.878	5019.79	16,897	1503.27	0.038	232.23	0.103	148.90
43	ZZZZZZ	3,834	17029,62	9.961	7386.70	27.429	2478.06	0.028	175.56	0.087	129.63
44	ZZZZZZ	6.453	28038.45	5.269	3875.48	2.130	194.00	0,045	281.12	0.083	122.79
45	ZZZZZZ	3.537	15888.50	16.556	12380,38	71.384	6501.17	0.025	15 <u>8,</u> 89	0.078	116.73
46	7777ZZ	3.373	15424.76	1.913	1459.74	1.163	111.20	0.018	116,67	0.080	119.13
47	777277	7.544	33391.86	6.673	5011.80	0.562	54.93	0.027	175,56	0.102	153.12
48	1201358-1 50X	2.024	9336,43	63.007	47160.87	32.997	3010.28	0.014	88.89	0.016	26.02
49	CCV	50.242	215375.09	9.731	7175,93	10.087	908.56	1.015	6192.42	2.987	4252.13
50	CCB	-0.012	440.03	0.002	7.00	-0.022	1.33	0.002	14.44	0.001	3.32
51	1201354-12 10X	3.381	14914.04	1,942	1428.73	1.035	95.87	0.016	104.45	0.086	124,50
52	1201354-13 10X	7.260	31835.60	6.779	5041.13	0.668	63.87	0.026	164.45	0.114	166.47
53	1201354-2 100X	0.376	2103.60	0,929	675.02	2.760	245.73	0.004	27.78	0.004	8,97
54	1201354-3 100X	0,280	1723.51	1.021	752.02	5.644	505.48	0.002	18,89	0.010	16.77
55	1201354-4 10X	2.124	9566,61	3.874	2844.93	14.810	1325.12	0.014	91.11	0.044	64.39
56	1201354-5 100X	0.322	1840.20	1.210	861.36	4.308	374.14	0,000	3.33	0.007	12.18
57	1201354-6 100X	0.262	1626,82	0,652	477.34	4.349	386.01	0.003	25.56	0,009	15.56
58	1201354-7 100X	0,333	1946.86	0.757	560.01	3.357	302.40	0.002	17.78	0.016	25,10
59	1201354-8 100X	0.422	2296.94	0.686	500,68	1,755	157.47	0.005	34.44	0.013	20.15
60	1201354-9 100X	0.366	2060.23	0.972	707.02	2.771	246.67	0.001	13.33	0.012	18.98
61	CCV	50.064	210862.25	9.635	6982.52	10.096	893.50	1,010	6054.59	3.067	4299.55
62	ССВ	0.014	530.04	-0.001	4.67	0.018	4.53	0.002	14.44	0.019	25.32

1/3 OI J

Analyte Table

		52 Or [1]		75 As [1]		78 Se [1]		109 Ag [1]		111 Cd [1]	
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CP\$	Conc. [ppb]	CPS	Conc. [ppb]	CPS
63	1201354-10 10X	6.247	27063,52	5.116	3750.45	2.206	200.00	0.048	297.79	0.083	119,49
64	1201354-11 100X	0.393	2156.90	1.717	1233.72	7.369	644.94	0,005	35.55	0.009	15,08
65	1201358-1 50X	0.221	1453.47	0.575	420.68	0,011	4.40	0.023	138.89	0.014	22.17
66	CCV	49.992	212182.65	9.666	7057.89	9.966	888.83	0.988	5971.21	3,016	4232.76
67	CCB	0.011	520.04	0.010	11,67	0.002	3.20	0.003	18.89	0.004	7.32

1/4 01 195

Analyte Table

		137 Ba	a [1]	206 (Pt)[1]	207 (Pt	o) [1]	208 Pt	[1]	238 U	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
1	blank		33.33		60.00		86.67		340.02		10,00
2	blank	0,006	36.67	-0.010	66.67	0.001	73.34	-0,002	353.35	0.000	14.44
3	blank	0.000	26,67	0.000	106.67	0.000	73.34	0.000	396.69	0.000	10,00
4	H/1000	0.175	356.69	0.050	320,02	0.059	283.35	0.059	1380,10	0.010	188.89
5	H/100	1,002	2013.56	0.509	2373.64	0.493	1943.55	0.495	9108.21	0.095	1722.35
6	H/10	10.294	19820.33	5.115	22087.68	5.065	18606.02	5.119	87278.75	1,060	18197.02
7	HIGH	99.971	197514.22	49,988	215022.05	49.994	183205.98	49.988	849420.94	9,994	183189.65
8	ICV	19.810	39902.86	9.350	42288.42	9.467	36463.21	9.389	167741.77	1,911	35762.63
9	ICB	0.020	00.00	-0.005	86.67	0.005	86.67	0.005	456.70	0.001	22.22
10	CRI1	0.139	290.02	0.051	330.02	0.059	290,02	0.054	1323.43	0.011	195.56
11	CRI2	0.271	546.71	0.104	563,38	0.110	483.36	0.099	2113.50	0.023	405.57
12	ICSA	0.078	186.68	0.074	456.70	0.065	333.36	0.071	1730.14	0.001	28.89
13	ICSAB	10,493	21168.76	5.132	22731.96	5.077	19146.58	5.059	88527.21	1.033	18886.80
14	CCV	10.095	19760.14	5.222	22241.16	5,152	18682.85	5.133	86332.12	0.991	17490.68
15	CCB	-0.007	13.33	-0.015	50.00	0.004	86.67	-0.004	336.68	0.000	16.66
16	EX120201-2MB	0.073	170.01	0.000	120.01	0.006	103.34	0.005	536.70	0.017	310.01
17	EXM120201-2RV	0.125	25 3.35	0.062	353.36	0.049	240.02	0.057	1300.10	0.027	444,46
18	EXM120201-2LC	9.934	19299.50	4.886	21276.23	4.945	18332.23	4.950	85127.29	0.982	17349,31
19	1201363-11 10X	8.066	15568.50	0.265	1256.79	0.247	983.41	0.249	4657.19	0.032	582.24
20	1201363-11D 10X	8.013	15521.86	0.256	1200.11	0.253	990.09	0.265	4853.90	0.027	484.46
21	1201363-11L 50X	1.635	3087.12	0.030	243.35	0.066	316.69	0.054	1326.75	0.007	122.22
22	1201363-11MS	17,620	34329.04	5.031	21676,93	5.201	19066.57	5.101	86783.57	1.020	17641.92
23	1201363-11MSD	17.780	33888.29	5.390	21790.45	5.213	17938.34	5.272	84170.55	1.026	17382.69
24	1201358-2 50X	11.420	21822.97	0.300	1380.13	0.295	1140.11	0.301	5447.34	0.162	2805.88
25	CCV	10,090	19593.18	5.064	21923.98	4.989	18382.21	4.981	85162.51	1.042	17829.84
26	CCB	-0.004	20.00	-0.011	63,33	-0.002	66.67	-0.007	286.68	0.000	8.89
27	IP120202-2MB	0.010	43.33	-0.012	60.00	-0.004	60.00	-0.001	393.35	0.013	220.00
28	IM120202-2LCS	9.632	18702.14	5.232	220 50.82	5.149	18475.69	5.173	86118,51	0.990	17392.70
29	1201354-1 10X	125.079	245643.10	24.377	107846.89	10.116	38183.75	13.414	234658.22	34.085	606159.15
30	1201354-1D 10X	117,109	225229.51	22.622	98870.99	9.261	34535.49	12.415	214554.13	33.028	570528.00
31	1201354-1L 50X	25.003	46607.80	4.921	20715.40	2.122	7648.98	2.710	45251.69	6.933	113267.92

T 10 C/T

Analyte Table

		137 Ba	[1]	206 (Pi)[1]	207 (Pb)[1]	208 Pt	[1]	238 U	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
32	1201354-1MS 10X	139.077	263953.08	28.167	119878.76	15.056	54633.08	17.985	302533.01	32.987	561193.02
33	1201354-1MSD	139.061	265425.62	28.710	126315.52	15,360	57610.29	18.269	317689.06	34.261	586766.03
34	ZZZZZZ	101.768	198427.15	25.443	108321.05	7.404	26908.90	11.537	194269.77	130.241	2257039.45
35	ZZZZZZ	120.707	232681.92	50.639	218897.58	7.836	28926.19	17.256	294973.97	357.226	6301541.91
36	ZZZZZZ	66.962	129301.38	16.427	71655,14	6.364	23700.00	8.750	150981.33	37.176	643894.10
37	CCV	10.415	19649.96	5.068	21520.09	5.027	18155.22	5.135	86073.31	1.028	17763.13
38	CCB	0.028	73.33	-0.006	83.34	0.000	73.34	0.000	390.02	0.005	82.22
39	7.7.7. 7.7	170.201	323074.66	31.729	136601.58	8.863	32570.44	13.949	237491.97	214.686	3707706.83
40	ZZZZZZ	166.229	316880.73	29.517	125028.07	8.289	29961.76	12.996	217701.57	237.104	4046617.62
41	ZZZZZZ	136.765	258799.67	26.135	113644.02	7.554	28044.65	11.739	201902.73	129.170	2186821.20
42	ZZZZZZ	77.926	148324.82	21.042	92259.04	9.982	37352.15	12.516	217004.80	247.144	4280149.93
43	ZZZZZZ	81.413	158662.40	22.545	99032_43	7.633	28625.71	11.047	191909.92	137.410	2409434.71
44	ZZZZZZ	78.197	151108.96	14.065	61951.78	10.591	39748.30	11.548	201024,63	23.949	416180.39
45	ZZZZZZ	92.105	179436.52	36.109	161612,68	9.090	34732.21	15.170	268505.70	273.232	4732557.53
46	ZZZZZZ	46.418	90511.35	6.222	27383.23	5.419	20318.23	5. 6 46	98196.24	2.320	40824.76
47	ZZZZZZ	97.836	194158.28	9.361	41610.15	8.889	33660.01	9,067	159226.16	1.086	19115.98
48	1201358-1 50X	1049.658	2001449.35	349.194	1521887.89	387.742	1439910.60	373.274	642701 <u>4.</u> 90	12.222	209367.52
49	CCV	10.087	19319.53	5.099	21419.72	5.189	18545.83	5.078	84233.47	1.033	17655,27
50	CCB	0.014	50 .00	0.008	133.34	0.018	126,68	0,007	493.37	0.003	52.22
51	1201354-12 10X	46,057	88114.46	6.196	26484.78	5.737	20872.39	5.798	97895.67	1.882	32543.98
52	1201354-13 10X	98.627	189965.24	9.324	41409.63	8.629	32644.24	8.944	156924.37	1.089	18461.76
53	1201354-2 100X	10.467	19790.17	2.604	10897.96	0.780	2827.08	1.191	19906.66	13.320	226882.73
54	1201354-3 100X	12.213	22974.61	5.255	22251.01	0.765	2827.10	1.785	30142.59	38.851	648775.76
55	1201354-4 10X	67.959	129043.25	16,550	71481_23	6.562	24177.45	8.855	151248.09	37.940	642993.86
56	1201354-5 100X	17.164	31873.81	3.203	13573.53	0.907	3330,56	1.409	23822.74	22.539	374450,66
57	1201354-6 100X	17.234	32745.77	3.094	13199.84	0.807	2990.45	1.341	22848.85	25.181	425816.68
58	1201354-7 100X	14.108	26573.86	2.637	11585.08	0.775	2950.43	1.182	20740.46	12.824	219367.31
59	1201354-8 100X	7.872	14614.30	2.205	9566.90	1.015	3787.34	1.312	22647.62	26.324	435607.37
60	1201354-9 100X	8.465	15581.94	2.248	9534.87	0.794	2917.12	1.109	18793.67	13.654	228312.81
61	CCV	10.051	18952.54	5.114	21406.59	5.286	18826.12	5.106	84393.60	1.011	17383.80
62	CCB	0.019	56.67	-0.008	73.34	0.003	00,08	0.000	383.36	0.005	86.72

T/0 0I 15

Batch Summary Report

Analyte Table

		137 Ba	[1]	206 (Pt)[1]	207 (Pt)[1]	208 Pb [1]		238 U	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
63	1201354-10 10X	79.318	148840.17	13.786	61108.01	10.726	40520.46	11.435	200302.19	23.685	409609.33
64	1201354-11 100X	9,659	17767.62	3.775	15889,27	0.968	3523.93	1.578	26468.61	28.339	475280.51
65	1201358-1 50X	0.022	70.00	0.050	323,35	0.063	303.35	0.062	1446.77	0.001	20.00
66	CCV	10.248	19339.60	5.100	21713.66	5.002	18118.56	5.072	85243.76	1.023	17681,92
67	ССВ	0.007	36.67	-0.016	43.33	-0.005	53.33	-0.002	346.68	0,002	45.56

177 of 195

ISTD Table

		103 Rh (IS	TD)[1]	115 In (IS	TD)[1]	195 Pt (IS	TD)[1]	209 Bi (IS	TD)[1]
	Sample Name	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%
1	blank	130786.73		118854.41		42151.48		62256.61	
2	blank	131253.58	100.0	118845.62	100.0	41923.63	100.0	61463.16	100.0
3	blank	133223.47	100.0	120833.16	100.0	43181,14	100.0	62956.33	100.0
4	H/1000	145391.42	109.1	129868,40	107.5	46731.67	108.2	66939.94	106.3
5	H/100	152563.83	114.5	137263.05	113.6	48895.27	113.2	72060.46	114,5
6	H/10	147604.29	110.8	133290.56	110.3	46387.21	107.4	69950.51	111.1
7	HIGH	148255.16	111.3	136960.18	113.3	49520.49	114.7	70027.92	111.2
8	ICV	154547.38	116,0	139570.78	115.5	50567.47	117.1	73437.66	116,6
9	ICB	132298.76	99.3	118958.69	98.4	42261.50	97.9	61556.80	97.8
10	CRI1	145015.69	108.9	129820,54	107.4	46334.09	107.3	68367.02	108.6
11	CRI2	146149.32	109.7	132767.62	109.9	46748.09	108.3	69850.43	111.0
12	ICSA	150770.60	113.2	139647.48	115.6	48450.51	112.2	73245.59	116.3
13	ICSAB	153092,89	114.9	139646.33	115.6	49346.31	114.3	71759.37	114.0
14	CCV	147403,86	110.6	135494.29	112.1	47664.57	110.4	69006.46	109.6
15	CCB	132241.91	99.3	120558.44	99.8	42442.26	98.3	62417,08	99.1
16	EX120201-2MB	146427.84	109.9	133587.11	110.6	48286.69	111,8	70774.64	112.4
17	EXM120201-2RV	136413.09	102.4	125063.74	103.5	43722.39	101.3	64224.79	102.0
18	EXM120201-2LC	149086.34	111.9	134456.65	111.3	47714.04	110.5	70553.43	1 <u>12.</u> 1
19	1201363-11 10X	146888.32	110.3	133549.27	110.5	47537.51	110.1	69907.50	111,0
20	1201363-11D 10X	147663.04	110.8	134020.72	110.9	46711.69	108.2	68809.64	109.3
21	1201363-11L 50X	144033.01	108.1	129601.29	107.3	44240.60	102.5	68420.38	108.7
22	1201363-11MS	145715.70	109.4	134975.22	111.7	46708.37	108.2	69769.58	110.8
23	1201363-11MSD	142184.96	106.7	132007.27	109.2	45758.85	106.0	65493.38	104.0
24	1201358-2 50X	145808.29	109.4	132288.79	109.5	46811.84	108.4	68628.14	109.0
25	CCV	146845.75	110.2	134433.49	111.3	46213.19	107.0	70111.56	111.4
26	CCB	133125.40	99.9	119536,19	98.9	42773.01	99.1	62594.33	99.4
27	IP120202-2MB	134087.70	100.6	121492.59	100,5	43468.40	100.7	63585.57	101.0
28	IM120202-2LCS	147631.25	110.8	134432.31	111.3	47463.98	109.9	68272.94	108.4
29	1201354-1 10X	148315.22	111.3	136127.17	112.7	48042.51	111.3	71983.93	114.3
30	1201354-1D 10X	147110.14	110.4	133310.20	110.3	46694.77	108.1	71102.43	112.9
31	1201354-1L 50X	143098,34	107.4	129143.63	106.9	44143,52	102.2	68172.71	108.3

1/8 01 19

ISTD Table

		103 Rh (IS	TD)[1]	115 i n (IS	TD)[1]	195 Pt (IS	TD)[1]	209 Bi (IS	TD)[1]
	Sample Name	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%
32	1201354-1MS 10X	145560.23	109.3	131554.49	108.9	45972.43	106.5	69247.39	110.0
33	1201354-1MSD	144869.69	108.7	132294.69	109.5	46276.58	107.2	71582.62	113.7
34	7 777 7 2	145508.94	109.2	135141.71	111.8	46848.64	108.5	69254.31	110.0
35	ZZZZZZ	146549.06	110.0	133617.62	110.6	47664.39	110,4	70359.16	111.8
36	77777Z	144580.54	108.5	133854.15	110.8	46805.18	108.4	70918.42	112.6
37	CCV	145357.62	109.1	130612.46	108.1	46654.57	108.0	68778.95	109.2
38	CCB	132603.63	99.5	118692.82	98.2	42148.27	97.6	63117.08	100.3
39	ZZZZZZ	144742,92	108.6	131570.44	108.9	46691.82	108.1	70054.67	111.3
40	7777 77	144676.12	108.6	132134.39	109.4	46109.82	106.8	68923.57	109.5
41	ZZZZZZ	142285.29	106.8	131158.49	108.5	45751.73	106.0	70737.08	112.4
42	777777	143630.13	107.8	131922.32	109.2	46814.89	108.4	71333.95	11 3 .3
43	ZZZZZZ	146065.35	109.6	135070.71	111.8	47380.19	109.7	71451.66	113.5
44	ZZZZZZ	144688.27	108.6	133937.37	110.8	46952.59	108.7	71616.30	11 <u>3.</u> 8
45	Z7Z7Z7	147276.15	110.5	135054.23	111.8	46799.04	108.4	72838.25	115.7
46	ZZZZZZ	149682.92	112.4	135130.04	111.8	47527.23	110.1	71350.68	113.3
47	ZZZZZZ	147803.21	110.9	137550.67	113,8	47520.98	110.1	72185.00	114.7
48.	1201358-1 50X	147480.02	110.7	132179.74	109.4	46283.76	107.2	70969,19	112.7
49	CCV	145179.69	109.0	132528.22	109.7	46136.29	106.8	68028.28	108.1
50	CCB	131042_36	98.4	117546.56	97.3	42054.24	97.4	60840.10	96.6
51	1201354-12 10X	144393.13	108.4	132578.54	109.7	46698.37	108.1	69304.14	110.1
52	1201354-13 10X	146342.72	109.8	133497.95	110.5	45765,11	106.0	72117.73	114.6
53	1201354-2 100X	142000.17	106.6	130905.73	108.3	46015.99	106.6	67409.23	107.1
54	1201354-3 100X	143939.22	108,0	130241.38	107.8	45137.01	104.5	68641.28	109.0
55	1201354-4 10X	144402.43	108.4	131595.68	108.9	45812.27	106.1	70209.42	111.5
56	1201354-5 100X	139277.81	104.5	1 286 15. 04	106.4	44882.55	103.9	68430.50	108.7
57	1201354-6 100X	142313.72	106.8	131611.66	108.9	45691.69	105.8	68908.68	109.5
58	1201354-7 100X	144124.16	108.2	130431.68	107.9	46223.43	107.0	70805.35	112.5
59	1201354-8 100X	141994.99	106.6	128532.05	106.4	44752.64	103.6	69782.81	110.8
60	1201354-9 100X	142076.31	106.6	127392.51	105.4	45183.65	104.6	68296.89	108,5
61	CCV	142656.92	107.1	130498.65	108,0	46434.19	107.5	67804.32	107.7
62	CCB	127752.47	95.9	115186.84	95,3	41064.51	95.1	61055.33	97.0

1/9 01 15

ISTD Table

		103 Rh (IS	TD)[1]	115 In (IS	TD)[1]	195 Pt(IS	TD)[1]	209 Bi (18	209 Bi(ISTD)[1]	
	Sample Name	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%	
63	1201354-10 10X	144193.66	108,2	130052.95	107.6	46734.85	108.2	72043,90	114.4	
64	1201354-11 100X	140867.80	105,7	127381.9D	105.4	45313.95	104.9	68021.91	108.0	
65	1201358-1 50X	142010.69	106.6	129766.97	107.4	45043.46	104.3	67968.77	108.0	
66	ccv	143753,37	107.9	130668.77	108.1	46704.79	108.2	68953.43	109.5	
67	CCB	128282.56	96.3	115899.70	95.9	41950.49	97.2	60763.69	96.5	

180 of 195

Batch Folder:

C:¥ICPMH¥1¥DATA¥12B03m00.B¥

Analysis File:

12B03m00.betch.xml

DA Date-Time:

2/3/2012 1:04:07 PM

Calibration Title:

Calibration Method:

External Calibration

VIS Interpolation Fit:

Tune Step:

#1 hehe.u

Level	Standard Data File	Sample Name	Acq. DateTime
1	003CALB_12B03j00.D	blank	2/3/2012 10:00:57 AM
2	004CALS_12B03j00.D	H/1000	2/3/2012 10:03:18 AM
3	005CALS_12B03j00.D	H/1 0 0	2/3/2012 10:05:37 AM
4	006CALS_12B03j00.D	H/10	2/3/2012 10:07:55 AM
5	007CALS_12B03j00.D	HIGH	2/3/2012 10:10:11 AM
6			

	Rjot	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1	Γ	0.000	0.000	496.70	0.0037	Р	26.6
2	二	0.500	0.519	2763.69	0.0190	ď.	3.1
3	Γ.	5.000	4.954	22830.20	0.1496	P	2.2
4	Γ	50.000	50.260	219037.12	1.4840	P	0.4
5	Г	500.000	499.974	2183608.20	14.7292	Α	1.1
6	Г	100.000					

y = 0.0295 * x + 0.0037

R = 1,0000

DL = 0,1009

BEC = 0.1265

Weight: None

Min Conc: (None)

	Rict	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1	T.	0.000	0.000	5.67	0.0000	P	44.4
2		0.100	0.094	75.67	0.0005	Р	5, 1
3		1.000	0.994	776.02	0.0051	P	1.6
4	厂	10.000	9.646	7231.30	0.0490	P	1.3
5		100.000	100.035	75274.60	0.5077	P	0.7
6	T	20,000					

y = 0.0051 * x + 4.2523E-005

R = 1.0000

DL = 0.01117

BEC = 0.008379

Weight: None

Min Conc: (None)

	Rjct	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1		0.000	0.000	3.20	0.0000	P	12.2
2		0.100	0.089	11.47	0.0001	P	33.6
3	П	1.000	0.982	96.27	0.0006	P	8.1
4	\Box	10.000	9,916	908.16	0.0062	P	3.6
5	Γ.	100.000	100.009	9167.52	0.0618	P	0.6
6	1	20.000					

y = 6.1806E-004 * x + 2.4013E-005

R = 1.0000

DL = 0.01416

BEC = 0.03885

Weight: None

Min Conc: (None)

	Rjct	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1		0.000	0.000	4.44	0.0000	P	43.0
2		0.010	0.013	82.23	0.0006	P	27.9
3		0.100	0.112	722.25	0.0047	P	6.1
4		1.000	1.043	6 463.64	0.0438	Þ	7.3
5		10.000	9.996	62249.47	0.4199	P	1.6
6		2.000					

y = 0.0420 * x + 3.3318E-005

R = 1.0000

DL = 0.001023

BEC = 0.0007932

Weight: None

	Rjct	Conc.	Caic Conc.	CPS	Ratio	Det.	RSD
1	Γ.	0.000	0.000	2.66	0.0000	P	87.0
2	П	0.030	0.039	57.28	0.0 00 4	P	13.3
3	П	0,300	0.312	462.81	0.0034	P	3.9
4	Γ	3.000	3.116	4461.47	0.0335	P	1.9
5		30.000	29.988	44082.74	0.3219	P	1.6
6		6.000					

y = 0.0107 * x + 2.2152E-005

R = 1.0000

DL = 0.005384

BEC = 0,002064

Weight: None
Min Conc: <None>

	Rict	Conc.	Calc Conc.	CPS	Ratio	Det.	RSD
1	Г	0.000	0.000	26.67	0.0002	Þ	86.6
2	Г	0.100	0.175	356.69	0.0027	Р	13.9
3	П	1.000	1.002	2013.56	0.0147	P	12.6
4		10.000	10.294	19820.33	0.1487	P	2.9
5		100.000	99.971	197514.22	1.4424	P	2.0
6		20.000					

y = 0.0144 * x + 2.1829E-004

R = 1.0000

DL = 0.03931

BEC = 0.01513

Weight: None

	Rjct	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1	Г	0.000	0.000	106.67	0.0017	P	23.8
2	Γ.	0.050	0.050	320.02	0.0048	P	16.7
3	Γ.	0.500	0.509	2373.64	0.0329	Р	4.3
4	Γ	5.000	5.115	22087.68	0.3158	P	3.7
5	Γ	50.000	49.988	215022.05	3.0713	P	2.2
6	П	10.000					

y = 0.0614 * x + 0.0017

R = 1.0000

DL = 0.01973

BEC = 0.02761

Weight: None

Min Conc: (None)

	Rict	Conc	Cale Conc.	CPS	Ratio	Det	RSD
1		0.000	0.000	73.34	0.0012	P	4 1 .5
2		0.050	0.059	283.35	0.0042	P	14.1
3	17	0.500	0.493	1943.55	0.0270	þ	0.8
4	Г	5.000	5.065	18606.02	0.2662	P	6.3
5	Γ.	50.000	49.994	183205.98	2.6171	P	2.8
6	П	10.000					

y = 0.0523 * x + 0.0012

R = 1.0000

DL = 0.0277

BEC = 0.02224

Weight: None

	Rict	Cane.	Calc Conc.	CPS	Ratio	Det.	RSD
1	T.	0.000	0.000	396.69	0.0063	Р	24.4
2	П	0.050	0.059	1380.10	0.0206	Р	10.5
3	Г	0.500	0.495	9108.21	0.1264	Р	5.0
4	П	5.000	5,119	87278.75	1.2482	P	3.1
5	Γ.	50.000	49.988	849420.94	12.1333	P	2.5
6	Γ	10.000					

y = 0.2426 * x + 0.0063

R = 1.0000

DL = 0.01899

BEC = 0.02598

Weight: None

Min Conc: <None>

	Rjct	Cons.	Cale Cone.	CPS	Ratio	Det.	RSD
1]	0.000	0.000	10.00	0.0002	P	58.9
2	1.5	0.010	0.010	188.89	0.0040	P	19.1
3	Γ.	0.100	0.095	1722.35	0.0352	P	2.0
4	П	1.000	1.060	18197.02	0.3925	Р	3.2
5	Γ	10.000	9,994	183189.65	3.6996	P	1.1
6		2.000					

y = 0.3702 * x + 2.3386E-004

R = 1.0000

DL = 0.001116

BEC = 0.0006318

Weight: None

Header Information for Analytical Run: Hg120206-1

Analyst: Sheri Lafferty

4.4	me	20	~~	
Sta	пu	αı	uэ	

Stock A: 10ppm (ST120127-1) Stock B: 10ppm (ST120127-5)

Daily standards made by diluting stock solution 100X

Reagents:

See digestion log

Pipettes Used:

M-57 ---- 0.01mL to 0.1mL M-61 ---- 0.1mL to 1.0mL M-1010---1.0mL to 5.0mL

Method of Dilution:

2XDilution made by diluting 5.0ml of sample to 10ml final volume.
5XDilution made by diluting 2.0ml of sample to 10ml final volume
10XDilution made by diluting 1.0ml of sample to 10ml final volume
20XDilution made by diluting 0.5ml of sample to 10ml final volume
50XDilution made by diluting 0.2ml of sample to 10ml final volume
100XDilution made by diluting 0.1ml of sample to 10ml final volume
500XDilution made by diluting a 5X dilution 100X
1000X-Dilution made by diluting a 10X dilution 100X

Daily Maintenance:

- 1. Check/ Change peristalic pump tubing
- 2. Check gas liquid seperator for deposits, clean if necessary
- 3. Check/ Refill rinse water & stannous chloride reservoirs

Daily Maintenance done by: ___SL___

Monthly Maintenance:

- 1. Check/ Clean sample and reference cells
- 2. Check/ Change Nafion cartridge

Monthly Maintenance done by: St. 1/25/2012

Report Generated By CETAC QuickTrace

Analyst: sheri.lafferty

Worksheet file: C:\Program Files\QuickTrace\Worksheets\HG120206-1.wsz

Date Started: 2/6/2012 11:48:39 AM

Comment:

Results

Sample Name		Type Date/Time	Conc %RSD Flags (ppb)
Calibration Blank Replicates -25.2	-32.3 -32.6	STD 02/07/12 10:30:47 am -32.3	0.00000 11.86
Standard #1 (0.20 ppb) Replicates 3950.1 3	958.2 3942.1	STD 02/07/12 10:32:55 am 3911.5	0.20000 0.52
Standard #2 (0.50 ppb) Replicates 9606.6 9	9657.2 9765.2	STD 02/07/12 10:35:03 am 9910.0	0.50000 1.38
Standard #3 (1.0 ppb) Replicates 20354.9 20	9559.0 20727.1	STD 02/07/12 10:37:12 am 20835.5	1.00000 1,02
Standard #4 (2.0 ppb) Replicates 40000.3 40	246.5 40430.9	STD 02/07/12 10:39:21 am 40545.9	2.00000 0.59
Standard #5 (5.0 ppb) Replicates 97772.9 98	333.8 98785.5	STD 02/07/12 10:41:31 am 99115.3	5.00000 0.59
Standard #6 (10.0 ppb) Replicates 192218.1 193	3364.0 194288.2	STD 02/07/12 10:43:41 am 194965.7	10.00000 0.61

Equation: A = 632.260 + 19377.250C

R2: 0.99987 SEE: 868,5891

Flags:

ICV 02/07/12 10:45:52 am 1.06000 0.36

Replicates 21154.0 21236.6 21293.1 21332.5

% Recovery 106.42

Samp	le Name				Type Da	te/Time	Conc (ppb)	%RSD	Flags
ICB	Replicates	37.9	17.4	7.5	ICB 02 <i>i</i> 3.1	/07/12 10:48:04 am	-0.03180	94.08	
CRA	Replicates	3983.5	4027.4	4058.9	UNK 02/ 4073.1	/07/12 10:50:1 1 am	0.17600	0.98	
HG120	0206-1MB Replicates	33.9	32.7	36.4	UNK 02 33.4	/07/12 10:52:18 am	-0.03090	4.71	
HG120	0206-1LCS Replicates	19884.8	20112.0	20208.0	UNK 02: 20233.2	/07/12 10:54:26 am	1.01000	0.79	
12013	54-1 Replicates	3468.2	3504.3	3527.0	UNK 02. 3523.3	/07/12 10:56:34 am	0.14800	0.77	
12013	54-2 Replicates	3740.7	3764.7	3776.3	UNK 02/ 3778.7	/07/12 10:58:42 am	0,16200	0.46	
12013	54-3 Replicates	5995.0	6022.0	6034.3	UNK 02, 6040.6	/07/12 11:00:50 am	0.27800	0.33	
12013	54-4 Replicates	2285.3	2286.8	2288.4	UNK 02 2286.5	/07/12 11:02:59 am	0.08540	0.06	
12013	54-5 Replicates	4111.2	4118,0	4108.8	UNK 02 4077.5	/07/12 11:05:08 am	0.17900	0.44	
12013	54-6 Replicates	4 219. 4	4197.1	4216.2	UNK 02 4278.9	/07/12 11:07:17 am	0.18600	0.84	
12013	54-7 Replicates	3160.8	3164,9	3206.0	UNK 02 3260.8	/07/12 11:09:27 am	0.13200	1.45	
CCV	Replicates	39383.3	39177.0	39007.5	UNK 02 39090.3	/07/12 11:11:37 am	1.99000	0,41	

Sampl	e Name				Туре	Date/Time	Conc (ppb)	%RSD	Flags
CCB	Replicates	-166.2	-167.5	-161.0	UNK -157.0	02/07/12 11:14:14 am)	-0.04100	2.98	
12013	54-8 Replicates	4816.6	4822.7	4815.1	UNK 4796.0	02/07/12 11:16:20 am 0	0.21600	0.24	
12013	54-9 Replicates	3224.8	3314.3	3378.9	UNK 3407.	02/07/12 11:18:27 am 1	0.13900	2.43	
12013	54-10 Replicates	3816.2	3818.2	3826.0	U N K 3827.	02/07/12 11:20:34 am 7	0.16500	0.15	
12013	54-11 Replicates	7795.4	7793.9	7734.0	UNK 7631.	02/07/12 11:22:42 am 7	0.36700	0.99	
12013	54-12 Replicates	1217.7	1207.9	1195.7	UNK 1188.	02/07/12 11:24:50 am 5	0.02940	1.07	
12013!	54-13 Replicates	2628.8	2621.5	2607.7	UNK 2600.	02/07/12 11:26:58 am 4	0.10200	0.49	
12013	54-13D Replicates	2997.9	3011.1	3017.0	UNK 3018.	02/07/12 11:29:06 am 6	0.12300	0.31	
12013	54-13L 5X Replicates	573.0	566.1	561.8	UNK 566.	02/07/12 11:31:15 am 8	-0.00337	0.82	
12013	54-13MS Replicates	42460.8	42556.5	42913.7	UNK 43398.	02/07/12 11:33:24 am 5	2.18000	0.99	
12013	54-13MSD Replicates	42872.4	43084.9	43229.0	UNK 43331.	02/07/1 2 1 1:35:33 am 1	2,19000	0.46	
ccv	Replicates	40434.2	40613.8	40732.8	UNK 40795.0	02/07/12 11:37:42 am 6	2.06000	0.39	

Sampl	e Name				Туре	Date/Time	Conc (ppb)	%RSD Flags
CCB	Replicates	-4.9	-9.9	-16.7	UNK -16	02/07/12 11:39:52 am 4	-0.03320	47.54
CRA	Replicates	4049.2	4047.0	4041.7	UNK 4057	02/07/12 11:41:59 am 3	0.17600	0.16
CCV	Replicates	40599.8	40831.8	40998.0	UNK 41107	02/07/12 11:44:06 am 4	2.08000	0.54
ССВ	Replicates	-21.4	-18.6	-18.3	UNK -18.	02/07/12 11:46:13 am 8	-0.03360	7.32

Miscellaneous

Percent Moisture

Method SOP642 Revision 9

Lab Name: ALS Environmental -- FC

Balance ID: 31

Date Extracted: 02/02/2012

Oven ID: 17

Date Analyzed: 02/02/2012

Analyst: Teresa Buettgenbac

In Oven:

Out of Oven:

2/1/2012 10:35

Validated By: tlb Validation Date: 02/02/2012

2/2/2012 7:55

Validation Time: 8:28:23 AM

Run ID	Prep Batch ID	QC Batch ID	Lab ID	QC Type	Dish Wt	Wet Wt	Dry Wt	Dry Wt- Dish Wt	Percent Moisture	Percent Solids	RPD
EX120201-1A	EX120201-1	EX120201-1-1	1201354-1	DUP	1.283	10.4	10.44	9.15	12.0	88.0	4
EX120201-1A	EX120201-1	EX120201-1-1	1201354-1	SMP	1.291	10.23	10.24	8.95	12.5	87.5	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-10	SMP	1.296	10.97	9.287	7.99	27.2	72.8	
EX120201-1A	EX120201-1	EX120201-1-2	1201354-11	SMP	1.306	10.13	9.845	8.54	15.7	84.3	
EX120201-1A	EX120201-1	EX120201-1-2	1201354-12	SMP	1.287	10.41	10.53	9.24	11.2	88.8	
EX120201-1A	EX120201-1	EX120201-1-2	1201354-13	DUP	1.288	10.13	10.62	9.33	7.9	92.1	6
EX120201-1A	EX120201-1	EX120201-1-2	1201354-13	SMP	1.294	10.53	11.05	9.75	7.4	92.6	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-2	SMP	1.285	10.31	10.83	9.54	7.4	92.6	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-3	SMP	1.299	10.93	10.84	9.54	12.7	87.3	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-4	SMP	1.298	10.72	10.35	9.05	15.6	84.4	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-5	SMP	1.305	10.35	10.18	8.87	14.2	85.8	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-6	SMP	1.324	10.68	10.48	9.16	14.2	85.8	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-7	SMP	1.293	10.61	10.67	9.38	11.6	88.4	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-8	SMP	1.283	10.17	9.259	7.98	21.6	78.4	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-9	SMP	1.281	10.71	11.01	9.73	9.2	90.8	
EX120201-1A	EX120201-1	EX120201-1-1	EX120201-1	МВ	1,294	1.294	1.294	0.00	100.0	0.0	
EX120201-1A	EX120201-1	EX120201-1-2	EX120201-1	мв	1.294	1.294	1.294	0.00	100.0	0.0	

QC Types

CAR	Carrier reference sample
LCS	Laboratory Control Sample
мв	Method Blank
MSD	Laboratory Matrix Spike Duplicate
RVS	Reporting Level Verification Standar
SYS	Sample Yield Spike

DUP	Laboratory Duplicate
LCSD	Laboratory Control Sample Duplicat
MS	Laboratory Matrix Spike
REP	Sample replicate
SMP	Field Sample

Comments:

DUP = Sample Duplicate

Wet Wt = Sample Wet Wt - Dish Wt

Dry Wt = Sample Dry Wt + Dish Wt

Dry Wt - Dish Wt = Sample Dry Wt - Dish Wt

All weight values shown above are expressed in grams.

|Sample Value - Duplicate Value | X 100

(Sample Value + Duplicate Value)/2

% Solids = $\frac{Dry Weight}{Wet Weight}$ X 100

(Wet Weight - Dry Weight) % Moisture =

Wet Weight

Page 1 of 1

ALS Environmental -- FC

Date Printed: Wednesday, February 08, 2012

LIMS Version: 6.560

METALS DIGESTION WORKSHEET

ALS Laboratory Group

Digestion Date 2.2.13 HCI Lot No. 53303] Digestion Batch エアはんなのユースHNO3 Lot No. 大名ろろろと

Method: 3050 SOP/Rev: 800 R 15 Beaker Lot No. 1107184 Avg. Beaker Wt. (g) 21.0 Prep Start Time 6705 Prep End Time 1700

Initial Prep 373 Final Prep 803

Temp 95

Peroxide Lot No. 642514

Digestate Wt. (g) 105.11

Form 805r20.xls (02/10/11)

Note: Each Page is copied as completed and included with the workorder/run documentation; reviewed subsequently

Sample S	. 011110	06/20.xis (02/10/11)	HOW LOC					and included with the workorderman documentation, reviewed subsequently
10 35/7 1 75/7 5ee 100.6 126.1 NM 775-14 77		and the state of t						
- 10 Lins TK - 22 Targets Target	Grp.						pH	
- 1		1201354-1	MSM	See	100.6	136.1	NA	M5-4
- 1			1	Lims	1	1	1	TK-22 Targets
-3 -3 -4 -7 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		-Lang		1				
-3 -3 -4 -7 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		=tmsD						
-3 -4 -4 -5 -6 -7 -7 -8 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7				 	1-1-		1-1-	
-4 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	 			 	 	 	1-1-	
-5 -6 -7 -8 -9 -10 -11 -11 -12 -13 -13 -14 -13 -14 -13 -18 -18 -19 -19 -10 -11 -11 -11 -12 -13 -13 -13 -14 -13 -13 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18			 	 	1	┼	├- }-	
-6 -7 -7 -7 -79 -10 -11 -12 -13 -14 -13 -14 -13 -14 -15 -17 -10 -11 -11 -12 -13 -13 -13 -14 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18			 	 	 	-		
-7 -8 -9 -10 -11 -12 -13 120/35F-1					1	<u> </u>		
-5 -9 -10 -10 -11 -12 -13 Ac / 358-1 Ms -ms : x 2CCP TP 20202-2MG Mms -ms : x 2CCP TM120202-2CC DM120202-2CC DM120202-2CC TM2 TM2								
-9 -10 -11 -12 -13 -14 -13 -14 -15 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18								
-10 -11 -12 -13 Iac 1355-1								
-11 -12 -13 -13 -13 -13 -13 -13 -14 -13 -15 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18		-9						
-11 -12 -13 -13 -13 -13 -13 -13 -14 -13 -15 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18		-10		1-1-	1 1			,
-12 -13 -13 -13 -13 -13 -14 -13 -15 -17 -18: X 2CCP TP 120201-2mB 178/ns -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3			1	1 1	+	 	1-1-	
TP 20202-2 AMB MMs - ALCS DM120202-24CS QC Lab Sample ID int Vol. (mL/s) (mL/s) Spiking Information QC Amount ST 120103-16 IML MS ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 11116-1 2mL Cath			 	 - -	1	 		:/
TP 20202-2 AMB MMs - ALCS DM120202-24CS QC Lab Sample ID int Vol. (mL/s) (mL/s) Spiking Information QC Amount ST 120103-16 IML MS ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 11116-1 2mL Cath				+	╂╌╌╂╴	 		
TP 20202-2 AMB MMs - ALCS DM120202-24CS QC Lab Sample ID int Vol. (mL/s) (mL/s) Spiking Information QC Amount ST 120103-16 IML MS ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 11116-1 2mL Cath		<u> </u>	1	1	1	 	+ + -	900
DM 120202-21(5) P QC Lab Sample ID Int VolW. Final Vol. (mL) (n) Spiking information (mL) (mL) (n) Spiking information (mL) (mL) (n) Spiking information (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL)			-		 	 	 	- ms: X 1041
DM120202-21C5 QC GPP Lab Sample ID Init volve (mL/g) (mL/g) Final ve. (mL/g) GPP Lab Sample ID QC Amount ST120103-16 IML MS ST110902-2 IML C ST110116-7 AML Cab			1001113			11_		
GIP Lab Sample ID Int Volve (mL/g) Finel Vol. (m		+ -alcs						
QC Amount STI20163-16 IML MS STI10902-2 IML C STI10916-7 2ML Z STI1116-1 AML Cat		IM120202-265	4	4	4	*	4	
QC Amount STI20163-16 IML MS STI10902-2 IML C STI10916-7 2ML Z STI1116-1 AML Cat								Init Volv. Finel Vol. Finel W.
STIZO103-16 IML M5 STILO902-2 IML C STILO916-7 AML Z STILL(-) AML Cat		·					Gra	Lab Sample ID (mL/g) (mL) (a)
57/10902-2 1ML C 57/10916-7 2ML Z 57/10916-1 2ML Cat				İ	1		1	QC Amount
57110902-2 1ML C 57110916-7 2ML Z 5711116-1 2ML Cat					1			ST120103-16 IML MS
3772 3710816-7 2ml Z 3710816-7 2ml Z 3711116-1 2ml Cat			_		+	1		
STRING-1			W -		-	 	1	3,1,0,102
STRING-1			1,0	-	1	1	1	55110816-7 2ml 2
			10.3]	-	 	 	STULLET AML Cat
			14.	 	 	 	 	
							ļ	
							1	

MERCURY DIGESTION - SOIL

Method 7471 SOP 812/Rev 15 Date Analyzed 2.7.12 File HG120206-1** Init. Aprep. (analysis)

Digestion Date 2.6.12 Spike Witness N/A Time Start 1050 Time Finish 1120 Bath Temp 95°C

Tube#	Solution ID	Spike * Solution	Spike Volume (mL)	Sample **** Aliquot (g)	Final ** Volume (mL)	Comments
STD 1	0 ppb	-	-	-	100.0	-
2	0.2 ppb	Α	0.2	•	100.0	
3	0.5 ppb	A	0.5	-	100.0	
4	1.0 ppb	A	1,0	-	100.0	
5	2.0 ppb	A	2.0	-	100.0	
6	5.0 ppb .	A	5.0	-	100.0	
7	10.0 ppb	A	10.0	-	100.0	
	ICV	В	1.0	-	100.0	
	ICB	-	-	-	100.0	
	CRA-0.2 ppb	A	0.2		100.0	
	SAMPLES - Pre	p. Batch	(D(s)	HG12020	1-00	(see LIMs Prep. Batch report for sample info. (IDs, Aliquots, etc.)
	CCVs	Α	2.0	-	100.0	Z # prepared
	CCBs	-	_	-	100.0	_2_# prepared

^{****} Automated balance entry into LIMS.

See run header for maintenance performed.

Digestion Cups: 110 7216

Rengents: HNO3 K23022 HCI K29026 SnCl-RG120125-7 KMnO4-R6120120-1 Hydroxylamine R6120126-6

Balance(s) Used: 29

Pipet(s) Used: M57 M61M1010

Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently

^{***} See run report for run log information.

^{**} Laboratory DI water used to make-up to final volume.

^{*}A: 100 ppb Hg solution made from 100x dilution (1 mL/100 mL) of ST120127-1 ID

^{*}B: 100 ppb Hg solution made from 100x dilution (1 mL/100 mL) of ST(20/27-5 ID (2nd source)

February 10, 2012

Ms. Kristie Warr Weston Solutions, Inc. 5599 San Felipe, Ste. 700 Houston, TX 77056

Re:

ALS Workorder:

12-01-354

Project Name:

Johnny M ORS

Project Number:

TO 0035111101-120130-0002

Dear Ms. Warr:

Thirteen soil samples were received from Weston Solutions, Inc. on January 21, 2012. The samples were scheduled for the following analysis:

Metals

pages 1-195

Contrary to the samples received previously, these contained notable moisture. Thus the samples were aliquotted as-received and corrected for %moisture.

The results for this analysis are contained in the enclosed report.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely,

ALS Environmental
Lance Steere

Senior Project Manager

LRS/djf

Enclosure (s): Report

ALS is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

Addreditation Body :: 2000	<u> </u>
Washington	C1280
Utah	CO00078
Arizona	AZ0742
Alaska	UST-086
Alaska	CO00078
Florida	E87914
Missouri	175
North Dakota	R-057
New Jersey	CO003
Nevada	CO000782008A
California	06251CA
Kansas	E-10381
Maryland	285
Pennsylvania	68-03116
Texas	T104704241-09-1
Colorado	CO00078
Connecticut	PH-0232
ldaho	CO00078
Tennessee	2976
Kentucky	90137
L-A-B (DoD ELAP/ISO 17025)	L2257

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1201354

Client Name: Weston Solutions, Inc.

Client Project Name: Johnny M ORS

Client Project Number: TO0035111101-120130-0002

Client PO Number: 0077655

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
JM-54-31-120128	1201354-1		SOIL	28-Jan-12	17:12
JM-55-31-120128	1201354-2		SOIL	28-Jan-12	17:10
JM-65-31-120128	1201354-3		SOIL	28-Jan-12	17:02
JM-66-31-120128	1201354-4		SOIL	28-Jan-12	17:05
JM-70-31-120128	1201354-5		SOIL	28-Jan-12	17:00
JM-70-32-120128	1201354-6		SOIL	28-Jan-12	17:00
JM-73-31-120128	1201354-7		SOIL	28-Jan-12	16:57
JM-77-31-120128	1201354-8		SOIL	28-Jan-12	16:55
JM-82-31-120128	1201354-9		SOIL	28-Jan-12	16:45
JM-84-31-120128	1201354-10		SOIL	28-Jan-12	16:39
JM-88-31-120128	1201354-11		SOIL	28-Jan-12	16:34
JMBKGD-NE-31-120128	1201354-12		SOIL	28-Jan-12	9:41
JMBKGD-NW-31-120128	1201354-13		SOIL	28-Jan-12	9:10

Page 1 of 1

USEPA

AirbillNo:

DateShipped:

CarrierName:

CHAIN OF CUSTODY RECORD

No: TO0035111101-120130-0002

Cooler #: 1

Lab: ALS Laboratory Group Lab Phone: 970-490-1511

Johnny M ORS

Contact Name: Kristie Warr Contact Phone: 713-985-6600

Lab#	Sample #	Analyses	Matrix	Collected	Sample Time	Container	Preservative	MS/ MSD	Samp_Concent ration
(I)	JM-54-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:12	Jar	Ice	N	251,115 cpm
(2)	JM-55-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:10	Jar	Ice	N	156,052 cpm
(3)	JM-65-31-120128 '	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:02	Jar	Ice	N	342,018 cpm
<u> </u>	JM-66-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:05	Jar	Ice	N	269,876 cpm
(S)	JM-70-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
(6)	JM-70-32-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
(7)	JM-73-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:57	Jar	Ice	N	209,993 cpm
(8)	JM-77-31-120128 ·	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:55	Jar	Ice	N	282,248 cpm
(9)	JM-82-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:45	Jar	Ice	N	228,461 cpm
(10)	JM-84-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:38	Jar	Ice	N	117,322 cpm
(11)	JM-88-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:34	Jar	Ice	N	265,129 cpm
(12)	JMBKGD-NE-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:41	Jar	Ice	N	9,938 cpm
(M)	JMBKGD-NW-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:10	Jar	Ice	N	13,502 cpm
		-							
		15/11/14							

Special Instructions: Standard TAT, SW846 6010/6020

SW846 7470/7471

SAMPLES TRANSFERRED FROM **CHAIN OF CUSTODY #**

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
i>/ samples	TEA	1/20/12	Engly Supay	1/31/12	0925						
			0.40.								
						4 0, 10					
				The state of the s							

CONDITION OF SAMPLE UPON RECEIPT FORM

Client: Weston Solutions Workorder No: 1201	354				
Project Manager: LRS Initials: SMb	Date:	1/31/12	- =		
1. Does this project require any special handling in addition to standard Paragon procedures?	YES	NO			
2. Are custody seals on shipping containers intact?	NONE	YES) NO		
3. Are Custody seals on sample containers intact?	NONE	YES	NO		
4. Is there a COC (Chain-of-Custody) present or other representative documents?		YES) NO		
5. Are the COC and bottle labels complete and legible?		YES	NO		
6. Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)		YES	NO		
7. Were airbills / shipping documents present and/or removable?	DROP OFF	YES	NO		
8. Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	N/A	YES	NO		
9. Are all aqueous non-preserved samples pH 4-9?	N/A	YES	NO		
10. Is there sufficient sample for the requested analyses?		(YES)	NO		
11. Were all samples placed in the proper containers for the requested analyses?		YES	NO		
12. Are all samples within holding times for the requested analyses?		YES	NO		
13. Were all sample containers received intact? (not broken or leaking, etc.)		YES)	NO		
14. Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea > green pea	N/A	YES	NO		
15. Do perchlorate LCMS-MS samples have headspace? (at least 1/3 of container required)	N/A	YES	NO		
16. Were samples checked for and free from the presence of residual chlorine? (Applicable when PM has indicated samples are from a chlorinated water source; note if field preservation with sodium thiosulfate was not observed.)	N/A)	YES	NO		
17. Were the samples shipped on ice?		YES	NO		
18. Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: #2	RAD ONLY	(YES)	NO		
Cooler #: / Temperature (°C): 6 No. of custody seals on cooler: 2 DOT Survey Acceptance Information External μR/hr reading: 13 Were external μR/hr readings ≤ two times background and within DOT acceptance criteria? (VES) NO / NA (If no, see Form 008.) Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXCEPT #1 AND #16.					
If applicable, was the client contacted? YES / NO / NA Contact: Project Manager Signature / Date:	_ Date/Tir	ne:			

Form 201r22.xls (6/1/09)

From: (903) 348-3917 Patrick Buster Weston Solutions 825 E Santa Fe. Ave

Grants, NM 87020

Origin ID: GUPA

BILL SENDER

Ship Date: 30JAN12 ActWgt: 40.0 LB CAD: 2557564/INET3250

Delivery Address Bar Code

Ref# Invoice# PO#

Dept #

20406.012.035.0694. for approval expense reports

SHIP TO: (970) 490-1511 Lance Steere

ALS Laboratory Group 225 Commerce Drive

Fort Collins, CO 80524

TUE - 31 JAN A2
PRIORITY OVERNIGHT

TRK# 7931 6811 **2930**

XH FTCA

80524 co-us DEN

512G1/9F59/A278

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Ft. Collins, Colorado

Invoice: 50626

Invoice Date: 2/10/2012 Terms: Net 30

Due Date: 3/11/2012

Project Manager: Lance R. Steere

BILL TO

Weston Solutions, Inc. 5599 San Felipe, Ste. 700

Houston, TX 77056 Attn: Kristie Warr

CLIENT REFERENCE INFORMATION

Project ID: TO0035111101-120130-0002

Project Name: Johnny M ORS

PO: 0077655

Cost Code: NA

	ItemCode:	Description:	Matrix:	Qty:	ItemPrice:	ExtPrice:
SDG 1201354	3		***************************************			
Group 1						
_		ICP MetalsTAL suite + Mo, Sn	SOIL	13	\$85.00	\$1,105.00
		ICPMS MetalsU	SOIL	13	\$15.00	\$195.00
					Group Total	\$1,300.00
					SDG Total:	\$1,300.00

Comments: NA

Client agrees to pay delinquency charges on past due accounts at a rate of 1 1/2% per month (18% Annual). Client also agrees to pay collection costs and attorney fees if placed for collection.

Calculated Invoice Total:

\$1,300.00

REMIT TO: ALS Group USA, Corp

Page 1 of 1

LIMS Version: 6.560

Date Printed: Friday, February 10, 2012

ALS Group USA, Corp

Part of the ALS Group

P.O. Box 975444 Dallas, TX 75397

Phone (970) 490-1511 Fax (970) 490-1522 www.alsenviro.com

A Campbell Brothers Limited Company

If you wish to remit via credit card, please call us at (970) 490-1511

Emplomation 3

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Metals Case Narrative

Weston Solutions, Inc.

Johnny M ORS – TO0035111101-120130-002

Work Order Number: 1201354

- 1. This report consists of 13 soil samples.
- 2. The samples were received cool and intact by ALS on 1/31/12.
- 3. The samples were prepared and analyzed based on SW-846, 3rd Edition procedures.

For analysis by Trace ICP and ICP-MS, the samples were digested following method 3050B and SOP 806 Rev. 15.

For analysis by Cold Vapor AA (CVAA), the samples were digested following method 7471A and SOP 812 Rev. 15.

4. Analysis by Trace ICP followed method 6010B and SOP 834 Rev. 8.

Analysis by ICP-MS followed method 6020A and SOP 827 Rev. 8.

Analysis by CVAA followed method 7471A and SOP 812 Rev. 15.

- 5. All standards and solutions are NIST traceable and were used within their recommended shelf life.
- 6. The samples were prepared and analyzed within the established hold times.

All in house quality control procedures were followed, as described below.

- 7. General quality control procedures.
 - A preparation (method) blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.

- The preparation (method) blank associated with each digestion batch was below the practical quantitation limit for the requested analytes, with the exception of uranium in the method blank associated with the ICP-MS batch. The associated samples contained more than ten times the concentration of uranium in the method blank, so no further action was taken.
- All laboratory control sample criteria were met.
- All initial and continuing calibration blanks were below the practical quantitation limit for the requested analytes, with the exception of CCB6 for aluminum. The samples bracketed by this CCB contained more than ten times the concentration of aluminum that was detected in the CCB.
- All initial and continuing calibration verifications were within the acceptance criteria for the requested analytes.
- The high standard readbacks associated with Method 6010B were within acceptance criteria.
- The interference check samples associated with Method 6010B were within acceptance criteria.
- The interference check samples associated with Method 6020A were analyzed.
- 8. Matrix specific quality control procedures.

Sample 1201354-1 was designated as the quality control sample for the Trace ICP and ICP-MS analyses. Sample 1201354-13 was designated as the quality control sample for the mercury analysis.

Similarity of matrix and therefore relevance of the QC results should not be automatically inferred for any sample other than the native sample selected for QC.

A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met, with the following exceptions:

<u>Analyte</u>	Sample ID
Antimony	1201354-1MS & MSD
Barium	1201354-1MS & MSD
Calcium	1201354-1MS & MSD
Vanadium	1201354-1MS & MSD
Zinc	1201354-1MS & MSD

The native sample results are flagged for matrix spike failure and an analytical post spike was performed. The results of the spike were acceptable indicating that the matrix was not significantly affecting quantitation of these analytes.

Matrix spike recoveries could not be evaluated for the following analytes:

<u>Analyte</u>	Sample ID
Aluminum	1201354-1
Iron	1201354-1
Uranium	1201354-1

The concentrations of these analytes in the native sample were greater than four times the concentration of matrix spike added during the digestion. When sample concentration is that much greater than the spike added, spike recoveries may not be accurate. The laboratory control sample indicates that the digestion and analysis were in control.

A sample duplicate and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met, with the following exceptions:

<u>Analyte</u>	Sample ID
Barium	1201354-1D
Potassium	1201354-1D
Selenium	1201354-1D
Sodium	1201354-1D
Zinc	1201354-1D

The native sample results are flagged for duplicate failure.

A serial dilution was analyzed with each ICP batch. All acceptance criteria were met, with the following exceptions:

<u>Analyte</u>	Sample ID					
Barium	1201354-1L					
Potassium	1201354-1L					
Zinc	1201354-1L					

The native sample results are flagged for serial dilution failure.

9. Sample 1201354-13 required dilutions to bring iron into the analytical range of the Trace ICP. Accurate quantitation of iron is necessary to correct for spectral interferences on lead, selenium, thallium, and vanadium. The lead, selenium, thallium, and vanadium results were determined from the diluted sample.

It is a standard practice that samples for ICP-MS are analyzed at a dilution. Samples 1201354-2, -3, -5, -6, -7, -8, -9, and -11 required further dilutions to bring uranium into the analytical range of the ICP-MS.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Jill Latelle

Inorganics Primary Data Reviewer

Date

Inorganics Final Pata Reviewer

Date

Inorganic Data Reporting Qualifiers

The following qualifiers are used by the laboratory when reporting results of inorganic analyses.

- Result qualifier -- If the analyte was analyzed for but not detected a "U" is entered.
- QC qualifier -- Specified entries and their meanings are as follows:
 - E The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.
 - M Duplicate injection precision was not met.
 - N Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.
 - Z Spiked recovery not within control limits. An explanatory note may be included in the narrative.
 - * Duplicate analysis (relative percent difference) not within control limits.
 - S SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Chain of Custody

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1201354

Client Name: Weston Solutions, Inc.

Client Project Name: Johnny M ORS

Client Project Number: TO0035111101-120130-0002

Client PO Number: 0077655

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
JM-54-31-120128	1201354-1		SOIL	28-Jan-12	17:12
JM-55-31-120128	1201354-2		SOIL	28-Jan-12	17:10
JM-65-31-120128	1201354-3		SOIL	28-Jan-12	17:02
JM-66-31-120128	1201354-4		SOIL	28-Jan-12	17:05
JM-70-31-120128	1201354-5		SOIL	28-Jan-12	17:00
JM-70-32-120128	1201354-6		SOIL	28-Jan-12	17:00
JM-73-31-120128	1201354-7		SOIL	28-Jan-12	16:57
JM-77-31-120128	1201354-8		SOIL	28-Jan-12	16:55
JM-82-31-120128	1201354-9		SOIL	28-Jan-12	16:45
JM-84-31-120128	1201354-10		SOIL	28-Jan-12	16:39
JM-88-31-120128	1201354-11		SOIL	28-Jan-12	16:34
JMBKGD-NE-31-120128	1201354-12		SOIL	28-Jan-12	9:41
JMBKGD-NW-31-120128	1201354-13		SOIL	28-Jan-12	9:10

Page 1 of 1

DateShipped:

CarrierName:

AirbillNo:

USEPA CHAIN OF CUSTODY RECORD

Johnny M OPS

Johnny M ORS
Contact Name: Kristie Warr
Contact Phone: 713-985-6600

201354

No: TO0035111101-120130-0002

Cooler #: 1 Lab: ALS Laboratory Group Lab Phone: 970-490-1511

	Analyses	Matrix	Collected	Sample Time	Container	Preservative	MS/ MSD	Samp_Concent ration
JM-54-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:12	Jar	Ice	N	251,115 cpm
JM-55-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:10	Jar	Ice	N	156,052 cpm
JM-65-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:02	Jar	Ice	N	342,018 cpm
JM-66-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:05	Jar	Ice	N	269,876 cpm
JM-70-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
JM-70-32-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	17:00	Jar	Ice	N	381,092 cpm
JM-73-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:57	Jar	Ice	N	209,993 cpm
JM-77-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:55	Jar	Ice	N	282,248 cpm
JM-82-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:45	Jar	Ice	N	228,461 cpm
JM-84-31-120128		Soil	1/28/2012	16:38	Jar	Ice	N	117,322 cpm
JM-88-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	16:34	Jar	Ice	N	265,129 cpm
JMBKGD-NE-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:41	Jar	Ice	N	9,938 cpm
JMBKGD-NW-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium	Soil	1/28/2012	09:10	Jar	Ice	N	13,502 cpm
						and an arrangement of the county of the coun		
	IM-55-31-120128 IM-65-31-120128 IM-66-31-120128 IM-70-31-120128 IM-70-32-120128 IM-73-31-120128 IM-77-31-120128 IM-82-31-120128 IM-84-31-120128 IM-88-31-120128 IM-88-31-120128 IMBKGD-NE-31-120128	Metals, Mercury, Molybdenum, Tin, Total Uranium M-65-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-66-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-70-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-70-32-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-73-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-77-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-82-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-84-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-86-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium M-86-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium	Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-65-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-66-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-70-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-70-32-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-73-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-77-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-82-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-84-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil M-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil MBKGD-NE-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil	IM-55-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-65-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-66-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-70-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-73-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-77-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-82-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-84-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IMBKGD-NE-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 IMBKGD-NE-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012	IM-55-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:10 IM-65-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:02 IM-66-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:05 IM-70-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:00 IM-73-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:57 IM-77-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:55 IM-82-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:35 IM-84-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:38 IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:34 IMBKGD-NE-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 09:41	IM-55-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:10 Jar IM-65-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:02 Jar IM-66-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:00 Jar IM-70-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:00 Jar IM-73-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:57 Jar IM-82-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:55 Jar IM-84-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:35 Jar IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:38 Jar IMBKGD-NE-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:34 Jar IMBKGD-NE-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/	M-55-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:10 Jar Ice IM-65-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:02 Jar Ice IM-66-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:05 Jar Ice IM-70-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:00 Jar Ice IM-70-32-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:00 Jar Ice IM-73-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:57 Jar Ice IM-77-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:55 Jar Ice IM-82-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:38 Jar Ice IM-84-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:38 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:34 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:34 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 09:41 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 09:41 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 09:41 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 09:41 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 09:41 Jar Ice IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 09:41 Jar Ice IM-88-31-120128 Im-88-31-1	IM-55-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:10 Jar Ice N IM-65-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:02 Jar Ice N IM-66-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:05 Jar Ice N IM-70-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 17:00 Jar Ice N IM-73-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:57 Jar Ice N IM-82-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:55 Jar Ice N IM-84-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:35 Jar Ice N IM-88-31-120128 Metals, Mercury, Molybdenum, Tin, Total Uranium Soil 1/28/2012 16:38 Jar Ice N IM-88-31-120128

Special Instructions: Standard TAT, SW846 6010/6020

SW846 7470/7471

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Ĺ	Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
	1>/ samples	T23	1/50/13	Snight swham	1/31/12	0925						
	,			1 7								
		-										
8							And a statement of the	YARRANGA ARRANGA		And Andrews and the second sec	 	1

CONDITION OF SAMPLE UPON RECEIPT FORM

Client: Weston Solutions Workorder No: 120	1354		
Project Manager: LRS Initials: SMF	Date:	1/31/12	=
Does this project require any special handling in addition to standard Paragon procedures?	-	YES	NO
Are custody seals on shipping containers intact?	NONE	YES) NO
3. Are Custody seals on sample containers intact?	NONE	YES	NO
4. Is there a COC (Chain-of-Custody) present or other representative documents?		YES	NO NO
5. Are the COC and bottle labels complete and legible?		YES	NO
6. Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)		YES	NO
Were airbills / shipping documents present and/or removable?	DROP OFF	YES	NO
8. Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	N/A	YES	NO
9. Are all aqueous non-preserved samples pH 4-9?	(N/A)	YES	NO
10. Is there sufficient sample for the requested analyses?		YES	NO
Were all samples placed in the proper containers for the requested analyses?		(YES)	NO
12. Are all samples within holding times for the requested analyses?		(YES)	NO
Were all sample containers received intact? (not broken or leaking, etc.)		YES)	NO
Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea > green pea	N/A)	YES	NO
15. Do perchlorate LCMS-MS samples have headspace? (at least 1/3 of container required)	N/A	YES	NO
16. Were samples checked for and free from the presence of residual chlorine? (Applicable when PM has indicated samples are from a chlorinated water source; note if field preservation with sodium thiosulfate was not observed.)	(N/A)	YES	NO
17. Were the samples shipped on ice?		YES	NO
18. Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: #2	RAD ONLY	(YES)	NO
Cooler #: / Temperature (°C): ذ No. of custody seals on cooler: 2 DOT Survey/Acceptance Information External μR/hr reading: 13 Were external μR/hr readings ≤ two times background and within DOT acceptance criteria? ▼ES NO / NA (If no, so Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXTERNAL PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE.		ND #16.	
If applicable, was the client contacted? YES / NO / NA Contact: Project Manager Signature / Date:	Date/Tin	ne:	

From: (903) 348-3917 Patrick Buster Weston Solutions 825 E Santa Fe. Ave

Grants, NM 87020

Origin ID: GUPA

J12101112190225

BILL SENDER

SHIP TO: (970) 490-1511 Lance Steere ALS Laboratory Group 225 Commerce Drive

Fort Collins, CO 80524

Ship Date: 30JAN12 ActWgt 40.0 LB CAD: 2557564/INET3250

Delivery Address Bar Code

Ref# Invoice # PO# Dept#

for approval expense reports

TUE - 31 JAN A2 PRIORITY OVERNIGHT

TRK# 6201

7931 6811 2930

XH FTCA

80524 CO-US

DEN

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Sample Results

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight

File Name: 120202A.

Sample Aliquot: 1.027 G Final Volume: 100 ML

Result Units: MG/KG Clean DF:

	-					
CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	6600	22		
7440-36-0	ANTIMONY	1	2.2	2.2	U	N
7440-38-2	ARSENIC	1	6.5	1.1		
7440-39-3	BARIUM	1	330	11		*EN
7440-41-7	BERYLLIUM	1	0.56	0.56	U	
7440-43-9	CADMIUM	1	0.56	0.56	U	
7440-70-2	CALCIUM	1	9600	110		N
7440-47-3	CHROMIUM	1	5	1.1		
7440-48-4	COBALT	1	3.9	1.1		
7440-50-8	COPPER	1	7.4	1.1		
7439-89-6	IRON	1	13000	11		
7439-92-1	LEAD	1	16	0.33		
7439-95-4	MAGNESIUM	1	2500	110		-
7439-96-5	MANGANESE	1	180	1.1		
7439-98-7	MOLYBDENUM	1	3.9	1.1		
7440-02-0	NICKEL	1	4.4	2.2		
7440-09-7	POTASSIUM	1	1400	110		*E
7782-49-2	SELENIUM	1	11	0.56		*
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	810	110		*
7440-28-0	THALLIUM	1	2.1	1.1		
7440-31-5	TIN	1	5.6	5.6	U	
7440-62-2	VANADIUM	1	90	1.1		N
7440-66-6	ZINC	1	120	2.2		⁺EN

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-55-31-120128

Lab ID: 1201354-2

Sample Matrix: SOIL

% Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.041 G Final Volume: 100 ML

Result Units: MG/KG Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4300	21		
7440-36-0	ANTIMONY	1	2.1	2.1	U	
7440-38-2	ARSENIC	1	9.7	1		
7440-39-3	BARIUM	1	93	10		
7440-41-7	BERYLLIUM	1	0.52	0.52	U	
7440-43-9	CADMIUM	1	0.52	0.52	U	
7440-70-2	CALCIUM	1	11000	100		
7440-47-3	CHROMIUM	1	2.9	1		
7440-48-4	COBALT	1	2.7	1		
7440-50-8	COPPER	1	5	1		
7439-89-6	IRON	1	9700	10		
7439-92-1	LEAD	1	12	0.31		
7439-95-4	MAGNESIUM	1	1800	100		
7439-96-5	MANGANESE	1	200	1		
7439-98-7	MOLYBDENUM	1	7.3	1		
7440-02-0	NICKEL	1	2.6	2.1		
7440-09-7	POTASSIUM	1	620	100		
7782-49-2	SELENIUM	1	25	0.52		
7440-22-4	SILVER	1	1	1	U	
7440-23-5	SODIUM	1	100	100	U	
7440-28-0	THALLIUM	1	1.6	1		
7440-31-5	TIN	1	5.2	5.2	U	
7440-62-2	VANADIUM	1	99	1		
7440-66-6	ZINC	1	18	2.1		

Data Package ID: it1201354-1

ALS Environmental -- FC LIMS Version: 6,560

Page 3 of 26

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-65-31-120128

Lab ID: 1201354-3

Sample Matrix: SOIL

% Moisture: 12.7

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12
Prep Method: SW3050 Rev

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.001 G Final Volume: 100 ML

Result Units: MG/KG Clean DF: 1

	Prep Method: SW30	Prep Method: SW3050 Rev B		
CASNO	Target Analyte	Dilution	Result	R

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4300	23		
7440-36-0	ANTIMONY	1	2.3	2.3	U	
7440-38-2	ARSENIC	1	12	1.1		
7440-39-3	BARIUM	1	120	11		
7440-41-7	BERYLLIUM	1	0.57	0.57	U	
7440-43-9	CADMIUM	1	0.57	0.57	U	
7440-70-2	CALCIUM	1	11000	110		
7440-47-3	CHROMIUM	1	2.8	1.1		
7440-48-4	COBALT	1	2.3	1.1		
7440-50-8	COPPER	1	6.9	1.1		
7439-89-6	IRON	1	7500	11		
7439-92-1	LEAD	1	20	0.34		
7439-95-4	MAGNESIUM	1	1800	110		
7439-96-5	MANGANESE	1	160	1.1		
7439-98-7	MOLYBDENUM	1	13	1.1		
7440-02-0	NICKEL	1	2.3	2.3	U	
7440-09-7	POTASSIUM	1	640	110		
7782-49-2	SELENIUM	1	59	0.57		
7440-22-4	SILVER	1	1,1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.1	1.1	U	
7440-31-5	TIN	1	5.7	5.7	U	
7440-62-2	VANADIUM	1	190	1.1		
7440-66-6	ZINC	1	14	2.3		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-66-31-120128

Lab ID: 1201354-4

Sample Matrix: SOIL

% Moisture: 15.6 Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12 Prep Method: SW3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.041 G Final Volume: 100 ML

Result Units: MG/KG Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	3300	23		
7440-36-0	ANTIMONY	1	2.3	2.3	U	
7440-38-2	ARSENIC	1	4.3	1.1		
7440-39-3	BARIUM	1	66	11		
7440-41-7	BERYLLIUM	1	0.57	0.57	U	
7440-43-9	CADMIUM	1	0.57	0.57	U	
7440-70-2	CALCIUM	1	13000	110		
7440-47-3	СНВОМІИМ	1	2.5	1.1		
7440-48-4	COBALT	1	3.7	1,1		
7440-50-8	COPPER	1	3.2	1.1		
7439-89-6	IRON	1	6600	11		
7439-92-1	LEAD	1	10	0.34		
7439-95-4	MAGNESIUM	1	1300	110		
7439-96-5	MANGANESE	1	170	1.1		
7439-98-7	MOLYBDENUM	1	3.7	1.1		
7440-02-0	NICKEL	1	3.1	2.3		
7440-09-7	POTASSIUM	1	560	110		
7782-49-2	SELENIUM	1	15	0.57		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.1	1.1	U	
7440-31-5	TIN	1	5.7	5.7	U	
7440-62-2	VANADIUM	1	75	1.1		
7440-66-6	ZINC	1	16	2.3		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

15 of 195

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-70-31-120128

Lab ID: 1201354-5

Sample Matrix: SOIL

% Moisture: 14.2

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.034 G Final Volume: 100 ML

Result Units: MG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4100	23		
7440-36-0	ANTIMONY	1	2.3	2.3	U	
7440-38-2	ARSENIC	1	14	1.1		
7440-39-3	BARIUM	1	170	11		
7440-41-7	BERYLLIUM	1	0.56	0.56	U	
7440-43-9	CADMIUM	1	0.56	0.56	U	
7440-70-2	CALCIUM	1	9700	110		
7440-47-3	CHROMIUM	1	3.6	1.1		
7440-48-4	COBALT	1	2.9	1.1		
7440-50-8	COPPER	1	5.3	1.1		
7439-89-6	IRON	1	11000	11		
7439-92-1	LEAD	1	16	0.34		
7439-95-4	MAGNESIUM	1	1700	110		
7439-96-5	MANGANESE	1	150	1.1		
7439-98-7	MOLYBDENUM	1	11	1.1		
7440-02-0	NICKEL	1	3.1	2.3		
7440-09-7	POTASSIUM	1	670	110		
7782-49-2	SELENIUM	1	43	0.56		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.1	1.1	U	
7440-31-5	TIN	1	5.6	5.6	U	
7440-62-2	VANADIUM	1	130	1.1		
7440-66-6	ZINC	1	18	2.3		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JM-70-32-120128

Lab ID: 1201354-6

Sample Matrix: SOIL

% Moisture: 14.2 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.004 G Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4000	23		
7440-36-0	ANTIMONY	1	2.3	2.3	U	
7440-38-2	ARSENIC	1	6.1	1.2		
7440-39-3	BARIUM	1	170	12		
7440-41-7	BERYLLIUM	1	0.58	0.58	U	
7440-43-9	CADMIUM	1	0.58	0.58	U	
7440-70-2	CALCIUM	1	14000	120		
7440-47-3	CHROMIUM	1	3	1.2		
7440-48-4	COBALT	1	3.1	1.2		
7440-50-8	COPPER	1	4.6	1.2	_	
7439-89-6	IRON	1	8000	12		
7439-92-1	LEAD	1	15	0.35		
7439-95-4	MAGNESIUM	1	1700	120		
7439-96-5	MANGANESE	1	160	1.2		
7439-98-7	MOLYBDENUM	1	9.9	1.2		
7440-02-0	NICKEL	1	3.2	2.3		
7440-09-7	POTASSIUM	1	650	120		
7782-49-2	SELENIUM	1	45	0.58		
7440-22-4	SILVER	1	1.2	1.2	U	
7440-23-5	SODIUM	1	130	120		
7440-28-0	THALLIUM	1	1.2	1.2	U	
7440-31-5	TIN	1	5.8	5.8	U	
7440-62-2	VANADIUM	1	120	1.2		
7440-66-6	ZINC	1	18	2.3		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-73-31-120128

Lab ID: 1201354-7

Sample Matrix: SOIL % Moisture: 11.6

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.031 G Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4400	22		
7440-36-0	ANTIMONY	1	2.2	2.2	U	
7440-38-2	ARSENIC	1	8.5	1.1		
7440-39-3	BARIUM	1	130	11		
7440-41-7	BERYLLIUM	1	0.55	0.55	U	
7440-43-9	CADMIUM	1	0.55	0.55	U	
7440-70-2	CALCIUM	1	33000	110		
7440-47-3	CHROMIUM	1	3.7	1,1		
7440-48-4	COBALT	1	3.3	1.1		
7440-50-8	COPPER	1	5.3	1.1		
7439-89-6	IRON	1	9100	11		
7439-92-1	LEAD	1	14	0.33		
7439-95-4	MAGNESIUM	1	1900	110		
7439-96-5	MANGANESE	1	200	1.1		
7439-98-7	MOLYBDENUM	1	4.7	1.1		
7440-02-0	NICKEL	1	4.8	2.2		
7440-09-7	POTASSIUM	1	820	110		
7782-49-2	SELENIUM	1	33	0.55		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.3	1.1		
7440-31-5	TIN	1	5.5	5.5	υ	
7440-62-2	VANADIUM	1	93	1.1		
7440-66-6	ZINC	1	22	2.2		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

18 of 195

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-77-31-120128

Lab ID: 1201354-8

Sample Matrix: SOIL

% Moisture: 21.6 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2 QCBatchID: IP120202-2-1

Run ID: IT120202-241

Cleanup: NONE Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.012 G Final Volume: 100 ML Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	6500	25		
7440-36-0	ANTIMONY	1	2.5	2.5	U	
7440-38-2	ARSENIC	1	8.7	1.3		
7440-39-3	BARIUM	1	91	13		
7440-41-7	BERYLLIUM	1	0.63	0.63	U	
7440-43-9	CADMIUM	1	0.63	0.63	U	
7440-70-2	CALCIUM	1	10000	130		
7440-47-3	CHROMIUM	1	5.9	1.3		
7440-48-4	COBALT	1	5.9	1.3		
7440-50-8	COPPER	1	9.9	1.3		
7439-89-6	IRON	1	14000	13		
7439-92-1	LEAD	1	17	0.38		
7439-95-4	MAGNESIUM	1	2500	130		
7439-96-5	MANGANESE	1	200	1,3		
7439-98-7	MOLYBDENUM	1	13	1.3		
7440-02-0	NICKEL	1	7	2.5		
7440-09-7	POTASSIUM	1	1400	130		
7782-49-2	SELENIUM	1	18	0.63		
7440-22-4	SILVER	1	1.3	1.3	υ	
7440-23-5	SODIUM	1	130	130		
7440-28-0	THALLIUM	1	2.1	1.3		
7440-31-5	TIN	1	6.3	6.3	U	
7440-62-2	VANADIUM	1	68	1.3		
7440-66-6	ZINC	1	36	2.5		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC
LIMS Version: 6.560

Page 15 of 26

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-82-31-120128

Lab ID: 1201354-9

Sample Matrix: SOIL

% Moisture: 9.2 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.031 G Final Volume: 100 ML Result Units: MG/KG

Result Units: MG/KG
Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4700	21		
7440-36-0	ANTIMONY	1	2.1	2.1	U	
7440-38-2	ARSENIC	1	10	1.1		
7440-39-3	BARIUM	1	78	11		
7440-41-7	BERYLLIUM	1	0.53	0.53	U	
7440-43-9	CADMIUM	1	0.53	0.53	U	
7440-70-2	CALCIUM	1	16000	110		
7440-47-3	CHROMIUM	1	3.8	1.1		
7440-48-4	COBALT	1	3.2	1.1		
7440-50-8	COPPER	1	4.9	1.1		
7439-89-6	IRON	1	12000	11		
7439-92-1	LEAD	1	13	0.32		
7439-95-4	MAGNESIUM	1	2100	110		
7439-96-5	MANGANESE	1	200	1.1		
7439-98-7	MOLYBDENUM	1	7.6	1.1		
7440-02-0	NICKEL	1	4	2,1		
7440-09-7	POTASSIUM	1	820	110		
7782-49-2	SELENIUM	1	26	0.53		
7440-22-4	SILVER	1	1,1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.1	1.1	ت د	
7440-31-5	TIN	1	5.3	5.3	U	
7440-62-2	VANADIUM	1	160	1.1		
7440-66-6	ZINC	1	24	2.1		

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-84-31-120128

Lab ID: 1201354-10

Sample Matrix: SOIL

% Moisture: 27.2 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE
Basis: Dry Weight
File Name: 120202A.

Sample Aliquot: 1.022 G
Final Volume: 100 ML

Result Units: MG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	9000	27		
7440-36-0	ANTIMONY	1	2.7	2.7	U	
7440-38-2	ARSENIC	1	6.5	1.3		
7440-39-3	BARIUM	1	100	13		
7440-41-7	BERYLLIUM	1	0.77	0.67		
7440-43-9	CADMIUM	1	0.67	0.67	U	
7440-70-2	CALCIUM	1	18000	130		
7440-47-3	CHROMIUM	1	8.3	1.3		
7440-48-4	COBALT	1	7.9	1.3		***************************************
7440-50-8	COPPER	1	15	1.3		
7439-89-6	IRON	1	19000	13		
7439-92-1	LEAD	1	17	0.4		
7439-95-4	MAGNESIUM	1	3000	130		
7439-96-5	MANGANESE	1	270	1.3		***************************************
7439-98-7	MOLYBDENUM	1	1.3	1.3	U	
7440-02-0	NICKEL	1	11	2.7		
7440-09-7	POTASSIUM	1	2000	130		
7782-49-2	SELENIUM	1	1.7	0.67		
7440-22-4	SILVER	1	1.3	1.3	U	
7440-23-5	SODIUM	1	130	130	υ	
7440-28-0	THALLIUM	1	2.2	1.3		
7440-31-5	TIN	1	6.7	6.7	U	
7440-62-2	VANADIUM	1	29	1.3		
7440-66-6	ZINC	1	50	2.7		····

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-88-31-120128

Lab ID: 1201354-11

Sample Matrix: SOIL

% Moisture: 15.7

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12
Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.007 G Final Volume: 100 ML Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	5600	24		
7440-36-0	ANTIMONY	1	2.4	2.4	U	
7440-38-2	ARSENIC	1	20	1.2		
7440-39-3	BARIUM	1	87	12		
7440-41-7	BERYLLIUM	1	0.59	0.59	U	
7440-43-9	CADMIUM	1	0.59	0.59	U	
7440-70-2	CALCIUM	1	8500	120		
7440-47-3	CHROMIUM	1	4	1.2		
7440-48-4	COBALT	1	4.5	1.2		
7440-50-8	COPPER	1	8.6	1.2		
7439-89-6	IRON	1	13000	12		
7439-92-1	LEAD	1	19	0.35		
7439-95-4	MAGNESIUM	1	2300	120		
7439-96-5	MANGANESE	1	230	1.2		
7439-98-7	MOLYBDENUM	1	22	1.2		
7440-02-0	NICKEL	1	5.1	2.4		
7440-09-7	POTASSIUM	1	1100	120		
7782-49-2	SELENIUM	1	76	0.59		
7440-22-4	SILVER	1	1,2	1.2	U	
7440-23-5	SODIUM	1	120	120	U	
7440-28-0	THALLIUM	1	2.9	1.2		
7440-31-5	TIN	1	5.9	5.9	U	
7440-62-2	VANADIUM	1	160	1.2		
7440-66-6	ZINC	1	31	2.4		

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JMBKGD-NE-31-120128

Lab ID: 1201354-12

Sample Matrix: SOIL % Moisture: 11.2

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2 QCBatchID: IP120202-2-1

Run ID: IT120202-2-1

Cleanup: NONE Basis: Dry Weight File Name: 120202A. Sample Aliquot: 1.033 G Final Volume: 100 ML Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifie
7429-90-5	ALUMINUM	1	3000	22		
7440-36-0	ANTIMONY	1	2.2	2.2	U	
7440-38-2	ARSENIC	1	1.8	1.1		
7440-39-3	BARIUM	1	51	11		
7440-41-7	BERYLLIUM	1	0.54	0.54	U	
7440-43-9	CADMIUM	1	0.54	0.54	U	
7440-70-2	CALCIUM	1	1100	110		
7440-47-3	СНКОМІИМ	1	3.5	1.1		
7440-48-4	COBALT	1	2.2	1.1		
7440-50-8	COPPER	1	3.5	1.1		
7439-89-6	IRON	1	7800	11		
7439-92-1	LEAD	1	6.5	0.33		
7439-95-4	MAGNESIUM	1	970	110		
7439-96-5	MANGANESE	1	130	1.1		
7439-98-7	MOLYBDENUM	1	1.1	1.1	U	
7440-02-0	NICKEL	1	4	2.2		
7440-09-7	POTASSIUM	1	770	110		
7782-49-2	SELENIUM	1	0.81	0.54		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	U	
7440-28-0	THALLIUM	1	1.7	1.1		
7440-31-5	TIN	1	5.4	5.4	U	
7440-62-2	VANADIUM	1	8.9	1.1		
7440-66-6	ZINC	1	19	2.2		

Data Package ID: it1201354-1

ALS Environmental -- FC
LIMS Version: 6.560

Page 23 of 26

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JMBKGD-NW-31-120128

Lab ID: 1201354-13

Sample Matrix: SOIL % Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.014 G 100 ML Final Volume: Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	6100	21		
7440-36-0	ANTIMONY	1	2.1	2.1	U	
7440-38-2	ARSENIC	1	7	1.1		
7440-39-3	BARIUM	1	100	11		
7440-41-7	BERYLLIUM	1	0.64	0.53		
7440-43-9	CADMIUM	1	0.53	0.53	U	
7440-70-2	CALCIUM	1	4600	110		
7440-47-3	СНКОМІИМ	1	7.4	1.1		
7440-48-4	COBALT	1	7	1.1		
7440-50-8	COPPER	1	9.9	1.1		
7439-89-6	IRON	5	27000	53		
7439-92-1	LEAD	5	11	1.6		
7439-95-4	MAGNESIUM	1	2800	110		
7439-96-5	MANGANESE	1	270	1.1		
7439-98-7	MOLYBDENUM	1	1.1	1.1	U	
7440-02-0	NICKEL	1	7.7	2.1		
7440-09-7	POTASSIUM	1	2300	110		
7782-49-2	SELENIUM	5	2.7	2.7	U	
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	130	110		
7440-28-0	THALLIUM	5	5.3	5.3	U	
7440-31-5	TIN	1	5.3	5.3	U	
7440-62-2	VANADIUM	5	19	5.3		
7440-66-6	ZINC	1	40	2.1		

Total URANIUM

Method SW6020 Revision A

Sample Results

Lab Name: ALS Environmental -- FC Client Name: Weston Solutions, Inc.

Client Project ID: Johnny M ORS T00035111101-120130-0002

Work Order Number: 1201354
Reporting Basis: Dry Weight

Final Volume: 100 ml

porting Basis: Dry Weight Matrix: SOIL
Prep Method: SW3050B Result Units: UG/KG

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Reporting Limit	Flag	Sample Aliquot
JM-54-31-120128	1201354-1	01/28/2012	02/02/2012	02/03/2012	12.5	10	38000	11		1.027 g
JM-55-31-120128	1201354-2	01/28/2012	02/02/2012	02/03/2012	7.4	100	140000	100		1.041 g
JM-65-31-120128	1201354-3	01/28/2012	02/02/2012	02/03/2012	12.7	100	440000	110		1.001 g
JM-66-31-120128	1201354-4	01/28/2012	02/02/2012	02/03/2012	15.6	10	43000	11		1.041 g
JM-70-31-120128	1201354-5	01/28/2012	02/02/2012	02/03/2012	14.2	100	250000	110		1.034 g
JM-70-32-120128	1201354-6	01/28/2012	02/02/2012	02/03/2012	14.2	100	290000	120		1.004 g
JM-73-31-120128	1201354-7	01/28/2012	02/02/2012	02/03/2012	11.6	100	140000	110		1.031 g
JM-77-31-120128	1201354-8	01/28/2012	02/02/2012	02/03/2012	21.6	100	330000	130		1.012 g
JM-82-31-120128	1201354-9	01/28/2012	02/02/2012	02/03/2012	9.2	100	150000	110		1.031 g
JM-84-31-120128	1201354-10	01/28/2012	02/02/2012	02/03/2012	27.2	10	32000	13		1.022 g
JM-88-31-120128	1201354-11	01/28/2012	02/02/2012	02/03/2012	15.7	100	330000	120		1.007 g
JMBKGD-NE-31-120128	1201354-12	01/28/2012	02/02/2012	02/03/2012	11.2	10	2100	11		1.033 g
JMBKGD-NW-31-120128	1201354-13	01/28/2012	02/02/2012	02/03/2012	7.4	10	1200	11		1.014 g

Comments:

1. ND or U = Not Detected at or above the client requested detection limit.

Data Package ID: im1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 1 of 1

Total MERCURY

Method SW7471 Revision A

Sample Results

Lab Name: ALS Environmental -- FC Client Name: Weston Solutions, Inc.

Client Project ID: Johnny M ORS TO0035111101-120130-0002

Work Order Number: 1201354 Reporting Basis: Dry Weight Final Volume: 100 g Matrix: SOIL

porting Basis: Dry Weight Matrix: SOIL
Prep Method: METHOD Result Units: MG/KG

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Reporting Limit	Flag	Sample Aliquot
JM-54-31-120128	1201354-1	01/28/2012	02/06/2012	02/07/2012	12.5	1	0.037	0.037	U	0.614 g
JM-55-31-120128	1201354-2	01/28/2012	02/06/2012	02/07/2012	7.4	1	0.035	0.035	U	0.616 g
JM-65-31-120128	1201354-3	01/28/2012	02/06/2012	02/07/2012	12.7	1	0.053	0.038		0.603 g
JM-66-31-120128	1201354-4	01/28/2012	02/06/2012	02/07/2012	15.6	1	0.039	0.039	C	0.613 g
JM-70-31-120128	1201354-5	01/28/2012	02/06/2012	02/07/2012	14.2	1	0.039	0.039	U	0.605 g
JM-70-32-120128	1201354-6	01/28/2012	02/06/2012	02/07/2012	14.2	1	0.039	0.039	Ü	0.6 g
JM-73-31-120128	1201354-7	01/28/2012	02/06/2012	02/07/2012	11.6	1	0.037	0.037	U	0.615 g
JM-77-31-120128	1201354-8	01/28/2012	02/06/2012	02/07/2012	21.6	1	0.046	0.042		0.604 g
JM-82-31-120128	1201354-9	01/28/2012	02/06/2012	02/07/2012	9.2	1	0.036	0.036	υ	0.608 g
JM-84-31-120128	1201354-10	01/28/2012	02/06/2012	02/07/2012	27.2	1	0.045	0.045	U	0.61 g
JM-88-31-120128	1201354-11	01/28/2012	02/06/2012	02/07/2012	15.7	1	0.072	0.039		0.602 g
JMBKGD-NE-31-120128	1201354-12	01/28/2012	02/06/2012	02/07/2012	11.2	1	0.037	0.037	U	0.614 g
JMBKGD-NW-31-120128	1201354-13	01/28/2012	02/06/2012	02/07/2012	7.4	1	0.036	0.036	U	0.608 g

Comments:

1. ND or U = Not Detected at or above the client requested detection limit.

Data Package ID: hg1201354-1

ALS Environmental -- FC

LIMS Version: 6.560

Page 1 of 1

Summary Report Forms

Method SW6010B Method Blank

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: IP120202-2MB

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1 Cleanup: NONE

Basis: N/A File Name: 120202A. Sample Aliquot: 1 g Final Volume: 100 ml Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	20	20	U	
7440-36-0	ANTIMONY	1	2	2	U	
7440-38-2	ARSENIC	1	1	1	U	
7440-39-3	BARIUM	1	10	10	U	
7440-41-7	BERYLLIUM	1	0.5	0.5	U	***************************************
7440-43-9	CADMIUM	1	0.5	0.5	U	
7440-70-2	CALCIUM	1	100	100	U	
7440-47-3	CHROMIUM	1	1	1	U	
7440-48-4	COBALT	1	1	1	U	
7440-50-8	COPPER	1	1	1	U	
7439-89-6	IRON	1	10	10	U	
7439-92-1	LEAD	1	0.3	0.3	U	
7439-95-4	MAGNESIUM	1	100	100	U	***************************************
7439-96-5	MANGANESE	1	1	1	U	
7439-98-7	MOLYBDENUM	1	1	1	U	
7440-02-0	NICKEL	1	2	2	U	
7440-09-7	POTASSIUM	1	100	100	U	
7782-49-2	SELENIUM	1	0.5	0.5	U	
7440-22-4	SILVER	1	1	1	U	
7440-23-5	SODIUM	1	100	100	U	
7440-28-0	THALLIUM	1	1	1	U	
7440-31-5	TIN	1	5	5	U	
7440-62-2	VANADIUM	1	1	1	U	
7440-66-6	ZINC	1	2	2	U	

Method SW6010B **Laboratory Control Sample**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: IP120202-2LCS

Sample Matrix: SOIL

Prep Batch: IP120202-2

Sample Aliquot:

1 g

% Moisture: N/A

QCBatchID: IP120202-2-1

Final Volume: 100 ml

Date Collected: N/A

· Run ID: IT120202-2A1

Result Units: MG/KG

Date Extracted: 02/02/2012

Cleanup: NONE

Clean DF:

Date Analyzed: 02/02/2012

Basis: N/A

Prep Method: SW3050B File Name: 120202A.

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
7429-90-5	ALUMINUM	200	218	20		109	80 - 120%
7440-36-0	ANTIMONY	50	45.6	2		91	80 - 120%
7440-38-2	ARSENIC	200	190	1		95	80 - 120%
7440-39-3	BARIUM	200	208	10		104	80 - 120%
7440-41-7	BERYLLIUM	5	4.74	0.5		95	80 - 120%
7440-43-9	CADMIUM	5	4.97	0.5		99	80 - 120%
7440-70-2	CALCIUM	4000	3720	100		93	80 - 120%
7440-47-3	CHROMIUM	20	19.5	1		97	80 - 120%
7440-48-4	COBALT	50	47.6	1		95	80 - 120%
7440-50-8	COPPER	25	25.7	1		103	80 - 120%
7439-89-6	IRON	100	104	10		104	80 - 120%
7439-92-1	LEAD	50	48.5	0.3		97	80 - 120%
7439-95-4	MAGNESIUM	4000	3620	100		90	80 - 120%
7439-96-5	MANGANESE	50	49.5	1		99	80 - 120%
7439-98-7	MOLYBDENUM	100	96.3	1		96	80 - 120%
7440-02-0	NICKEL	50	48.2	2		96	80 - 120%
7440-09-7	POTASSIUM	4000	3760	100		94	80 - 120%
7782-49-2	SELENIUM	200	179	0.5		90	80 - 120%
7440-22-4	SILVER	10	9.34	1		93	80 - 120%
7440-23-5	SODIUM	4000	3590	100		90	80 - 120%
7440-28-0	THALLIUM	200	198	1		99	80 - 120%
7440-31-5	TIN	50	49.2	5		98	80 - 120%
7440-62-2	VANADIUM	50	48.9	1		98	80 - 120%
7440-66-6	ZINC	50	46.5	2		93	80 - 120%

Data Package ID: it1201354-1

ALS Environmental - FC

Page 1 of 2

Method SW6010B Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

LabID: 1201354-1MS

Sample Matrix: SOIL

% Moisture: 12.5 Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Method: SW3050 Rev B Prep Batch: IP120202-2

QCBatchiD: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.018 g

Final Volume: 100 ml Result Units: MG/KG File Name: 120202A.

CASNO	Target Analyte	Sample Result	Samp Qual	MS Result	MS Qual	Reporting Limit	Spike Added	MS % Rec.	Control Limits
7429-90-5	ALUMINUM	6600		9990		22.5	225	1490	80 - 120%
7440-36-0	ANTIMONY	2.2	U	28.8	Ν	2.25	56.2	51	80 - 120%
7440-38-2	ARSENIC	6.5		222		1.12	225	96	80 - 120%
7440-39-3	BARIUM	330		379	N	11,2	225	20	80 - 120%
7440-41-7	BERYLLIUM	0.56	U	6.02		0.562	5.62	107	80 - 120%
7440-43-9	CADMIUM	0.56	U	5.89		0.562	5.62	105	80 - 120%
7440-70-2	CALCIUM	9600		12500	N	112	4490	65	80 - 120%
7440-47-3	CHROMIUM	5		28.9		1.12	22.5	106	80 - 120%
7440-48-4	COBALT	3.9		58.2		1.12	56.2	97	80 - 120%
7440-50-8	COPPER	7.4		37.8		1.12	28.1	108	80 - 120%
7439-89-6	IRON	13000		14200		11.2	112	954	80 - 120%
7439-92-1	LEAD	16		69.7		0.337	56.2	96	80 - 120%
7439-95-4	MAGNESIUM	2500		7090		112	4490	102	80 - 120%
7439-96-5	MANGANESE	180		232		1.12	56.2	85	80 - 120%
7439-98-7	MOLYBDENUM	3.9		110		1.12	112	95	80 - 120%
7440-02-0	NICKEL	4.4		59.8		2.25	56.2	99	80 - 120%
7440-09-7	POTASSIUM	1400		6030		112	4490	104	80 - 120%
7782-49-2	SELENIUM	11		213		0.562	225	90	80 - 120%
7440-22-4	SILVER	1.1	U	10.8		1.12	11.2	96	80 - 120%
7440-23-5	SODIUM	810		4490		112	4490	82	80 - 120%
7440-28-0	THALLIUM	2.1		225		1.12	225	99	80 - 120%
7440-31-5	TIN	5.6	U	57.5		5.62	56.2	102	80 - 120%
7440-62-2	VANADIUM	90		170	N	1.12	56.2	142	80 - 120%
7440-66-6	ZINC	120		85.2	N	2.25	56.2	-70	80 - 120%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 1 of 2

Method SW6010B Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

LabID: 1201354-1MSD

Sample Matrix: SOIL

% Moisture: 12.5
Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12 Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.015 g Final Volume: 100 ml

> Result Units: MG/KG File Name: 120202A.

Prep Method: SW3050 Rev B

CASNO	Target Analyte	MSD Result	MSD Qual	Spike Added	MSD % Rec.	Reporting Limit	RPD Limit	RPD
7429-90-5	ALUMINUM	10300		225	1611	22.5	20	3
7440-36-0	ANTIMONY	29	N	56.3	52	2.25	20	1
7440-38-2	ARSENIC	222		225	96	1.13	20	0
7440-39-3	BARIUM	388	Z	225	24	11.3	20	2
7440-41-7	BERYLLIUM	6.02		5.63	107	0.563	20	0
7440-43-9	CADMIUM	5.87		5.63	104	0.563	20	0
7440-70-2	CALCIUM	13100	N	4510	78	113	20	4
7440-47-3	CHROMIUM	29		22.5	106	1.13	20	0
7440-48-4	COBALT	58.1		56.3	96	1.13	20	0
7440-50-8	COPPER	38.4		28.2	110	1.13	20	1
7439-89-6	IRON	14600		113	1279	11.3	20	3
7439-92-1	LEAD	71.1		56.3	98	0.338	20	2
7439-95-4	MAGNESIUM	7190		4510	104	113	20	2
7439-96-5	MANGANESE	240		56.3	99	1.13	20	3
7439-98-7	MOLYBDENUM	110		113	95	1.13	20	0
7440-02-0	NICKEL	60.3		56.3	99	2.25	20	1
7440-09-7	POTASSIUM	6140		4510	106	113	20	2
7782-49-2	SELENIUM	213		225	90	0.563	20	0
7440-22-4	SILVER	10.9	***************************************	11.3	97	1.13	20	1
7440-23-5	SODIUM	4560		4510	83	113	20	1
7440-28-0	THALLIUM	223		225	98	1.13	20	0
7440-31-5	TIN	56.5	:	56.3	100	5.63	20	2
7440-62-2	VANADIUM	176	N	56.3	154	1.13	20	4
7440-66-6	ZINC	84.7	N	56.3	-71	2.25	20	1

Data Package ID: it1201354-1

ALS Environmental - FC

Page 2 of 2

Method SW6010 Analytical Spike Sample Recovery

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JM-54-31-120128

VANADIUM

ZINC

LabID: 1201354-1A

Run ID: IT120202-2A1

Date Analyzed: 02-Feb-12 Result Units: mg/l

0.806

1.12

Target Analyte	Sample Result	Samp Qual	PS Result	PS Qual	Spike Added	PS % Rec.	Control Limits
ANTIMONY	0.0200	U	0.478		0.5	96	75 - 125%
BARIUM	3.01		5.03		2	101	75 - 125%
CALCIUM	86.2		122		40	89	75 - 125%

1.26

1.54

0.5

0.5

75 - 125%

75 - 125%

85

Method SW6010 **Duplicate Sample Results**

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1D

Sample Matrix: SOIL

% Moisture: 12.5 Date Collected: 01/28/2012

Date Extracted: 02/02/2012

Date Analyzed: 02/02/2012

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.023 g Final Volume: 100 ml

Result Units: MG/KG Clean DF:

RPD

RPD

				_					
-	CASNO	Target Analyte	Sample Result	Samp Qual	Duplicate Result	Dup Qual	Reporting Limit	Dilution Factor	
7	429-90-5	ALUMINUM	6600		6190		22.4	1	
7	440-36-0	ANTIMONY	2.2	U	2.24	U	2.24	1	

CASHO	raiget Analyte	Result	Qual	Result	Qual	Limit	Factor	IXI D	Limit
7429-90-5	ALUMINUM	6600		6190		22.4	1	7	20
7440-36-0	ANTIMONY	2.2	U	2.24	U	2.24	1		20
7440-38-2	ARSENIC	6.5		5.98		1.12	1	9	20
7440-39-3	BARIUM	330		154	*	11.2	1	74	20
7440-41-7	BERYLLIUM	0.56	U	0.559	U	0.559	1		20
7440-43-9	CADMIUM	0.56	U	0.559	U	0.559	1		20
7440-70-2	CALCIUM	9600		8100		112	1	17	20
7440-47-3	СНКОМІИМ	5		4.71	"	1.12	1		20
7440-48-4	COBALT	3.9		3.63		1.12	1		20
7440-50-8	COPPER	7.4		6.8		1.12	1	9	20
7439-89-6	IRON	13000		12700		11.2	1	4	20
7439-92-1	LEAD	16		14.8		0.335	1	8	20
7439-95-4	MAGNESIUM	2500		2320		112	1	8	20
7439-96-5	MANGANESE	180		166		1.12	1	10	20
7439-98-7	MOLYBDENUM	3.9		3.79		1.12	1		20
7440-02-0	NICKEL	4.4		4.26		2.24	1		20
7440-09-7	POTASSIUM	1400		1050	*	112	1	25	20
7782-49-2	SELENIUM	11		15.3	*	0.559	1	33	20
7440-22-4	SILVER	1.1	U	1.12	U	1.12	1		20
7440-23-5	SODIUM	810		148	*	112	1	138	20
7440-28-0	THALLIUM	2.1		1.77		1.12	1		20
7440-31-5	TIN	5.6	υ	5.59	U	5.59	1		20
7440-62-2	VANADIUM	90		90.3		1.12	1	1	20
7440-66-6	ZINC	120		59	*	2.24	1	71	20

Method SW6010 Serial Dilution

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1L

Run ID: IT120202-2A1

Date Analyzed: 02-Feb-12

Result Units: mg/l

CASNO	Target Analyte	Sample Result	Samp Qual	SD Result	SD Qual	EPA Qualifier	%D
7429-90-5	ALUMINUM	59.7		57.9			3
7440-36-0	ANTIMONY	0.0200	U	0.100	Ų		
7440-38-2	ARSENIC	0.0588		0.0657			
7440-39-3	BARIUM	3.01		2.56		E	15
7440-41-7	BERYLLIUM	0.00500	U	0.0250	U		
7440-43-9	CADMIUM	0.00500	U	0.0250	U		
7440-70-2	CALCIUM	86.2		85.6			1
7440-47-3	CHROMIUM	0.0452		0.0500	U		
7440-48-4	COBALT	0.0353		0.0500	U		
7440-50-8	COPPER	0.0665		0.0500	U		
7439-89-6	IRON	118		114			4
7439-92-1	LEAD	0.144		0.140	***		3
7439-95-4	MAGNESIUM	22.5		21.8			3
7439-96-5	MANGANESE	1.65		1.66			0
7439-98-7	MOLYBDENUM	0.0349		0.0500	U		
7440-02-0	NICKEL	0.0396		0.100	U		
7440-09-7	POTASSIUM	12.1		7.58		Е	38
7782-49-2	SELENIUM	0.0988		0.0898			9
7440-22-4	SILVER	0.0100	U	0.0500	U		
7440-23-5	SODIUM	7.31		5.00	Ų		
7440-28-0	THALLIUM	0.0190		0.0500	U		
7440-31-5	TIN	0.0500	U	0.250	U		
7440-62-2	VANADIUM	0.806		0.811			1
7440-66-6	ZINC	1.12		0.973		E	13

Data Package ID: it1201354-1

Page 1 of 1

Prep Batch ID: IP120202-2

Start Date: 02/02/12 Start Time: 7:00 End Date: 02/02/12 End Time: 17:00 Concentration Method: NONE Extract Method: SW3050B Batch Created By: bas
Date Created: 02/02/12
Time Created: 7:00

Prep Analyst: Brent A. Stanfield

Initial Volume Units: g
Final Volume Units: ml

Validated By: bas

Date Validated: 02/02/12

Time Validated: 7:35

Comments:

QC Batch ID: IP120202-2-1

Lab ID	QC Type	Field ID	Matrix	Date Collected	initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Numbe
IP120202-2	MB	xxxxxx	SOIL	XXXXXX	1	100	NONE	1	120135
IP120202-2	LCS	XXXXXX	SOIL	XXXXXX	1	100	NONE	1	1201354
1201354-1	MS	JM-54-31-120128	SOIL	1/28/2012	1.018	100	NONE	1	120135
1201354-1	MSD	JM-54-31-120128	SOIL	1/28/2012	1.015	100	NONE	1	120135
1201354-1	DUP	JM-54-31-120128	SOIL	1/28/2012	1.023	100	NONE	1	120135
1201354-1	SMP	JM-54-31-120128	SOIL	1/28/2012	1.027	100	NONE	1	120135
1201354-10	SMP	JM-84-31-120128	SOIL	1/28/2012	1.022	100	NONE	1	120135
1201354-11	SMP	JM-88-31-120128	SOIL	1/28/2012	1.007	100	NONE	1	120135
1201354-12	SMP	JMBKGD-NE-31-1201	SOIL	1/28/2012	1.033	100	NONE	1	120135
1201354-13	SMP	JMBKGD-NW-31-120	SOIL	1/28/2012	1.014	100	NONE	1	120135
1201354-2	SMP	JM-55-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	120135
1201354-3	SMP	JM-65-31-120128	SOIL	1/28/2012	1.001	100	NONE	1	120135
1201354-4	SMP	JM-66-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	120135
1201354-5	SMP	JM-70-31-120128	SOIL	1/28/2012	1.034	100	NONE	1	120135
1201354-6	SMP	JM-70-32-120128	SOIL	1/28/2012	1.004	100	NONE	1	120135
1201354-7	SMP	JM-73-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	120135
1201354-8	SMP	JM-77-31-120128	SOIL	1/28/2012	1.012	100	NONE	1	120135
1201354-9	SMP	JM-82-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	120135

QC Types

CAR	Carrier reference sample	DUP	Laboratory Duplicate
LCS	Laboratory Control Sample	LÇSD	Laboratory Control Sample Duplicat
MB	Method Blank	MS	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate	REP	Sample replicate
RV\$	Reporting Level Verification Standar	SMP	Field Sample
SYS	Sample Yield Spike		

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: ICV

QC Type: Initial Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 15:07

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	25	25.5	0.2		102	90 - 110%
7440-36-0	ANTIMONY	0.25	0.246	0.02		98	90 - 110%
7440-38-2	ARSENIC	0.25	0.259	0.01		104	90 - 110%
7440-39-3	BARIUM	0.5	0.528	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.25	0.250	0.005		100	90 - 110%
7440-43-9	CADMIUM	0.25	0.253	0.005	***************************************	101	90 - 110%
7440-70-2	CALCIUM	25	25.1	1		100	90 - 110%
7440-47-3	CHROMIUM	0.5	0.510	0.01		102	90 - 110%
7440-48-4	COBALT	0.25	0.249	0.01		100	90 - 110%
7440-50-8	COPPER	0.5	0.512	0.01		102	90 - 110%
7439-89-6	IRON	10	10.2	0.1		102	90 - 110%
7439-92-1	LEAD	0.5	0.509	0.003		102	90 - 110%
7439-95-4	MAGNESIUM	25	24.8	1		99	90 - 110%
7439-96-5	MANGANESE	0.5	0.513	0.01		103	90 - 110%
7439-98-7	MOLYBDENUM	0.5	0.499	0.01		100	90 - 110%
7440-02-0	NICKEL	0.5	0.497	0.02		99	90 - 110%
7440-09-7	POTASSIUM	25	23.5	1		94	90 - 110%
7782-49-2	SELENIUM	0.5	0.510	0.005		102	90 - 110%
7440-22-4	SILVER	0.1	0.104	0.01		104	90 - 110%
7440-23-5	SODIUM	25	22.9	1		92	90 - 110%
7440-28-0	THALLIUM	0.25	0.266	0.01		106	90 - 110%
7440-31 - 5	TIN	0.5	0.521	0.05		104	90 - 110%
7440-61-1	URANIUM	2.5	2.55	0.2		102	90 - 110%
7440-62-2	VANADIUM	0.25	0.251	0.01		100	90 - 110%
7440-66-6	ZINC	0.5	0.492	0.02		98	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental - FC

Page 1 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCV1

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 15:22 Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.6	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.495	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.517	0.01		103	90 - 110%
7440-39-3	BARIUM	1	1.07	0.1		107	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.488	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.507	0.005		101	90 - 110%
7440-70-2	CALCIUM	50	50.5	1		101	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.494	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.04	0.01		104	90 - 110%
7439-89-6	IRON	20	20.4	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	50.1	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.00	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.01	0.02		101	90 - 110%
7440-09-7	POTASSIUM	50	51.5	1		103	90 - 110%
7782-49-2	SELENIUM	1	1.02	0.005		102	90 - 110%
7440-22-4	SILVER	0.2	0.208	0.01		104	90 - 110%
7440-23-5	SODIUM	50	48.2	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.520	0.01		104	90 - 110%
7440-31-5	TIN	1	1.03	0.05		103	90 - 110%
7440-61-1	URANIUM	5	5.14	0.2		103	90 - 110%
7440-62-2	VANADIUM	0.5	0.499	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.966	0.02		97	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental - FC

Page 2 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCV2

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 15:26

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.5	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.489	0.02		98	90 - 110%
7440-38-2	ARSENIC	0.5	0.513	0.01		103	90 - 110%
7440-39-3	BARIUM	1	1.06	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.486	0.005		97	90 - 110%
7440-43-9	CADMIUM	0.5	0.505	0.005		101	90 - 110%
7440-70-2	CALCIUM	50	50.2	1		100	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.492	0.01		98	90 - 110%
7440-50-8	COPPER	1	1.04	0.01		104	90 - 110%
7439-89-6	IRON	20	20.3	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.00	0.003		100	90 - 110%
7439-95-4	MAGNESIUM	50	49.9	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	0.985	0.01		99	90 - 110%
7440-02-0	NICKEL	1	0.991	0.02		99	90 - 110%
7440-09-7	POTASSIUM	50	51.4	1		103	90 - 110%
7782-49-2	SELENIUM	1	1.00	0.005		100	90 - 110%
7440-22-4	SILVER	0.2	0.209	0.01		104	90 - 110%
7440-23-5	SODIUM	50	48.1	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.517	0.01		103	90 - 110%
7440-31-5	TIN	1	1.02	0.05		102	90 - 110%
7440-61-1	URANIUM	5	5.14	0.2		103	90 - 110%
7440-62-2	VANADIUM	0.5	0.497	0.01		99	90 - 110%
7440-66-6	ZINC	1	0.953	0.02		95	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 3 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCV3

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 15:55

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.8	0.2		104	90 - 110%
7440-36-0	ANTIMONY	0.5	0.494	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.518	0.01		104	90 - 110%
7440-39-3	BARIUM	1	1.07	0.1		107	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.486	0.005		97	90 - 110%
7440-43-9	CADMIUM	0.5	0.508	0.005		102	90 - 110%
7440-70-2	CALCIUM	50	50.4	1		101	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.493	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.05	0.01		105	90 - 110%
7439-89-6	IRON	20	20.3	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	49.9	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	0.996	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.01	0.02		101	90 - 110%
7440-09-7	POTASSIUM	50	51.8	1		104	90 - 110%
7782-49-2	SELENIUM	1	1.01	0.005		101	90 - 110%
7440-22-4	SILVER	0.2	0.210	0.01		105	90 - 110%
7440-23-5	SODIUM	50	48.4	1		97	90 - 110%
7440-28-0	THALLIUM	0.5	0.523	0.01		105	90 - 110%
7440-31-5	TIN	1	1.03	0.05		103	90 - 110%
7440-61-1	URANIUM	5	5.18	0.2		104	90 - 110%
7440-62-2	VANADIUM	0.5	0.499	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.949	0.02		95	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental - FC

Page 4 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCV4

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 16:19

Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	52.2	0.2		104	90 - 110%
7440-36-0	ANTIMONY	0.5	0.500	0.02		100	90 - 110%
7440-38-2	ARSENIC	0.5	0.530	0.01		106	90 - 110%
7440-39-3	BARIUM	1	1.08	0.1		108	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.490	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.509	0.005		102	90 - 110%
7440-70-2	CALCIUM	50	50.4	1		101	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.495	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.06	0.01		106	90 - 110%
7439-89-6	IRON	20	20.4	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	50.4	1		101	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.00	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.01	0.02		101	90 - 110%
7440-09-7	POTASSIUM	50	52.0	1		104	90 - 110%
7782-49-2	SELENIUM	1	1.01	0.005		101	90 - 110%
7440-22-4	SILVER	0.2	0.212	0.01		106	90 - 110%
7440-23-5	SODIUM	50	48.7	1		97	90 - 110%
7440-28-0	THALLIUM	0.5	0.525	0.01		105	90 - 110%
7440-31-5	TIN	1	1.04	0.05		104	90 - 110%
7440-61-1	URANIUM	5	5.20	0.2		104	90 - 110%
7440-62-2	VANADIUM	0.5	0.500	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.967	0.02		97	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012 ALS

ALS Environmental -- FC

Page 5 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCV5

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: |T120202-2A1

Date Analyzed: 02/02/2012
Time Analyzed: 16:44
Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.7	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.494	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.529	0.01		106	90 - 110%
7440-39-3	BARIUM	1	1.06	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.491	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.513	0.005		103	90 - 110%
7440-70-2	CALCIUM	50	50.9	1		102	90 - 110%
7440-47-3	CHROMIUM	1	1.02	0.01		102	90 - 110%
7440-48-4	COBALT	0.5	0.497	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.05	0.01		105	90 - 110%
7439-89-6	IRON	20	20.3	0.1		102	90 - 110%
7439-92-1	LEAD	1	1.01	0.003		101	90 - 110%
7439-95-4	MAGNESIUM	50	50.2	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.01	0.01		101	90 - 110%
7440-02-0	NICKEL	1	1.00	0.02		100	90 - 110%
7440-09-7	POTASSIUM	50	51.4	1		103	90 - 110%
7782-49-2	SELENIUM	1	1.01	0.005		101	90 - 110%
7440-22-4	SILVER	0.2	0.211	0.01		106	90 - 110%
7440-23-5	SODIUM	50	47.9	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.531	0.01		106	90 - 110%
7440-31-5	TIN	1	1.04	0.05		104	90 - 110%
7440-61-1	URANIUM	5	5.15	0.2		103	90 - 110%
7440-62-2	VANADIUM	0.5	0.501	0.01	_	100	90 - 110%
7440-66-6	ZINC	1	0.985	0.02		99	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental – FC

Page 6 of 7

Method SW6010 Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCV6

QC Type: Continuing Calibration

File Name: 120202A.

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 17:09 Result Units: MG/L

CASNO	Target Analyte	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
7429-90-5	ALUMINUM	50	51.5	0.2		103	90 - 110%
7440-36-0	ANTIMONY	0.5	0.497	0.02		99	90 - 110%
7440-38-2	ARSENIC	0.5	0.525	0.01		105	90 - 110%
7440-39-3	BARIUM	1	1.06	0.1		106	90 - 110%
7440-41-7	BERYLLIUM	0.5	0.488	0.005		98	90 - 110%
7440-43-9	CADMIUM	0.5	0.511	0.005		102	90 - 110%
7440-70-2	CALCIUM	50	50.8	1		102	90 - 110%
7440-47-3	CHROMIUM	1	1.01	0.01		101	90 - 110%
7440-48-4	COBALT	0.5	0.495	0.01		99	90 - 110%
7440-50-8	COPPER	1	1.04	0.01		104	90 - 110%
7439-89-6	IRON	20	20.3	0.1		101	90 - 110%
7439-92-1	LEAD	1	1.00	0.003		100	90 - 110%
7439-95-4	MAGNESIUM	50	50.1	1		100	90 - 110%
7439-96-5	MANGANESE	1	1.01	0.01		101	90 - 110%
7439-98-7	MOLYBDENUM	1	1.00	0.01		100	90 - 110%
7440-02-0	NICKEL	1	1.00	0.02		100	90 - 110%
7440-09-7	POTASSIUM	50	51.0	1		102	90 - 110%
7782-49-2	SELENIUM	1	0.997	0.005		100	90 - 110%
7440-22-4	SILVER	0.2	0.213	0.01		106	90 - 110%
7440-23-5	SODIUM	50	47.8	1		96	90 - 110%
7440-28-0	THALLIUM	0.5	0.535	0.01		107	90 - 110%
7440-31-5	TIN	1	1.03	0.05		103	90 - 110%
7440-61-1	URANIUM	5	5.09	0.2		102	90 - 110%
7440-62-2	VANADIUM	0.5	0.498	0.01		100	90 - 110%
7440-66-6	ZINC	1	0.977	0.02		98	90 - 110%

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 7 of 7

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: ICB

QC Type: Initial Calibration

Run ID: 1T120202-2A1

Date Analyzed: 02/02/2012 Time Analyzed: 3:09:00 PM

Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	Ç
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	Ų
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	Ų
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	Ų
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCB1

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 3:24:00 PM

Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	٦
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	U
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	C
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB2

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 3:30:00 PM

Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	Ų
7439-96-5	MANGANESE	0.01	0.01	C
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB3

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 3:57:00 PM

Time Analyzed: Result Units: MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	Ú
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	C
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	Ú
7439-96-5	MANGANESE	0.01	0.01	د
7439-98-7	MOLYBDENUM	0.01	0.01	C
7440-02-0	NICKEL	0.02	0.02	Ü
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	C
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 **Calibration Blanks**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: CCB4

Run ID: IT120202-2A1 **Date Analyzed:** 02/02/2012

QC Type: Continuing Calibration

4:21:00 PM

Time Analyzed: Result Units:

MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	U
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	υ
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	J
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Data Package ID: it1201354-1

ALS Environmental -- FC Date Printed: Wednesday, February 08, 2012

Page 5 of 7

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB5

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 4:46:00 PM

Result Units:

MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.2	0.2	U
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	U
7440-70-2	CALCIUM	1	1	U
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	U
7439-96-5	MANGANESE	0.01	0.01	U
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	U
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	U
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: CCB6

Run ID: IT120202-2A1

QC Type: Continuing Calibration

Date Analyzed: 02/02/2012 Time Analyzed: 5:10:00 PM

Result Units:

MG/L

CASNO	Target Analyte	Result	Reporting Limit	Result Qualifier
7429-90-5	ALUMINUM	0.247	0.2	
7440-36-0	ANTIMONY	0.02	0.02	U
7440-38-2	ARSENIC	0.01	0.01	U
7440-39-3	BARIUM	0.1	0.1	U
7440-41-7	BERYLLIUM	0.005	0.005	U
7440-43-9	CADMIUM	0.005	0.005	υ
7440-70-2	CALCIUM	1	1	υ
7440-47-3	CHROMIUM	0.01	0.01	U
7440-48-4	COBALT	0.01	0.01	U
7440-50-8	COPPER	0.01	0.01	U
7439-89-6	IRON	0.1	0.1	U
7439-92-1	LEAD	0.003	0.003	U
7439-95-4	MAGNESIUM	1	1	Ú
7439-96-5	MANGANESE	0.01	0.01	V
7439-98-7	MOLYBDENUM	0.01	0.01	U
7440-02-0	NICKEL	0.02	0.02	U
7440-09-7	POTASSIUM	1	1	U
7782-49-2	SELENIUM	0.005	0.005	Ü
7440-22-4	SILVER	0.01	0.01	U
7440-23-5	SODIUM	1	1	U
7440-28-0	THALLIUM	0.01	0.01	U
7440-31-5	TIN	0.05	0.05	υ
7440-61-1	URANIUM	0.2	0.2	U
7440-62-2	VANADIUM	0.01	0.01	U
7440-66-6	ZINC	0.02	0.02	U

Method SW6010 ICP Interference Check Sample

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012

Result Units: MG/L

CASNO	Target Analyte	Spike	Added	Res	ults	% Rec.
		ICSA1	ICSAB1	ICSA1	ICSAB1	
7429-90-5	ALUMINUM	250	250	263	213	85
7440-36-0	ANTIMONY		0.6		0.585	98
7440-38-2	ARSENIC		0.1		0.102	102
7440-39-3	BARIUM		0.5		0.552	110
7440-41-7	BERYLLIUM		0.5		0.48500	97
7440-43-9	CADMIUM		1		1	100
7440-70-2	CALCIUM	250	250	263	262	105
7440-47-3	CHROMIUM		0.5		0.49200	98
7440-48-4	COBALT		0.5		0.48600	97
7440-50-8	COPPER		0.5		0.551	110
7439-89-6	IRON	100	100	107	107	107
7439-92-1	LEAD		0.05		0.04980	100
7439-95-4	MAGNESIUM	250	250	264	265	106
7439-96-5	MANGANESE		0.5		0.514	103
7439-98-7	MOLYBDENUM		1		0.993	99
7440-02-0	NICKEL		1		0.991	99
7440-09-7	POTASSIUM					
7782-49-2	SELENIUM		0.05		0.0514	103
7440-22-4	SILVER		0.2		0.20200	101
7440-23-5	SODIUM					
7440-28-0	THALLIUM		0.1		0.10700	107
7440-31-5	TIN		1		1.03	103
7440-61-1	URANIUM		10		10.8000	108
7440-62-2	VANADIUM		0.5		0.49500	99
7440-66-6	ZINC		1		0.92000	92

Method SW6010 ICP Interference Check Sample

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IT120202-2A1

Date Analyzed: 02/02/2012

Result Units: MG/L

CASNO	Target Analyte	Spike	Added	Res	ults	% Rec.
		ICSA2	ICSAB2	ICSA2	ICSAB2	
7429-90-5	ALUMINUM	250	250	260	209	84
7440-36-0	ANTIMONY		0.6		0.58300	97
7440-38-2	ARSENIC		0.1		0.10300	103
7440-39-3	BARIUM		0.5		0.538	108
7440-41-7	BERYLLIUM		0.5		0.47900	96
7440-43-9	CADMIUM		1		1.01	101
7440-70-2	CALCIUM	250	250	259	262	105
7440-47-3	CHROMIUM		0.5		0.489	98
7440-48-4	COBALT		0.5		0.482	96
7440-50-8	COPPER		0.5		0.54400	109
7439-89-6	IRON	100	100	104	105	105
7439-92-1	LEAD		0.05		0.05160	103
7439-95-4	MAGNESIUM	250	250	262	263	105
7439-96-5	MANGANESE		0.5		0.506	101
7439-98-7	MOLYBDENUM		1		0.982	98
7440-02-0	NICKEL		1		0.982	98
7440-09-7	POTASSIUM					
7782-49-2	SELENIUM		0.05		0.0466	93
7440-22-4	SILVER		0.2		0.203	101
7440-23-5	SODIUM					
7440-28-0	THALLIUM		0.1		0.11200	112
7440-31-5	TIN		1		1.03	103
7440-61-1	URANIUM		10		10.5	105
7440-62-2	VANADIUM		0.5		0.48800	98
7440-66-6	ZINC		1		0.927	93

Metals Linear Ranges

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPTrace2
Active Date: 03/02/2010
Expiration Date: 05/31/2015

CASNO	Target Analyte	Concentration (ppm)
7429-90-5	ALUMINUM	500
7440-36-0	ANTIMONY	2
7440-38-2	ARSENIC	5
7440-39-3	BARIUM	10
7440-41-7	BERYLLIUM	1
7440-43-9	CADMIUM	5
7440-70-2	CALCIUM	500
7440-47-3	CHROMIUM	10
7440-48-4	COBALT	5
7440-50-8	COPPER	10
7439-89-6	IRON	200
7439-92-1	LEAD	10
7439-95-4	MAGNESIUM	500
7439-96-5	MANGANESE	10
7439-98-7	MOLYBDENUM	10
7440-02-0	NICKEL	10
7440-09-7	POTASSIUM	250
7782-49-2	SELENIUM	5
7440-22-4	SILVER	2
7440-23-5	SODIUM	150
7440-28-0	THALLIUM	5
7440-31-5	TIN	10
7440-61-1	URANIUM	50
7440-62-2	VANADIUM	5
7440-66-6	ZINC	10

ALS Environmental - FC

Page 1 of 1

ICP Interelement Correction Factors

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPTrace2

Active Date: 1/3/2012

Expiration Date: 1/3/2013

Page 1

Analyte	Lamda	Al	Sb	As	Ba	Be	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Ni	Th
	(nm)																
ALUMINUM																	
ANTIMONY									0.0103504								
ARSENIC																	
BERYLLIUM																	
CADMIUM				0,0068507													
CHROMIUM																	
COBALT					-0.001400												
COPPER																	
LEAD		0.0002559										0.0000304					
MANGANESE										***************************************							
SELENIUM												-0.000371					
SILVER																	
THALLIUM										******		-0.000475			-0.000176		
TIN																	
URANIUM												6.809E-05					
VANADIUM								 		***************************************		-0.000159				•••••	
ZINC																	

ICP Interelement Correction Factors

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPTrace2 **Active Date: 1/3/2012**

Expiration Date: 1/3/2013

Page 2

Analyte	Lamda (nm)	К	Se	Ag	Na	TI	V	Zn	Sn	Ti	Мо	Li	Sr	В	Si	U	Zr
ALUMINUM							0.0125517				0.0033239					-0.035496	
ANTIMONY			<u> </u>				0.0120011				-0.007006						
ARSENIC																	
BERYLLIUM																,	
CADMIUM		_						-									
CHROMIUM		_				-						_				0.0005333	
COBALT										0,002105							
COPPER]		Ĭ .									0.0010734	
LEAD							0.0010513			-0.000532	-0.001821					0.0006768	
MANGANESE																	
SELENIUM																-0.000948	
SILVER				_												0.0006982	0,0038966
THALLIUM							0.0006359			0.0006156						-0.000582	
TIN										0.0011632							
URANIUM																	
VANADIUM																	
ZINC																	

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2 File Name: 120202A. AnalRunID: IT120202-2A1 CalibRefID: IT120202-2A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		MIXBHIGH	1	2/2/2012	14:37
		MIXAHIGH	1	2/2/2012	14:39
		MIXCHIGH	1	2/2/2012	14:41
		ICV	1	2/2/2012	15:07
		ICB	1	2/2/2012	15:09
		CRI1	1	2/2/2012	15:12
		ZZZ	1	2/2/2012	15:14
		ICSA1	1	2/2/2012	15:18
		ICSAB1	1	2/2/2012	15:20
		CCV1	1	2/2/2012	15:22
		CCB1	1	2/2/2012	15:24
		CCV2	1	2/2/2012	15:26
		CCB2	1	2/2/2012	15:30
		ZZZ	1	2/2/2012	15:32
		IP120202-2MB	1	2/2/2012	15:36
		IP120202-2LCS	1	2/2/2012	15:38
	JM-54-31-120128	1201354-1	1	2/2/2012	15:40
	JM-54-31-120128	1201354-1DUP	1	2/2/2012	15:42
	JM-54-31-120128	1201354-1SER	5	2/2/2012	15:44
	JM-54-31-120128	1201354-1MS	1	2/2/2012	15:47
	JM-54-31-120128	1201354-1MSD	1	2/2/2012	15:49
	JM-55-31-120128	1201354-2	1	2/2/2012	15:51
	JM-65-31-120128	1201354-3	1	2/2/2012	15:53
		CCV3	1	2/2/2012	15:55
		CCB3	1	2/2/2012	15:57
	JM-66-31-120128	1201354-4	1	2/2/2012	15:59
	JM-70-31-120128	1201354-5	1	2/2/2012	16:01
	JM-70-32-120128	1201354-6	1	2/2/2012	16:03
	JM-73-31-120128	1201354-7	1	2/2/2012	16:05
	JM-77-31-120128	1201354-8	1	2/2/2012	16:07
	JM-82-31-120128	1201354-9	1	2/2/2012	16:09
	JM-84-31-120128	1201354-10	1	2/2/2012	16:11
	JM-88-31-120128	1201354-11	1	2/2/2012	16:13
	JMBKGD-NE-31-120128	1201354-12	1	2/2/2012	16:15
- Fe,Pb,Se,Tl,U,V	JMBKGD-NW-31-120128	1201354-13	1	2/2/2012	16:16

Data Package ID: IT1201354-1

ALS Environmental -- FC

LIMS Version: 6.560

Date Printed: Wednesday, February 08, 2012

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2
File Name: 120202A.
AnalRunID: IT120202-2A1
CalibRefID: IT120202-2A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		CCV4	1	2/2/2012	16:19
		CCB4	1	2/2/2012	16:21
		EX120201-2MB	1	2/2/2012	16:23
		EX120201-2	1	2/2/2012	16:25
- Na		EX120201-2LCS	1	2/2/2012	16:27
		1201363-11	1	2/2/2012	16:29
		1201363-11DUP	1	2/2/2012	16:31
		1201363-11SER	5	2/2/2012	16:33
- Na		1201363-11MS	1	2/2/2012	16:35
- Na		1201363-11MSD	1	2/2/2012	16:38
		1201363-13	1	2/2/2012	16:40
		1201363-15	1	2/2/2012	16:42
		CCV5	1	2/2/2012	16:44
		CCB5	1	2/2/2012	16;46
		1201363-17	1	2/2/2012	16:48
		1201363-19	1	2/2/2012	16:50
		ZZZ	1	2/2/2012	16:52
+ Ba,Ca,Sb,V,Zn	JM-54-31-120128	1201354-1A	1	2/2/2012	16:58
+ Fe,Pb,Se,TlU,V	JMBKGD-NW-31-120128	1201354-13	5	2/2/2012	17:00
		CRI2	1	2/2/2012	17:02
		ICSA2	1	2/2/2012	17:04
		ICSAB2	1	2/2/2012	17:06
		CCV6	1	2/2/2012	17:09
		CCB6	1	2/2/2012	17:10

Method SW6020A Method Blank

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: IP120202-2MB

Sample Matrix: SOIL % Moisture: N/A

Date Collected: N/A Date Extracted: 02-Feb-12 Date Analyzed: 03-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-2 Run ID: IM120203-10A1 Cleanup: NONE

Sample Aliquot:

Final Volume:

Result Units: UG/KG

Clean DF:

1 g

100 ml

Basis: N/A

File Name: 027SMPL_

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7440-61-1	URANIUM	10	13	10		

Data Package ID: im1201354-1

57 of 195

Method SW6020A **Laboratory Control Sample**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: IM120202-2LCS

Sample Matrix: SOIL

Prep Batch: IP120202-2

Sample Aliquot: 1 g

% Moisture: N/A

QCBatchID: IP120202-2-2

Final Volume: 100 ml

Date Collected: N/A

Run ID: IM120203-10A1

Result Units: UG/KG

Date Extracted: 02/02/2012

Cleanup: NONE Basis: N/A

Clean DF:

Date Analyzed: 02/03/2012

8SMPL_

Prep Method: SW 30	50B	File	Name:	028

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
7440-61-1	URANIUM	1000	990	10		99	80 - 120%

Method SW6020A Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

Target Analyte

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

LabID: 1201354-1MS

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 03-Feb-12

Prep Method: SW 3050 Rev B

Sample

Result

38000

Prep Batch: IP120202-2

QCBatchID: IP120202-2-2

Run ID: IM120203-10A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.018 g

Final Volume: 100 ml Result Units: UG/KG File Name: 032SMPL

Reporting	Spike	MS %	Control
Limit	Added	Rec.	Limits

-80

75 - 125%

Field ID: JM-54-31-120128 LabID: 1201354-1MSD

URANIUM

CASNO

7440-61-1

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 03-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

MS

Qual

11.2

QCBatchID: IP120202-2-2

Run ID: IM120203-10A1 Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 1.015 g Final Volume: 100 ml

1120

Result Units: UG/KG File Name: 033SMPL

CASNO Target Analyte MSD MSD Spike MSD % Reporting **RPD RPD** Added Limit Result Qual Rec. Limit 7440-61-1 URANIUM 38600 1130 57 11.3 20 4

Samp

Qual

MS

Result

37100

Method SW6020 **Duplicate Sample Results**

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1D

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 01/28/2012 Date Extracted: 02/02/2012

Date Analyzed: 02/03/2012

Prep Batch: IP120202-2

QCBatchID: IP120202-2-2 Run ID: IM120203-10A1

Cleanup: NONE

Basis: Dry Weight File Name: 030SMPL_

Sample Aliquot: Final Volume:

1.023 g 100 ml

Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Sample Result	Samp Qual	Duplicate Result	Dup Qual	Reporting Limit	Dilution Factor	RPD	RPD Limit
7440-61-1	URANIUM	38000		36900		11.2	10	3	20

Method SW6020 Serial Dilution

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1L

Run ID: IM120203-10A1

Date Analyzed: 03-Feb-12

Result Units: mg/l

CASNO	Target Analyte	Sample Result	Samp Qual	SD Result	SD Qual	EPA Qualifier	%D
7440-61-1	URANIUM	0.0341		0.0347			2

Prep Batch ID: IP120202-2

Start Date: 02/02/12 Start Time: 7:00

Comments:

Prep Analyst: Brent A. Stanfield

End Date: 02/02/12 End Time: 17:00 Concentration Method: NONE Extract Method: SW 3050B

Initial Volume Units: g
Final Volume Units: ml

Batch Created By: bas

Date Created: 02/02/12

Time Created: 7:00 Validated By: bas Date Validated: 02/02/12

Time Validated: 7:35

QC Batch ID: IP120202-2-2

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Number
IP120202-2	MB	XXXXXX	SOIL	XXXXXX	1	100	NONE	1	1201354
IM120202-2	LCS	XXXXXX	SOIL	XXXXXX	1	100	NONE	1	1201354
1201354-1	MS	JM-54-31-120128	SOIL	1/28/2012	1.018	100	NONE	1	1201354
1201354-1	MSD	JM-54-31-120128	SOIL	1/28/2012	1.015	100	NONE	1	1201354
1201354-1	DUP	JM-54-31-120128	SOIL	1/28/2012	1.023	100	NONE	1	1201354
1201354-1	SMP	JM-54-31-120128	SOIL	1/28/2012	1.027	100	NONE	1	1201354
1201354-10	SMP	JM-84-31-120128	SOIL	1/28/2012	1.022	100	NONE	1	1201354
1201354-11	SMP	JM-88-31-120128	SOIL	1/28/2012	1.007	100	NONE	1	1201354
1201354-12	SMP	JMBKGD-NE-31-1201	SOIL	1/28/2012	1.033	100	NONE	1	1201354
1201354-13	SMP	JMBKGD-NW-31-120	SOIL	1/28/2012	1.014	100	NONE	1	1201354
1201354-2	SMP	JM-55-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	1201354
1201354-3	SMP	JM-65-31-120128	SOIL	1/28/2012	1.001	100	NONE	1	1201354
1201354-4	SMP	JM-66-31-120128	SOIL	1/28/2012	1.041	100	NONE	1	1201354
1201354-5	SMP	JM-70-31-120128	SOIL	1/28/2012	1.034	100	NONE	1	1201354
1201354-6	SMP	JM-70-32-120128	SOIL	1/28/2012	1.004	100	NONE	1	1201354
1201354-7	SMP	JM-73-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	1201354
1201354-8	SMP	JM-77-31-120128	SOIL	1/28/2012	1.012	100	NONE	1	1201354
1201354-9	SMP	JM-82-31-120128	SOIL	1/28/2012	1.031	100	NONE	1	1201354

QC Types

CAR	Carrier reference sample	DUP	Laboratory Duplicate
LCS	Laboratory Control Sample	LCSD	Laboratory Control Sample Duplicat
МВ	Method Blank	MS	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate	REP	Sample replicate
RVS	Reporting Level Verification Standar	SMP	Field Sample
SYS	Sample Yield Spike		

URANIUM

Method SW6020

Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IM120203-10A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
ICV	Initial Calibration	2/3/2012	10:12	0.002	0.00191	0.00001	N/A	96	90 - 110
CCV1	Continuing Calibration	2/3/2012	10:26	0.001	0.000991	0.00001	N/A	99	90 - 110
CCV2	Continuing Calibration	2/3/2012	10:51	0.001	0.00104	0.00001	N/A	104	90 - 110
CCV3	Continuing Calibration	2/3/2012	11:19	0.001	0.00103	0.00001	N/A	103	90 - 110
CCV4	Continuing Calibration	2/3/2012	11:47	0.001	0.00103	0.00001	N/A	103	90 - 110
CCV5	Continuing Calibration	2/3/2012	12:39	0.001	0.00101	0.00001	N/A	101	90 - 110
CCV6	Continuing Calibration	2/3/2012	12:57	0.001	0.00102	0.00001	N/A	102	90 - 110

Data Package ID: im1201354-1

ALS Environmental -- FC
LIMS Version: 6.560

Page 8 of 8

URANIUM

Method SW6020

Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IM120203-10A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Result	Reporting Limit	Flag
ICB	Initial Calibration	2/3/2012	10:14	0.00001	0.00001	U
CCB1	Continuing Calibration	2/3/2012	10:28	0.00001	0.00001	U
CCB2	Continuing Calibration	2/3/2012	10:54	0.00001	0.00001	C
CCB3	Continuing Calibration	2/3/2012	11:21	0.00001	0.00001	υ
CCB4	Continuing Calibration	2/3/2012	11:49	0.00001	0.00001	C
CCB5	Continuing Calibration	2/3/2012	12:41	0.00001	0.00001	U
CCB6	Continuing Calibration	2/3/2012	12:59	0.00001	0.00001	U

Data Package ID: im1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 8 of 8

Method SW6020 ICP Interference Check Sample

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: IM120203-10A1

Date Analyzed: 02/03/2012

Result Units: MG/L

CASNO	Target Analyte	Spike	Spike Added		ults	% Rec.
		ICSA1	ICSAB1	ICSA1	ICSAB1	
7440-38-2	ARSENIC		0.01		0.01	100
7440-39-3	BARIUM		0.01		0.0105	105
7440-43-9	CADMIUM		0.003		0.00314	105
7440-47-3	CHROMIUM		0.05		0.05090	102
7439-92-1	LEAD		0.005		0.00506	101
7782-49-2	SELENIUM		0.01		0.01030	103
7440-22-4	SILVER		0.001		0.00104	104
7440-61-1	URANIUM		0.001		0.00103	103

Metals Linear Ranges

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: ICPMS2
Active Date: 04/01/2010
Expiration Date: 04/01/2015

CASNO	Target Analyte	Concentration (ppm)
7429-90-5	ALUMINUM	50
7440-36-0	ANTIMONY	0.3
7440-38-2	ARSENIC	1
7440-39-3	BARIUM	1
7440-41-7	BERYLLIUM	0.5
7440-43-9	CADMIUM	0.3
7440-70-2	CALCIUM	500
7440-47-3	CHROMIUM	5
7440-48-4	COBALT	1
7440-50-8	COPPER	10
7439-89-6	IRON	50
7439-92-1	LEAD	0.5
7439-95-4	MAGNESIUM	100
7439-96-5	MANGANESE	2
7439-98-7	MOLYBDENUM	1
7440-02-0	NICKEL	5
7440-09-7	POTASSIUM	500
7782-49-2	SELENIUM	1
7440-22-4	SILVER	0.1
7440-23-5	SODIUM	1000
7440-28-0	THALLIUM	0.02
7440-31-5	TIN	5
7440-61-1	URANIUM	0.1
7440-62-2	VANADIUM	1
7440-66-6	ZINC	20

ICPMS2 Run Log -- 2/3/2012

Instrument ID: ICPMS2
File Name: 003CALB_
AnalRunID: IM120203-10A1
CalibRefID: IM120203-10A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		blank	1	2/3/2012	10:00
		H/1000	1	2/3/2012	10:03
		H/100	1	2/3/2012	10:05
		H/10	1	2/3/2012	10:07
		HIGH	1	2/3/2012	10:10
		ICV	1	2/3/2012	10:12
		ICB	1	2/3/2012	10:14
		CRI1	1	2/3/2012	10:17
		CRI2	1	2/3/2012	10:19
		ICSA1	1	2/3/2012	10:21
		ICSAB1	1	2/3/2012	10:24
		CCV1	1	2/3/2012	10:26
		CCB1	1	2/3/2012	10:28
		EX120201-2MB	10	2/3/2012	10:30
		EXM120201-2	10	2/3/2012	10:33
		EXM120201-2LCS	10	2/3/2012	10:35
		1201363-11	10	2/3/2012	10:37
		1201363-11DUP	10	2/3/2012	10:40
		1201363-11SER	50	2/3/2012	10:42
		1201363-11MS	10	2/3/2012	10:44
		1201363-11MSD	10	2/3/2012	10:47
		1201358-2	50	2/3/2012	10:49
		CCV2	1	2/3/2012	10:51
		CCB2	1	2/3/2012	10:54
		IP120202-2MB	10	2/3/2012	10:56
		IM120202-2LCS	10	2/3/2012	10:58
	JM-54-31-120128	1201354-1	10	2/3/2012	11:01
	JM-54-31-120128	1201354-1DUP	10	2/3/2012	11:03
	JM-54-31-120128	1201354-1SER	50	2/3/2012	11:05
	JM-54-31-120128	1201354-1MS	10	2/3/2012	11:08
	JM-54-31-120128	1201354-1MSD	10	2/3/2012	11:10
		ZZZZZZ	1	2/3/2012	11:12
		<u> 227277</u>	1	2/3/2012	11:14
		277777	1	2/3/2012	11:17
		CCV3	1	2/3/2012	11:19

ICPMS2 Run Log -- 2/3/2012

Instrument ID: ICPMS2
File Name: 038SMPL_
AnalRunID: IM120203-10A1
CalibRefID: IM120203-10A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		CCB3	1	2/3/2012	11:21
		ZZZZZZ	1	2/3/2012	11:24
		ZZZZZZ	1	2/3/2012	11:26
		ZZZZZZ	1	2/3/2012	11:28
		777777	1	2/3/2012	11:31
		<u> 277777</u>	1	2/3/2012	11:33
		ZZ ZZ Z	1	2/3/2012	11:35
		ZZZZZZ	1	2/3/2012	11:38
		Z <u>ZZZZZ</u>	1	2/3/2012	11:40
		ZZZZZZ	1	2/3/2012	11:42
- As,Se		1201358-1	50	2/3/2012	11:45
		CCV4	1	2/3/2012	11:47
		CCB4	1	2/3/2012	11:49
	JMBKGD-NE-31-120128	1201354-12	10	2/3/2012	12:16
	JMBKGD-NW-31-120128	1201354-13	10	2/3/2012	12:18
	JM-55-31-120128	1201354-2	100	2/3/2012	12:20
	JM-65-31-120128	1201354-3	100	2/3/2012	12:23
	JM-66-31-120128	1201354-4	10	2/3/2012	12:25
	JM-70-31-120128	1201354-5	100	2/3/2012	12:27
	JM-70-32-120128	1201354-6	100	2/3/2012	12:30
	JM-73-31-120128	1201354-7	100	2/3/2012	12:32
	JM-77-31-120128	1201354-8	100	2/3/2012	12:34
	JM-82-31-120128	1201354-9	100	2/3/2012	12:37
		CCV5	1	2/3/2012	12:39
		CCB5	1	2/3/2012	12:41
	JM-84-31-120128	1201354-10	10	2/3/2012	12:43
	JM-88-31-120128	1201354-11	100	2/3/2012	12:46
Ag,Ba,Cd,Cr,Pb,U		1201358-1	50	2/3/2012	12:55
		CCV6	1	2/3/2012	12:57
		CCB6	1	2/3/2012	12:59

Method SW7471A Method Blank

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Lab ID: HG120206-1MB

Sample Matrix: SOIL % Moisture: N/A

Date Collected: N/A
Date Extracted: 06-Feb-12

Date Analyzed: 07-Feb-12 Prep Method: METHOD Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1 Cleanup: NONE

Basis: N/A File Name: HG120206-1 Sample Aliquot: 0.6 g Final Volume: 100 g

Result Units: MG/KG Clean DF: 1

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7439-97-6	MERCURY	1	0.033	0.033	U	

Method SW7471A Laboratory Control Sample

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Lab ID: HG120206-1LCS

Sample Matrix: SOIL % Moisture: N/A Prep Batch: HG120206-1 QCBatchID: HG120206-1-1 Run ID: HG120207-1A1

Cleanup: NONE

Sample Aliquot: 0.6 g Final Volume: 100 g Result Units: MG/KG Clean DF: 1

Date Collected: N/A
Date Extracted: 02/06/2012

Date Analyzed: 02/07/2012 Basis: N/A

Prep Method: METHOD File Name: HG120206-1

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
7439-97-6	MERCURY	0.167	0.168	0.0333		101	80 - 120%

Data Package ID: hg1201354-1

ALS Environmental - FC
LIMS Version: 6.560

Page 1 of 1

Method SW7471A Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

Target Analyte

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JMBKGD-NW-31-12012

LabID: 1201354-13MS

Sample Matrix: SOIL % Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 06-Feb-12

Date Analyzed: 07-Feb-12 Prep Method: METHOD

Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 0.604 g

Final Volume: 100 g Result Units: MG/KG File Name: HG120206-1

Sample Result	Samp Qual	MS Result	MS Qual	Reporting Limit	Spike Added	MS % Rec.	Control Limits
0.036	U	0.39		0.0358	0.358	109	80 - 120%

Field ID: JMBKGD-NW-31-12012

CASNO

7439-97-6

LabID: 1201354-13MSD

MERCURY

Sample Matrix: SOIL % Moisture: 7.4

Date Collected: 28-Jan-12 Date Extracted: 06-Feb-12 Date Analyzed: 07-Feb-12

Prep Method: METHOD

Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1 Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 0.607 g Final Volume: 100 g Result Units: MG/KG

File Name: HG120206-1

CASNO	Target Analyte	MSD Result	MSD Qual	Spike Added	MSD % Rec.	Reporting Limit	RPD Limit	RPD
7439-97-6	MERCURY	0.39		0.356	110	0.0356	20	0

Data Package ID: hg1201354-1

71 of 195

Method SW7471 Duplicate Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JMBKGD-NW-31-12012

Lab ID: 1201354-13D

Sample Matrix: SOIL

% Moisture: 7.4

Date Collected: 01/28/2012

Date Extracted: 02/06/2012

Date Analyzed: 02/07/2012

Prep Batch: HG120206-1

QCBatchID: HG120206-1-1 Run ID: HG120207-1A1

Cleanup: NONE

Basis: Dry Weight

File Name: HG120206-1

Sample Aliquot: 0.616 g

Final Volume: 100 g Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Sample Result	Samp Qual	Duplicate Result	Dup Qual	Reporting Limit	Dilution Factor	RPD	RPD Limit
7439-97-6	MERCURY	0.036	U	0.0351	บ	0.0351	1		20

Prep Batch ID: HG120206-1

Start Date: 02/06/12 Start Time: 8:32 End Date: 02/06/12

Concentration Method: NONE
Extract Method: METHOD

Batch Created By: SKL
Date Created: 02/06/12

Start Time: 8:32
Prep Analyst: Sheri Lafferty

Comments:

End Time: 8:32

Initial Volume Units: 9
Final Volume Units: 9

Time Created: 8:32

Validated By: SKL

Date Validated: 02/07/12

Time Validated: 7:48

QC Batch ID: HG120206-1-1

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Numbe
HG120206-1	MB	XXXXXX	SOIL	XXXXXX	0.6	100	NONE	1	120135
HG120206-1	LCS	XXXXXX	SOIL	XXXXXX	0.6	100	NONE	1	120135
1201354-13	MS	JMBKGD-NW-31-120	SOIL	1/28/2012	0.604	100	NONE	1	120135
1201354-13	MSD	JMBKGD-NW-31-120	SOIL	1/28/2012	0.607	100	NONE	1	120135
1201354-13	DUP	JMBKGD-NW-31-120	SOIL	1/28/2012	0.616	100	NONE	1	120135
1201354-1	SMP	JM-54-31-120128	SOIL	1/28/2012	0.614	100	NONE	1	120135
1201354-10	SMP	JM-84-31-120128	SOIL	1/28/2012	0.61	100	NONE	1	120135
1201354-11	SMP	JM-88-31-120128	SOIL	1/28/2012	0.602	100	NONE	1	120135
1201354-12	SMP	JMBKGD-NE-31-1201	SOIL	1/28/2012	0.614	100	NONE	1	120135
1201354-13	SMP	JMBKGD-NW-31-120	SOIL	1/28/2012	0.608	100	NONE	1	120135
1201354-2	SMP	JM-55-31-120128	SOIL	1/28/2012	0.616	100	NONE	1	120135
1201354-3	SMP	JM-65-31-120128	SOIL	1/28/2012	0.603	100	NONE	1	120135
1201354-4	SMP	JM-66-31-120128	SOIL	1/28/2012	0.613	100	NONE	1	120135
1201354-5	SMP	JM-70-31-120128	SOIL	1/28/2012	0.605	100	NONE	1	120135
1201354-6	SMP	JM-70-32-120128	SOIL	1/28/2012	0.6	100	NONE	1	120135
1201354-7	SMP	JM-73-31-120128	SOIL	1/28/2012	0.615	100	NONE	1	120135
1201354-8	SMP	JM-77-31-120128	SOIL	1/28/2012	0.604	100	NONE	1	120135
1201354-9	SMP	JM-82-31-120128	SOIL	1/28/2012	0.608	100	NONE	1	120135

QC Types

CAR	Carrier reference sample	DUP	Laboratory Duplicate
LCS	Laboratory Control Sample	LCSD	Laboratory Control Sample Duplicat
мв	Method Blank	мѕ	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate	REP	Sample replicate
RVS	Reporting Level Verification Standar	SMP	Field Sample
SYS	Sample Yield Spike		

MERCURY

Method SW7471

Calibration Verifications

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: HG120207-1A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Spike Added	Result	Reporting Limit	Result Qualifier	% Rec.	Control Limits
ICV	Initial Calibration	2/7/2012	10:45	0.001	0.00106	0.0002	N/A	106	90 - 110
CCV1	Continuing Calibration	2/7/2012	11:11	0.002	0.00199	0.0002	N/A	99	80 - 120
CCV2	Continuing Calibration	2/7/2012	11:37	0.002	0.00206	0.0002	N/A	103	80 - 120
CCV3	Continuing Calibration	2/7/2012	11:44	0.002	0.00208	0.0002	N/A	104	80 - 120

Data Package ID: hg1201354-1

Date Printed: Wednesday, February 08, 2012

MERCURY

Method SW7471

Calibration Blanks

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Run ID: HG120207-1A1

Result Units: MG/L

Lab ID	Verification Type	Date Analyzed	Time Analyzed	Result	Reporting Limit	Flag
ICB	Initial Calibration	2/7/2012	10:48	0.0002	0.0002	υ
CCB1	Continuing Calibration	2/7/2012	11:14	0.0002	0.0002	U
CCB2	Continuing Calibration	2/7/2012	11:39	0.0002	0.0002	U
CCB3	Continuing Calibration	2/7/2012	11:46	0.0002	0.0002	U

Data Package ID: hg1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 1 of 1

Metals Linear Ranges

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Instrument ID: CETAC7500 Active Date: 07/19/2010 Expiration Date: 10/17/2020

CASNO	Target Analyte	Concentration (ppm)
7439-97-6	MERCURY	0.01

ALS Environmental - FC LIMS Version: 6.560

Page 1 of 1

Date Printed: Wednesday, February 08, 2012

Mercury Run Log -- 2/7/2012

Instrument ID: CETAC7500 File Name: HG120206-1 AnalRunID: HG120207-1A1 CalibRefID: HG120207-1A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		STD0	1	2/7/2012	10:30
		STD1	1	2/7/2012	10:32
		STD2	1	2/7/2012	10:35
		STD3	1	2/7/2012	10:37
		STD4	1	2/7/2012	10:39
		STD5	1	2/7/2012	10;41
		STD6	1	2/7/2012	10:43
		ICV	1	2/7/2012	10:45
		ICB	1	2/7/2012	10:48
		CRA1	1	2/7/2012	10:50
		HG120206-1MB	1	2/7/2012	10:52
		HG120206-1LCS	1	2/7/2012	10:54
	JM-54-31-120128	1201354-1	1	2/7/2012	10:56
	JM-55-31-120128	1201354-2	1	2/7/2012	10:58
	JM-65-31-120128	1201354-3	1	2/7/2012	11:00
	JM-66-31-120128	1201354-4	1	2/7/2012	11:02
	JM-70-31-120128	1201354-5	1	2/7/2012	11:05
	JM-70-32-120128	1201354-6	1	2/7/2012	11:07
	JM-73-31-120128	1201354-7	1	2/7/2012	11:09
		CCV1	1	2/7/2012	11:11
		CCB1	1	2/7/2012	11:14
	JM-77-31-120128	1201354-8	1	2/7/2012	11:16
	JM-82-31-120128	1201354-9	1	2/7/2012	11:18
	JM-84-31-120128	1201354-10	1	2/7/2012	11:20
	JM-88-31-120128	1201354-11	1	2/7/2012	11:22
	JMBKGD-NE-31-120128	1201354-12	1	2/7/2012	11:24
	JMBKGD-NW-31-120128	1201354-13	1	2/7/2012	11:26
	JMBKGD-NW-31-120128	1201354-13DUP	1	2/7/2012	11:29
		1201354-13L	5	2/7/2012	11:31
	JMBKGD-NW-31-120128	1201354-13MS	1	2/7/2012	11:33
	JMBKGD-NW-31-120128	1201354-13MSD	1	2/7/2012	11:35
		CCV2	1	2/7/2012	11:37
		CCB2	1	2/7/2012	11:39
		CRA2	1	2/7/2012	11:41
		CCV3	1	2/7/2012	11:44

Data Package ID: HG1201354-1

Date Printed: Wednesday, February 08, 2012

Mercury Run Log -- 2/7/2012

Instrument ID: CETAC7500 File Name: HG120206-1 AnalRunID: HG120207-1A1 CalibRefID: HG120207-1A1

Comment	Field ID	Lab ID	DF	Date Analyzed	Time Analyzed
		CCB3	1	2/7/2012	11:46

Raw Data

HEADER INFORMATION FOR ANALYTICAL SEQUENCE 120202A Analyst: Michael Lundgreen

STANDARD SOLUTION CODES

	Stock A	(ST111115-1) Exp.6-30-2012				
<u>Element</u>		ug/ml				
Al, Ca, Mg		1000				
K		500				
Na		300				
Fe		400				
Li		20				
Standard	Dilution	Procedure				
A1	1/2 of Stock A	5ml of Stock A to 10ml final volume.				
A2	1/2.5 of Stock A	2ml of Stock A to a 5ml final volume.				
A3	1/5 of Stock A	1ml of Stock A to a 5ml final volume.				
A3 A4	1/10 of A1	1ml of Standard A1 up to a 10ml final volume.				
A5	1/10 of A4	1ml of Standard A4 up to a 10ml final volume.				
AS	1/10 01 A4	Till of Standard A4 up to a Tolli lillar volume.				
	Stock I	3 (ST100625-8) Exp. 2-28-15				
Element		ug/ml				
P, Si		100				
•	n, Mo, Ni, Pb, Sn, Sr, Ti ,Zn					
As, Cd, Co, Se, T		10				
Sb Sb	1, *	4				
Be		2				
DC		2				
	Stools Ac. 100	00 ya/m1 (ST100407.4) Evr. 2.29.15				
Stock Ag- 1000 ug/ml (ST100407-4) Exp. 2-28-15 Stock Th – 1000 ug/ml (ST100407-5) Exp. 2-28-15						
	Stock III – Too	00 ug/iii (31100407-3) Exp. 2-26-13				
The following dil	utions of Stock Ag and Stoc	k Th are made to provide the daily calibration Standards.				
The following di	ditions of Stock Ag and Stoc	k in are made to provide the daily cantifation standards.				
Standard	Dilution	Procedure				
B1	1/2 of Stock B	5ml of Stock B, 0.02ml of Stock Ag and 0.02ml of Stock				
Di	1/500 Ag and 1/500 Th	Th up to a 10ml final volume.				
B2	1/10 of B1	1.0ml of Standard B1 up to a 10ml final volume.				
B3	1/10 of B2	1.0ml of Standard B2 up to a 10ml final volume.				
БЭ	1/10 01 B2	1.0111 of Standard B2 up to a Tollin linar volume.				
Stock C (ST100625-9) Exp. 6-30-15						
Element	No.	ug/ml				
S, U		100				
Bi, Zr		10				
Standard	Dilution	Procedure				
C1	1/2 of Stock C	5ml of Stock C up to a 10ml final volume.				
C1 C2	1/10 of C1	1.0ml of Standard C1 up to a 10ml final volume.				
C2 C3	1/10 of C2	1.0ml of Standard C2 up to a 10ml final volume.				
CS	1/10 01 C2	1.000 of Standard C2 up to a Total milat volume.				
RL STD (Reporting Limit Standard) Intermediate.						
(ST100301-54) Exp. 2-28-15						
Element	(~~	ug/ml				
K, Na		500				
Ca, Mg		200				
Al, U		100				
B, Fe, P, S, Si		50				
Li, Mo, Sn, Sr, Ti		10				
Sb	7n 7e	8				
Ni, As, Bi, Se, Tl	, Zn, Zr	5				
Pb		3				
Ag, Ba, Co, Cr, C	u, Mn, V, Th	2				
Be, Cd		1				

RL STD (working standard) made daily by diluting the intermediate above 1000 fold. This working standard has concentration levels at the normal ALS-FC reporting limits for all elements except Ca, Mg and Na, K which are at 0.2ppm and 0.5ppm; this is below the normal ALS-FC reporting limit.

RL2 (working standard) made daily by diluting the intermediate above 333 fold.

Blank Solution

Double D.I. water, 3% HNO₃ and 5%HCl Used for Std. Blank, ICB and CCB

<u>ug/ml</u>
50
20
5
1
0.5
0.2

ICV (ST111116-2) Exp. 6-20-12

Prepared daily by diluting the CCV (described above) ½.

The 1/2 dilution is made by diluting 5ml of the CCV to a 10ml final volume.

The resulting concentrations are:

Element	ug/m
Al, Ca, Mg, K, Na	25
Fe	10
U, P, S, Si	2.5
B, Ba, Cr, Cu, Mn, Mo, Ni, Pb, Se, Sn, Zn, Zr	0.5
As, Be, Bi, Cd, Co, Li, Sb, Sr, Ti, Tl, V	0.25
Ag, Th	0.1

CRI (ST110105-13) Exp. 6-20-12

Made By diluting

1.0ml of CRI Stock (ST110105-4) Exp. 6-20-12

to a 100ml final volume.

<u>Element</u>	<u>ug/ml</u>
Ca, Mg, K, Na	5.0
Al, B, Ba	0.4
Fe, U, P, S	0.2
Sb	0.12
Co, Si,, Sn, V, Th	0.1
Ni	0.08
Cu, Bi, Zr	0.05
Zn	0.04
Mn	0.03
Ag, Cr, Li, Mo, Sr, Ti, Tl	0.02
Be, Cd, As, Se,	0.01
Pb	0.006

	ICSA (ST110105-7) Exp. 6-20-12	
<u>Element</u>	ug/ml	
Ca, Mg, Al	250	
Fe	100	

	ICSAB (ST110105-8) Exp. 6-20-12	
<u>Element</u>	<u>ug/ml</u>	
Ca, Mg, Al	250	
Fe	100	
U	10	

Sb	0.6
Ba, Be, Co, V, Cr, Cu, Mn, Bi, Zr	0.5
Ag	0.2
As, Tl	0.1
Se, Pb, Th	0.05

Pipette ID Numbers

1.0ml to 5.0ml --- M-55 0.1ml to 1.0ml --- M-61 0.01ml to 0.1ml --- M-57

Acid Lot Numbers

HCl – J35042 HNO₃ – J41037

Inter Element Correction Information

The following table summarizes spectral interferences that have been identified and for which IEC's are used. If a sample contains a concentration of an interfering element that exceeds the upper analytical range, and an affected element is being determined, it is necessary to dilute the sample to bring the interfering element into analytical range.

Interfering Element (ug/ml)	Affected Element
Al (500)	Pb
Mg (500)	Th
Fe (200)	Se, Tl, V, Pb, U
Si (50)	Zr
U (50)	Al, Cr, Cu, Bi, Pb, Mg, Se, Ag, Tl, Si
Ba (10)	Co
Cr (10)	Sb
Cu (10)	Bi
Mn (10)	Tl
Mo (10)	Al, Si, Pb,, Sb
Ti (10)	Co, Bi, Si, Sn, Tl, Pb, Zr
As (5)	Cd
V (5)	Al, Be, Tl
Zr (5)	Ag

The following table lists element concentrations (ug/ml) that no significant spectral interferences have been observed.

Element	Concentration	Element	Concentration	Element	Concentration
K	500	Se	10		
Na	500	Pb	10	Li	5
Ca	500	Zn	10	Cd	5
P	50	Sr	10	Co	5
S	50	Sn	10	Ag	2
Ni	10	Bi	5	Sb	2
В	10	Tl	5	Be	1

- 2X Dilution made by diluting 2.5ml of sample up to a 5ml final volume.
- 3X Dilution made by diluting 2.0ml of sample up to a 6ml final volume.
- 4X Dilution made by diluting 2.0ml of sample up to a 8ml final volume.
- 5X Dilution made by diluting 1.0ml of sample to a 5ml final volume.
- 10X Dilution made by diluting 0.5ml of sample to a 5ml final volume.
- 20X Dilution made by diluting 0.25ml of sample to a 5ml final volume.
- 25X Dilution made by diluting 0.2ml of sample to a 5ml final volume.

100X-Dilution made by diluting 0.05ml of sample to a 5ml final volume. 500X-Dilution made by diluting 0.02ml of sample to a 10ml final volume.

1000X - Dilution made by diluting a 10X dilution 100X.

Analytical Spikes

1201354-1 was post spiked for all Sb, Ba, Ca, V and Zn by spiking 0.1mL ST110916-7, 0.1mL ST111116-1 onto 4.8mL sample, 5.0mL final volume.

Comments

1. Please see run log and work orders for elements of interest.

Daily Maintenance

- 1. Check/ Change Peristaltic pump tubing.
- 2. Check the torch for deposits, clean if necessary.
- 3. Check/ Empty drain water.

Daily Maintenance done by MTL

Monthly Maintenance

- 1. Check/Clean nebulizer and spray chamber.
- 2. Clean air filters
- 3. Check/Clean entrance slit.
- 4. Fill water recirculating reservoir.

Monthly maintenance done by: MTL 01-09-2012.

Major problems / adjustments / repairs recorded in the ICP Maintenance Log (3716).

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2
File Name: 120202A.
AnalRunID: IT120202-2A1
CalibRefID: IT120202-2A1

Comment	Inst Sample Name	Lab ID	DF	Date Analyzed	Time Analyzed
	MIXBHIGH	MIXBHIGH	1	2/2/2012	14:37
	MIXAHIGH	MIXAHIGH	1	2/2/2012	14:39
	MIXCHIGH	MIXCHIGH	1	2/2/2012	14:41
	icv	ICV	1	2/2/2012	15:07
	ICB	ICB	1	2/2/2012	15:09
	CRI	CRI1	1	2/2/2012	15:12
	ZZZ	ZZZ	1	2/2/2012	15:14
	ICSA	ICSA1	1	2/2/2012	15:18
	ICSAB	ICSAB1	1	2/2/2012	15:20
	ccv	CCV1	1	2/2/2012	15:22
	ССВ	CCB1	1	2/2/2012	15:24
-	CCV	CCV2	1	2/2/2012	15:26
	ССВ	CCB2	1	2/2/2012	15:30
	ZZZ	ZZZ	1	2/2/2012	15:32
	IP120202-2MB	IP120202-2MB	1	2/2/2012	15:36
	IP120202-2LCS	IP120202-2LCS	1	2/2/2012	15:38
	1201354-1	1201354-1	1	2/2/2012	15:40
	1201354-1D	1201354-1DUP	1	2/2/2012	15:42
	1201354-1L 5X	1201354-1SER	5	2/2/2012	15:44
	1201354-1MS	1201354-1MS	1	2/2/2012	15:47
	1201354-1MSD	1201354-1MSD	1	2/2/2012	15:49
	1201354-2	1201354-2	1	2/2/2012	15:51
	1201354-3	1201354-3	1	2/2/2012	15:53
	ccv	CCV3	1	2/2/2012	15:55
	CCB	CCB3	1	2/2/2012	15:57
	1201354-4	1201354-4	1	2/2/2012	15:59
	1201354-5	1201354-5	1	2/2/2012	16:01
	1201354-6	1201354-6	1	2/2/2012	16:03
-	1201354-7	1201354-7	1	2/2/2012	16:05
	1201354-8	1201354-8	1	2/2/2012	16:07
	1201354-9	1201354-9	1	2/2/2012	16:09
	1201354-10	1201354-10	1	2/2/2012	16:11
	1201354-11	1201354-11	1	2/2/2012	16:13
	1201354-12	1201354-12	1	2/2/2012	16:15
- Fe,Pb,Se,Ti,U,V	1201354-13	1201354-13	1	2/2/2012	16:16

Data Package ID:

Page 1 of 2

ALS Environmental -- FC

ICPTrace2 Run Log -- 2/2/2012

Instrument ID: ICPTrace2
File Name: 120202A.
AnalRunID: IT120202-2A1
CalibRefID: IT120202-2A1

Comment	Inst Sample Name	Lab ID	DF	Date Analyzed	Time Analyzed
	ccv	CCV4	1	2/2/2012	16:19
	ССВ	CCB4	1	2/2/2012	16:21
	EX120201-2MB	EX120201-2MB	1	2/2/2012	16:23
	EX120201-2RVS	EX120201-2	1	2/2/2012	16:25
- Na	EX120201-2LCS	EX120201-2LCS	1	2/2/2012	16:27
	1201363-11	1201363-11	1	2/2/2012	16:29
	1201363-11D	1201363-11DUP	1	2/2/2012	16:31
	1201363-11L 5X	1201363-11SER	5	2/2/2012	16:33
- Na	1201363-11MS	1201363-11MS	1	2/2/2012	16:35
- Na	1201363-11MSD	1201363-11MSD	1	2/2/2012	16:38
	1201363-13	1201363-13	1	2/2/2012	16:40
	1201363-15	1201363-15	1	2/2/2012	16:42
	ccv	CCV5	1	2/2/2012	16:44
	ССВ	CCB5	1	2/2/2012	16:46
	1201363-17	1201363-17	1	2/2/2012	16:48
	1201363-19	1201363-19	1	2/2/2012	16:50
	ZZZ	ZZZ	1	2/2/2012	16:52
+ Ba,Ca,Sb,V,Zn	1201354-1A	1201354-1A	1	2/2/2012	16:58
+ Fe,Pb,Se,Tl,U,V	1201354-13 5X	1201354-13	5	2/2/2012	17:00
	CRI	CRI2	1	2/2/2012	17:02
	ICSA	ICSA2	1	2/2/2012	17:04
	ICSAB	ICSAB2	1	2/2/2012	17:06
	ccv	CCV6	1	2/2/2012	17:09
	ССВ	CCB6	1	2/2/2012	17:10

Data Package ID:

r			·	,	,	y	,		rrinced		11.32.01	rage r
Sample Idl	Ag	A1	As	В	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu
MIXBHIGH	1.97893	0.14513	4.93852	9.90246	9.79854	0.97659	0.01168	-0.07917	4.86593	4.88105	9.74914	9.91932
MIXAHIGH	0.00054	498.45885	-0.00069	0.00408	0.00002	0.00080	0.00992	496.98492	-0.00033	0.00047	0.00188	-0.00914
MIXCHIGH	L-0.01708	0.88338	-0.00768	0.00604	-0.00151	0.00338	н5.06332	-0.06714	-0.00142	0.00409		L-0.02929
ICV	0.10395	25.45605	0.25898	0.49657	0.52849	0.25019	0.26304	25.08494	0.25348	0.24919	0.51015	0.51211
ICB	-0.00075	0.06703	-0.00174	-0.00642	-0.00085	-0.00026	-0.00944	-0.09139	-0.00082	-0.00076	-0.00110	-0.00312
CRI	0.01983	0.50031	0.00592	0.39777	0.41268	0.01170	0.04537	5.12590	0.01151	0.10126	0.02158	0.04745
ZZZ	-0.00122	262.45901	0.00004	-0.00716	-0.00085	0.00039	0.00233	260.73861	-0.00037	0.00039	-0.00121	-0.00666
ICSA	-0.00004	262.69471	0.00009	<u> </u>	-0.00054	i		262.88254	0.00007	0.00101	-0.00082	-0.00577
ICSAB	0.20190	212,65836	0.10176	1.01811	0.55218	0.48457	0.54482	262.05421	1.00190	0.48563	0.49214	0.55122
CCV	0.20828	51.62534	0.51697	0.99616	1.06520	0.48841	0.52814	50.49756	0.50741	0.49366	1.01075	1.04176
CCB	-0.00019	0.10845	-0.00546	-0.00583	-0.00057	-0.00007	-0.00804	-0.05529	-0.00022	-0.00060	0.00003	-0.00265
CCV	0.20899	51.50836	0.51264	0.98842	1.06226	0.48578	0.52882	50.16837	0.50502	0.49238	1.00628	1.03562
CCB	-0.00066	0.11335	-0.00191	-0.00554	-0.00064	0.00000	-0.00071	-0.05360	-0.00038	-0.00122	0.00022	-0.00241
ZZZ	0.00008	0.07695	-0.00540	-0.00665	-0.00067	-0.00031	-0.00501	-0.07484	-0.00022	-0.00216	-0.00044	-0.00130
IP120202-2MB	-0.00114	0.07859	-0.00113	-0.00372	-0.00085	-0.00029	-0.00804	-0.07108	-0.00025	-0.00155	-0.00083	-0.00153
IP120202-2LCS	0.09343	2.17815	1.90412	0.46055	2.07984	0.04742	-0.00737	37.15536	0.04972	0.47559	0.19461	0.25712
1201354-1	-0.00214	59.68540	0.05881	0.51640	3.00603	0.00472	-0.00245	86.18621	0.00055	0.03531	0.04517	0.06649
1201354-1D	-0.00096	55.38178	0.05354	0.16515	1.38006	0.00441	-0.00251	72.48209	0.00088	0.03245	0.04213	0.06083
1201354-1L 5X	-0.00114	11.57762	0.01314	0.08247	0.51227	0.00080	-0.00176	17.12909	-0.00071	0.00620	0.00854	0.00962
1201354-1MS	0.09575	88.95425	1.97393	0.37462	3.37275	0.05360	0.00698	111.61500	0.05245	0.51779	0.25688	0.33664
1201354-1MSD	0.09669	91.20298	1.97349	0.37203	3.44656	0.05345	-0.00378	116.34026	0.05210	0.51563	0.25709	0.34045
1201354-2	-0.00173	41.89574	0.09327	0.00715	0.89966	0.00364	-0.00465	103.76504	0.00023	0.02578	0.02817	0.04780
1201354-3	-0.00136	37.26261	0.10159	0.00833	1.08548	0.00370	-0.00286		0.00056	0.01990	0.02432	0.06035
CCV	0.20970	51.75839	0.51797	1.00038	1.07279	0.48573	0.53445	50.35484	0.50773	0.49290	1.00646	1.05086
ССВ	-0.00045	0.15194	-0.00068	-0.00235	-0.00012	0.00004	-0.00735		-0.00032	-0.00109	-0.00034	-0.00275
1201354-4	-0.00112	29.38481	0.03816	0.00896	0.58394	0.00258		109.84791	0.00021	0.03253	0.02229	0.02808
1201354-5	-0.00168	36.16084	0.12019	0.01074	1.53983	0.00349	-0.00416		0.00069	0.02539	0.03172	0.04708
1201354-6	-0.00093	34.02753	0.05220	0.00900	1.49344	0,00302	-0.00141	124.83243	0.00020	0.02627	0.02604	0.04003
1201354-7	-0.00061	40.02791	0.07790	0.00985	1.17901	0.00338	0.00008	296.90769	0.00060	0.02983	0.03338	0.04832
1201354-8	-0.00172	51.88546	0.06896	0.01673	0.72199	0.00480	-0.00204	80.24279	0.00037	0.04656	0.04664	0.07871
1201354-9	-0.00202	43.99332	0.09638	0.00981	0.73184	0.00398		149.69363	0.00021	0.02992	0.03514	0.04580
1201354-10	-0.00186	66.99448	0.04860	0.01765	0.77472	0.00572	0.00134	136.54269	0.00064	0.05905	0.06213	0.11146
1201354-11	-0.00123	47.67139	0.16730	0.01003	0.73641	0.00433	-0.00358	72.07532	0.00064	0.03859	0.03419	0.07304
1201354-12	-0.00075	27.64569	0.01691	0.00689	0.47093	0.00245	0.00063	9.95291	0.00039	0.02058	0.03252	0.03245
1201354-13	-0.00140	57.38864	0.06569	0.01436	0.98240	0.00602	0.00894	43.22886	0.00089	0.06542	0.06991	0.09269
CCV	0.21214	52.15701	0,52957	1.00960	1.08041	0.48967	0.53811	50.41700	0.50851	0.49459	1.00907	1.06340
ССВ	-0.00024	0.15675	-0.00124		-0.00047	1	-0.00757	-0.05191	-0.00059	-0.00068	0.00067	-0.00279
EX120201-2MB	-0.00029	0.11454	-0.00157	0.00767	-0.00005	į.	1	-0.06582	-0.00080	-0.00146		-0.00368
EX120201-2RVS	0.00979	1.07935	0.04482	0.04490	0.04989	0.00949	0.08959	4.71540	0.01918	0.01786	0.04830	0.04655
EX120201-2LCS	0.09835	2.36153	1.98087	0.49362	2.14647	0.04827	-0.00571	38.53287	0.05181	0.48814	0.19978	0.26726
1201363-11	-0.00065	1.81317	-0.00052	0.00963	0.08636	0.00003	-0.00770		-0.00028	0.00101	0.00094	-0.00143
1201363-11D	-0.00011	1.83915	-0.00307	š	0.08748	1	-0.00525		-0.00013		0.00094	-0.00143
1201363-11L 5X			0.00231					4.33366				
1201363-11MS	0.09848	4.77362	1.96711	0.49754	2.20641	0.04828	<u> </u>	60.92967	0.05192	0.48830	0.19964	0.26539
1201363-11MSD	0.09990	4.86229	1.99224	0.50331	2.22266	0.04825		61.49041	0.05231	0.49354	0.20173	0.26919
1 2 01363-13	-0.00078	1.44678	-0.00196		0.08751	0.04693		20.85125		 	0.00029	-0.00166
1 2 01363-15	-0.00029	1.45821	0.00037	0.01288	0.09093	0.00001		23.40378	0.00003		0.00023	-0.00188
	0.21137	51.72776	0.52896	1.00130	1.06251	0.49108			0.51250		1.01561	1.04638
୍ ଟ ୁଫଃ	-0.00035	0.15358	-0.00168		-0.00012	·	1	-0.04138		-0.00035		-0.00337
1201363-17	-0.00033	1.48104	0.00143	0.00822		0.00010					0.00027	·
1201303-17	-0.00019	1.40104	0.00143	0.00022	0.08532	10.00015	1-0.00//2	19.14651	-0.00028	0.001/0	10.00005	-0.00214

Printed 2/2/2012 17:32:01 Page 2

Sample Idl	Ag	A1	As	В	Ba	Ве	Bi	Ca	Cd	Со	Cr	Cu
1201363-19	-0.00112	1.90664	0.00098	0.00796	0.10305	0.00021	-0.01048	22.21972	0.00001	0.00169	0.00056	-0.00113
ZZZ	0.02033	0.56809	0.01241	0.40477	0.41739	0.01177	0.04654	5.08272	0.01172	0.10069	0.02161	0.04829
1201354-1A	-0.00179	60.61438	2.03713	0.98998	5.02961	0.05279	-0.00038	121.83159	0.05355	0.52156	0.24110	0.33623
1201354-13 5X	-0.00075	11.26272	0.01552	0.00005	0.19451	0.00120	-0.00218	8.70833	-0.00030	0.01252	0.01407	0.01479
CRI	0.02004	0.54748	0.01275	0.40291	0.41167	0.01176	0.05049	5.14646	0.01123	0.10130	0.02172	0.04788
ICSA	-0.00205	259.86068	-0.00190	-0.00516	-0.00085	0.00048	0.00406	258.97348	-0.00068	-0.00110	-0.00280	-0.00796
ICSAB	0.20257	209.33260	0.10331	1.00752	0.53809	0.47921	0.54051	261.53927	1.00569	0.48161	0.48872	0.54365
CCV	0.21255	51.54316	0.52463	1.00160	1.05587	0.48772	0.53336	50.79330	0.51056	0.49498	1.01052	1.04386
CCB	-0.00063	0.24713	-0.00029	-0.00010	0.00096	0.00090	-0.00071	0.05676	0.00054	-0.00072	0.00134	-0.00228

						1				7.1	D) T	DI TT
Sample Id1	Fe	K	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Pb I	Pb II
MIXBHIGH	-0.01956	-0.46129	-0.00309		9.73158	9.76899	-0.11659		49.26311	9.68846	9.77306	9.64622
MIXAHIGH	197.83967	248.60848	9.70762	498.64729			Н150.66405	0.00101	0.00888	-0.00017	0.00406	-0.00228
MIXCHIGH	-0.01454	-0.50272	-0.00308	-0.19345	0.00320	-0.00107	-0.11902	-0.00023	0.01011	0.00502	L-0.02642	0.02072
ICV	10.23099	23.53209	0.22792	24.83678	0.51308	0.49914	22.88229	0.49743	2.49772	0.50875	0.50680	0.50973
ICB	-0.00875	-0.32812	-0.00338	-0.00362	-0.00047	-0.00335	-0.14006	-0.00205	-0.00775		L-0.00347	0.00021
CRI	0.20242	3.47105	0.01225	4.98048	0.03208	0.02023	3.66051	0.08066	0.19694	0.00738	0.00967	0.00624
ZZZ	106.53069	-0.44818		263.83730	0.00196	-0.00107	-0.12909	-0.00019	0.00833	-0.00132	-0.00152	-0.00121
ICSA	107.10969	-0.44797	i	264.37983	0.00202	-0.00025	-0.12819	0.00081	0.00146	-0.00038	0.00450	-0.00282
ICSAB	107.31884	-0.47265	1.08205		0.51427	0.99291	-0.12729	0.99141	0.99502	0.04982	0.04214	0.05365
CCV	20.41254	51.54281	0.52060	50.08209	1.01288	1.00264	48.24507	1.00561	4.93310	1.00686	1.01100	1.00480
CCB	0.00577	-0.32248	-0.00332	0.03613	-0.00023	-0.00071	-0.13599	-0.00053	-0.00631	0.00026	0.00255	-0.00088
CCV	20.30082	51.36925	0.51840	49.90117	1.00853	0.98537	48.14691	0.99110	4.92777	1.00260	1.00434	1.00174
CCB	0.00616	-0.31871	-0.00328	0.03639	-0.00011	-0.00066	-0.13200	-0.00013	-0.00598	0.00039	0.00157	-0.00021
ZZZ	0.02230	-0.39882	-0.00354	-0.00074	-0.00029	-0.00107	-0.09185	-0.00019	-0.01130	-0.00060	-0.00218	0.00019
IP120202-2MB	0.02354	-0.35009	-0.00342	-0.00362	-0.00035	-0.00188	-0.08928	-0.00106	-0.00320	0.00103	-0.00126	0.00217
IP120202-2LCS	1.03963	37.64932	0.47039	36.17879	0.49521	0.96347	35.90477	0.48211	-0.00342	0.48518	0.48768	0.48393
1201354-1	118.16513	12.14933	0.07170	22.49394	1.65154	0.03491	7.31037	0.03964	2.38575	0.14431	0.14310	0.14491
1201354-1D	113.28140	9.38163	0.06311	20.77127	1.48104	0.03395	1.32763	0.03812	2.31965	0.13271	0.13464	0.13175
1201354-1L 5X	22.70725	1.51582	0.00822	4.36393	0.33172	0.00539	0.78638	0.00708	0.49137	0.02805	0.02753	0.02831
1201354-1MS	126.66725	53.69552	0.60883	63.09358	2.06439	0.98012	40.00731	0.53219	2.32570	0.62080	0.63339	0.61451
1201354-1MSD	129.57668	54.53206	0.62050	63.86007	2.12684	0.97956	40.44208	0.53531	2.35113	0.63092	0.63685	0.62796
1201354-2	93.01974	5.99850	0.05429	17.38023	1.92874	0.06993	0.26053	0.02527	1.84708	0.11833	0.11685	0.11907
1201354-3	65.78004	5.55503	0.04740	15.93042	1.43925	0.11125	0.38081	0.01880	1.57760	0.17622	0.17615	0.17625
CCV	20.33682	51.83428	0.52385	49.94543	1.00859	0.99591	48.43347	1.00738	4.94250	1.00660	1.01023	1.00478
ССВ	0.01520	-0.37016	-0.00326	0.03168	0.00012	-0.00096	-0.12798	-0.00159		-0.00025	0.00123	-0.00098
1201354-4	57.71411	4.95518	0.03997	11.80921	1.53312	0.03278	0.62376	0.02767	1.16572	0.09074	0.09243	0.08989
1201354-5	93.46906	5.90005	0.04456	14.73216	1.33285	0.09773	0.90134	0.02730	1.63031	0.14321	0.14637	0.14163
1201354-6	68.52994	5.60927	0.04466	14.55746	1.36161	0.08538	1.14553	0.02732	1.55069	0.13173	0.13303	0.13109
1201354-7	82.73363	7.48621	0.05969	17.30087	1.85176	0.04259	0.67735	0.04412	1.84250	0.12438	0.12661	0.12327
1201354-8	110.43899	11.26300	0.06447	19.82462	1.57589	0.10342	1.03159	0.05585	2.14463	0.13405	0.13194	0.13510
1201354-9	110.08207	7.65901	0.05965	19.35296	1.86924	0.07130	0.37243	0.03712	2.06495	0.11913	0.11333	0.12203
1201354-10	140.56499	15.25504	0.08588	22.47359	1.99940	0.00971	0.68789	0.08450	2.98296	0.12428	0.12515	0.12385
1201354-11	113.49248	9.11148	0.06943	19.14179	1.94281	0.18470	0.66618	0.04315	2.11721	0.15849	0.16165	0.15692
1201354-12	71.49818	7.03802	0.02038	8.90327	1.15399	0.00198	0.04174	0.03714	1.50302	0.05931	0.06215	0.05790
1201354-13	H265.51909	21.55162	0.06054	26.28049	2.56707	0.00122	1.22304	0.07194	4.02540	0.10372	0.10182	0.10466
CCV	20.38721	52.00740	0.52634	50.37312	1.01121	1.00019	48.67172	1.00630	5.00277	1.00748	1.01271	1.00487
ССВ	0.01852	-0.38459	-0.00331	0.03011	0.00006	0.00071	-0.13252	-0.00088			0.00252	-0.00110
EX120201-2MB	-0.01199	-0.40509	-0.00353	-0.00179	-0.00065	-0.00300		-0.00086			-0.00007	0.00091
EX120201-2RVS	0.96397	7.54729	0.03438	4.67182	0.04824	0.09783	7.69196	0.04788	0.92386	0.04780	0.04796	0.04772
EX120201-2LCS	1.00738	50.14414	0.58478	37.31692	0.50246	0.99688	H173.31705	1	-0.00409		0.49808	0.48550
1201363-11	1.16681	1.06626	-0.00025		0.38545	-0.00152	129.23173	0.00115	0.06079	0.00352	0.00063	0.00496
1201363-11D	1.17712	1.00020	-0.00025		0.38972	-0.00132		0.00113	0.05802	0.00332	0.00083	0.00137
1201363-11L 5X		-0.12547			0.38972	-0.00031			0.00389	1		0.000137
1201363-11L 3X	2.30849	50.55749	0.57809	47.03498	0.88563		H162.02296			0.49452	0.50002	0.49177
1201363-11MSD			0.57809			0.99464			0.06343	0.49432	0.50154	0.49177
1 20 1363-11MSD	2.34105	50.89000	-0.00040	47.53647	0.89664		H163.05815			0.50042		0.49987
1201363-15	0.93894	0.93227			0.39019	-0.00020		0.00113	0.03983			
	0.94870	1.10973	-0.00017		0.37447	-0.00198		0.00227	0.05170	0.00410	0.00344	0.00444
C ey C o B	20.33856	51.38540	0.51709	50.23099	1.01347	1.00722	47.89112	1.00415	4.96878	1.00824	1.01485	1.00494
	0.01574	-0.29508	-0.00307		0.00030	-0.00046		1	-0.00819			-0.00215
1201363-17	0.91987	0.85806	-0.00077	7.65749	0.28150	1-0.00228	133.57086	0.00152	0.04216	0.00494	0.00254	0.00614

Printed 2/2/2012 17:32:01	Page	4
---------------------------	------	---

Sample Id1	Fe	K	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Pb I	Pb II
1201363-19	1.89042	1.04431	-0.00033	9.94253	0.34879	-0.00112	135.50311	0.00284	0.06357	0.00478	0.00457	0.00488
$Z\overline{Z}Z$	0.20025	3.41739	0.01239	4.96271	0.03155	0.02002	3.72482	0.08305	0.20060	0.00530	0.00614	0.00487
1201354-1A	111.32388	54.77640	0.60765	59.07959	2.04918	1.02408	46.71107	0.53969	2.22591	0.62750	0.63294	0.62479
120135 4-13 5X	51.27429	3.16785	0.00701	5.20760	0.52050	-0.00152	0.08553	0.01395	0.82924	0.02111	0.02071	0.02130
CRI	0.20551	3.49277	0.01239	4.96402	0.03196	0.01987	3.68506	0.08247	0.19816	0.00809	0.00936	0.00746
ICSA	104.39097	-0.41178	-0.00304	261.74505	0.00095	-0.00503	-0.12095	-0.00171	-0.00342	-0.00069	L-0.00879	0.00336
ICSAB	105.28281	-0.36096	1.04998	262.55631	0.50590	0.98247	-0.11289	0.98173	0.98366	0.05165	0.04801	0.05347
CCV	20.26674	51.02168	0.51222	50.13676	1.00716	1.00325	47.75746	1.00305	4.92505	1.00332	1.01026	0.99986
CCB	0.05668	-0.27835	-0.00279	0.13339	0.00149	0.00071	-0.07157	0.00038	0.00256	0.00056	0.00213	-0.00022

												rage
Sample Idl	S	Sb	Se	Se I	Se II	Si	Sn	Sr	Ti	Tl	U	V
MIXBHIGH	-0.01727	1.94621	4.95263	4.96120	4.94836	49.65806	9.85562	9.78627	9.78448	4.92611	-0.07317	4.88935
MIXAHIGH	-0.00012	0.00201	-0.01189	L-0.04481	0.00455	0.00009	-0.00284	0.00772	-0.00087	0.01595	0.17302	L-0.01973
MIXCHIGH	Н50.76693	0.00215	0.00416	0.01238	0.00005	L-0.05429	0.02126	-0.00240	0.00547	0.00393	Н51.10719	
ICV	2.57669	0.24600	0.50986	0.50992	0.50983	2.57927	0.52124	0.25853	0.25059	0.26567	2.55050	0.25074
ICB	-0.02507	-0.00257	-0.00269	-0.00343	-0.00231	-0.02268	-0.00328	-0.00414	-0.00211	-0.00683	-0.04208	-0.00092
CRI	0.20261	0.12026	0.00980	0.01115	0.00912	0.09994	0.09885	0.01790	0.01987	0.02424	0.18753	0.10360
ZZZ	0.04667	-0.00269	-0.00761	L-0.01948	-0.00168	-0.02603	-0.00087	-0.00253	-0.00050	0.00603	0.04692	L-0.01081
ICSA	0.04355	0.00062	-0.00484	L-0.01863	0.00205	-0.02193	0.00395	-0.00233	-0.00021	0.01346	0.06453	-0.00907
ICSAB	1.08379	0.58525	0.05141	0.04131	0.05646	1.01668	1.03344	1.07776	0.99088	0.10665	10.78807	0.49509
CCV	5.17042	0.49542	1.01675	1.01709	1.01659	5.11285	1.02721	0.52651	0.49638	0.52020	5.14036	0.49918
CCB	-0.01571	-0.00085	0.00061	-0.00335	0.00259	-0.01808	-0.00372	-0.00395	-0.00195	0.00245	-0.03063	0.00019
CCV	5.12827	0.48911	1.00367	1.00587	1.00258	5.09766	1.02391	0.52385	0.49532	0.51729	5.14426	0.49698
CCB	-0.01727	-0.00184	0.00064	0.00054	0.00070	-0.02095	-0.00350	-0.00391	-0.00228	0.00049	-0.02790	-0.00089
ZZZ	-0.02351	-0.00118	-0.00353	L-0.00537	-0.00261	-0.02184	-0.00328	-0.00409	-0.00349	L-0.01002	-0.04155	-0.00070
IP120202-2MB	-0.02819	-0.00276	-0.00217	-0.00070	-0.00291	-0.02266	0.00483	-0.00212	-0.00282	-0.00402	-0.05356	-0.00148
IP120202-2LCS	-0.00636	0.45571	1.79012	1.80484	1.78277	1.76998	0.49244	0.53687	0.48314	1.97952	-0.05480	0.48860
1201354-1	5.90258	0.00131	0.09880	0.07633	0.11001	1.52412	0.00246	0.39028	0.15470	0.01901	0.36971	0.80588
1201354-1D	7.09550	0.00114	0.13708	0.12364	0.14380	1.48955	0.00708	0.32460	0.13638	0.01582	0.35066	0.80777
1201354-1L 5X	1.16958	-0.00037	0.01796	0.01147	0.02121	0.29242	-0.00003	0.07419	0.02918	0.00490	0.04342	0.16227
1201354-1MS	6.06807	0.25596	1.89367	1.89497	1.89302	14.10500	0.51158	0.89125	0.63018	1.99872	0.42669	1.51114
1201354-1MSD	6.06651	0.25781	1.89146	1.87913	1.89761	12.95746	0.50129	0.91471	0.60741	1.98390	0.36576	1.56451
1201354-2	4.36188	0.00180	0.24194	0.23169	0.24706	5.21768	0.00567	0.44976	0.22354	0.01558	1.44235	0.95079
1201354-3	4.83793	0.00034	0.51941	0.51757	0.52032	12.19408	0.00354	0.44155	0.35636	0.00939	4.05912	1.64990
CCV	5.16417	0.49422	1.01456	1.01426	1.01471	5.11179	1.02699	0.53185	0.49336	0.52261	5.17754	0.49876
ССВ	-0.01571	-0.00257	0.00023	-0.00062	0.00066	-0.01644	-0.00262	-0.00185	-0.00195	0.00228	-0.04864	-0.00003
1201354-4	4.38685	-0.00243	0.13288	0.12882	0.13491	12.02386	0.00096	0.25984	0.31244	0.00887	0.37540	0.65806
1201354-5	5.00027	0.00387	0.38477	0.37889	0.38771	14.29376	0.00332	0.39893	0.35889	0.00877	2.34099	1.11381
1201354-6	4.14026	-0.00151	0.38548	0.37577	0.39033	11.97568	0.00139	0.41809	0.32222	0.00774	2.53810	1.03584
1201354-7	4.60224	-0.00043	0.29713	0.28396	0.30370	16.14467	-0.00038	0.49252	0.52275	0.01169	1.35330	0.84976
1201354-8	10.02901	0.00257	0.14450	0.12662	0.15343	13.55458	0.00173	0.61106	0.40702	0.01685	2.68260	0.54307
1201354-9	4.50079	0.00028	0.23923	0.21543	0.25112	7,42973	-0.00036	0.40838	0.31887	0.00942	1.44547	1.53649
1201354-10	5.85886	-0.00076		L-0.01032	0.02447	14.37359	0.00277	0.44338	0.44928	0.01637	0.28242	0.21588
1201354-11	7.94507	0.00261	0.64914	0.63917	0.65412	8.61056	0.00974	0.36436	0.30118	0.02437	2.94798	1.35773
1201354-12	2.30678	-0.00024	0.00743	-0.00136	0.01182	4.72460	0.00180	0.07445	0.34804	0.01538	0.01947	0.08153
1201354-13	18.05717	0.00267	-0.00160	L-0.04102	0.01808	4.52670	0.00342	0.38661	0.26763	0.03470	0.13131	0.18420
CCV	5.21881	0.49993	1.01266	1.02164	1.00818	5.16634	1.04060	0.53551	0.49730	0.52540	5.20480	0.49980
CCB	-0.02039	-0.00124	-0.00123	0.00041	-0.00205	-0.01649	-0.00459		-0.00228	0.00331	-0.01317	-0.00011
EX120201-2MB	-0.01883	-0.00231	0.00138	-0.00087	0.00250	0.00239	0.00155	-0.00207	-0.00258	0.00177	-0.02734	-0.00117
EX120201-2RVS	0.95121	0.09083	0.04468	0.04704	0.04351	0.25124	0.09422	0.04784	0.04445	0.09910	0.46807	0.04850
EX120201-2LCS	-0.00636	0.47950	1.92059	1.94196	1.90992	2.02627	0.51636	0.53668	0.48698	2.06626	-0.05095	0.50203
1201363-11	0.17766	-0.00126	0.00213	-0.00202	0.00420	3.67740	-0.00115		0.05491	-0.00012	-0.03960	0.00144
1201363-11D	0.17298	-0.00304	l .	0.00315	0.00029	3.73159	l .	0.07770	0.05687	-0.00252	-0.02051	0.00190
1201363-11L 5X		-0.00311			0.00229					0.00087		0.00001
1201363-11MS	0.19325	0.47068			1.89872	6.88495	0.51606		0.54939	2.04263	-0.04857	0.49972
1201363-11MSD	0.20105	0.47655	1.93418	1.94166	1.93044	7.17238	0.51803	. i	0.55881	2.07376	-0.04531	0.50528
1901363-13	0.07629	-0.00177		0.00116	0.00381	2.89945	-0.00465		0.04260	0.00040	-0.04872	0.00094
1201363-15	0.13555	0.00073		-0.00037	0.00037	2.95768	-0.00005			0.00394	-0.03509	0.00188
	5.16261	0.49354	1.01024	1.02428	1.00323	5.13259	1.04192		0.49547	0.53056	5.14696	0.50084
C e y C 0 β	-0.00636		0.00028	0.00548	-0.00231				-0.00192	0.00498	-0.03500	-0.00038
1201363-17	0.13867		0.00318	0.00598	0.00179	2.96442		0.06750	0.04322	-0.00121	-0.04762	0.00085
		1 0100100	1 0.00010		V. VVI. 1 J		1 0.00223	10.00/30	10.01022	L 0.00121	1 0.01,02	1 0 0 0 0 0 0

Printed	2/2/2012	17:32:01	Page 6
---------	----------	----------	--------

Sample Idl	S	Sb	Se	Se I	Se II	Si	Sn	Sr	Ti	T1	U	V
1201363-19	0.08877	-0.00304	0.00168	-0.00074	0.00289	3.69342	-0.00006	0.07433	0.05829	0.00151	-0.03737	0.00207
ZZZ	0.20417	0.12217	0.00870	0.00520	0.01045	0.10007	0.10061	0.02025	0.01921	0.02396	0.19463	0.10280
1201354-1A	5.56536	0.47827	2.00976	2.01917	2.00506	3.46451	0.52080	0.90993	0.62908	2.06603	0.35691	1.26106
1201354-13 5X	3.77039	-0.00007	-0.00013	L-0.00758	0.00360	0.86341	-0.00027	0.07541	0.05087	0.00957	0.01305	0.03636
CRI	0.20885	0.11999	0.01203	0.01356	0.01127	0.09583	0.10521	0.01996	0.01941	0.02727	0.18262	0.10266
ICSA	0.03887	-0.00521	-0.00329	L-0.02322	0.00666	-0.03690	-0.00525	-0.00057	-0.00045	0.01365	0.01727	L-0.01109
ICSAB	1.06819	0.58275	0.04664	0.03701	0.05145	0.99508	1.02643	1.05623	0.97166	0.11223	10.53713	0.48768
CCV	5.11734	0.49655	0.99685	1.01332	0.98863	5.09488	1.03314	0.52547	0.49175	0.53494	5.09242	0.49799
CCB	-0.00480	0.00139	0.00111	0.00166	0.00084	-0.01318	0.00045	-0.00113	-0.00109	0.00669	-0.02957	0.00125

Sample Id1	Zn	Zr
MIXBHIGH	9.67701	-0.01459
MIXAHIGH	-0.00569	0.00542
MIXCHIGH	-0.00406	H5.06373
ICV	0.49217	0.50673
ICB	-0.00243	-0.00035
CRI	0.04906	0.05326
ZZZ	-0.00258	0.00283
ICSA	-0.00317	0.00359
ICSAB	0.92026	0.50099
CCV	0.96609	1.01167
CCB	-0.00317	0.00025
CCV	0.95300	1.00580
ССВ	-0.00302	-0.00002
ZZZ	-0.00139	0.00006
IP120202-2MB	-0.00095	-0.00008
IP120202-2LCS	0.46454	0.00100
1201354-1	1.11956	0.05342
1201354-1D	0.52828	0.04411
1201354-1L 5X	0.19467	0.00992
1201354-1MS	0.75872	0.05626
1201354-1MSD	0.75217	0.05587
1201354-2	0.17789	0.03754
1201354-3	0.12668	0.04363
CCA	0.94868	1.01255
CCB	-0.00184	0.00010
1201354-4	0.14217	0.02934
1201354-5	0.16004	0.04294
1201354-6	0.15293	0.04257
1201354-7	0.19760	0.04630
1201354-8	0.28516	0.04977
1201354-9	0.22835	0.04428
1201354-10	0.37350	0.05629
1201354-11	0.26077	0.05443
1201354-12	0.17201	0.03208
1201354-13	0.37228	0.04313
CCV	0.96714	1.01737
CCB	-0.00242	0.00035
EX120201-2MB	-0.00257	-0.00027
EX120201-2RVS	0.04542	0.04919
EX120201-2LCS	0.48171	0.00096
1201363-11	0.12097	0.00134
1201363-11D	0.12218	0.00171
1201363-11L 5X	0.02211	-0.00009
1201363-11MS	0.60346	0.00198
1201363-11MSD 1201363-13	0.61150	0.00167
	0.12703	0.00087
1201363-15	0.14278	0.00169
Cev C	0.98521	1.01160
COB	-0.00302	-0.00008
1201363-17	0.12279	0.00150

Sample Idl	Zn	Zr
1201363-19	0.15096	0.00184
ZZZ	0.04814	0.05304
1201354-1A	1.54388	0.05197
1201354-13 5X	0.07419	0.00806
CRI	0.04830	0.05223
ICSA	-0.00408	0.00188
ICSAB	0.92737	0.49244
CCV	0.97716	1.00728
CCB	-0.00015	0.00189

Method : Paragon Printed: 2/2/2012 17:32:41 File : 120202A

SampleId1 : RL2 SampleId2 :

Analysis commenced: 2/2/2012 13:10:19
Dilution ratio: 1.00000 to 1.00000 Position: TUBE3 Tray :

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.114	0.246	0.212	0.341	0.033	0.718	0.165	0.256	0.125
#2	0.114	0.246	0.207	0.340	0.032	0.718	0.162	0.254	0.126
Mean	0.114	0.246	0.210	0.340	0.033	0.718	0.163	0.255	0.125
%RSD	0.558	0.029	1.721	0.332	0.435	0.020	1.082	0.555	0.622
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading								
#1	0.116	0.215	0.080	0.167	1.319	0.833	0.260	0.019	0.118
#2	0.116	0.213	0.080	0.165	1.304	0.834	0.258	0.019	0.117
Mean	0.116	0.214	0.080	0.166	1.312	0.833	0.259	0.019	0.117
%RSD	0.122	0.429	0.089	0.639	0.852	0.102	0.437	0.000	0.302
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	2.727	0.276	0.160	2.223	0.647	0.015	0.186	0.410	0.294
#2	2.659	0.276	0.162	2.217	0.656	0.015	0.186	0.407	0.297
Mean	2.693	0.276	0.161	2.220	0.652	0.015	0.186	0.409	0.296
%RSD	1.809	0.026	0.966	0.182	0.901	1.419	0.076	0.588	0.765
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	Reading								
#1	0.470	0.078	0.293	0.490	0.246	0.180	0.141	0.028	0.347
#2	0.471	0.079	0.292	0.485	0.250	0.179	0.141	0.028	0.346
Mean	0.471	0.079	0.292	0.488	0.248	0.180	0.141	0.028	0.346
%RSD	0.090	0.896	0.266	0.609	0.998	0.079	0.100	0.501	0.245
	Pb	Se							
#1 #2	Reading	Reading							
Mean	0.000	0.000							
%RSD	0.000	0.000							

[STD]

Method : Paragon Printed: 2/2/2012 17:32:42 File : 120202A

SampleId1 : B3 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:12:28
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE4

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
U 4	Reading	Reading							
#1	0.134	0.188	0.244	0.225	0.182	1.074	0.153	0.041	0.398
#2	0.134	0.187	0.235	0.227	0.183	1.076	0.151	0.041	0.397
Mean %RSD	0.134 0.106	0.188 0.301	0.240 2.626	0.226 0.626	0.183 0.581	1.075 0.138	0.152 0.836	0.041 0.519	0.397
91/00	0.100	0.301	2.020	0.626	0.381	0.138	0.836	0.519	0.125
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading	Reading							
#1	0.169	0.449	0.159	0.048	0.669	0.098	0.105	0.098	0.186
#2	0.170	0.449	0.160	0.047	0.665	0.098	0.105	0.098	0.186
Mean	0.169	0.449	0.160	0.047	0.667	0.098	0.105	0.098	0.186
%RSD	0.251	0.126	0.266	0.447	0.413	0.144	0.270	0.289	0.152
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading							
#1	0.165	0.528	0.307	2.559	0.861	0.008	0.180	0.434	0.329
#2	0.162	0.527	0.307	2.549	0.856	0.008	0.180	0.426	0.337
Mean	0.164	0.527	0.307	2.554	0.858	0.008	0.180	0.430	0.333
%RSD	1.426	0.067	0.023	0.266	0.395	0.868	0.118	1.184	1.655
	Si	Sn	Sr	Ti	Tl	Ŭ	v	Zn	Zr
	Reading	Reading							
#1	0.692	0.093	0.671	1.017	0.281	0.144	0.221	0.058	0.251
#2	0.695	0.093	0.675	1.019	0.277	0.141	0.222	0.058	0.250
Mean	0.693	0.093	0.673	1.018	0.279	0.142	0.221	0.058	0.251
%RSD	0.286	0.152	0.399	0.146	0.862	1.241	0.320	0.609	0.254
	Pb	Se							
	Reading	Reading							
#1 #2									
Mean	0.000	0.000							
%RSD	0.000	0.000							
Method	: Paragon		File : 12020	2A	Printed:	2/2/2012 17	:32:42		
						_, _, _ , _ , _ ,			

SampleId1: B2 SampleId2: Analysis commenced: 2/2/2012 13:14:27
Dilution ratio: 1.00000 to 1.00000 Tray: [STD]

Position : TUBE5

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading						
#1	0.424	0.192	0.684	1.639	1.657	6.462	$0.15\tilde{3}$	0.041	3.051
#2	0.423	0.192	0.692	1.639	1.657	6.480	0.155	0.041	3.058
Mean	0.424	0.192	0.688	1.639	1.657	6.471	0.154	0.041	3.055
%RSD	0.167	0.000	0.853	0.000	0.009	0.196	1.149	0.522	0.167
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо

	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.728	2.757	0.955	0.048	0.657	0.119	0.104	0.869	$1.14\tilde{1}$
#2	0.727	2.755	0.956	0.048	0.651	0.119	0.104	0.870	1.146
Mean	0.727	2.756	0.956	0.048	0.654	0.119	0.104	0.869	1.143
%RSD	0.078	0.038	0.111	0.589	0.595	0.178	0.136	0.073	0.328
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.135	3.293	2.342	5.979	2.889	0.008	0.347	0.775	0.871
#2	0.116	3.294	2.360	5.989	2.877	0.008	0.345	0.775	0.871
Mean	0.126	3.294	2.351	5.984	2.883	0.008	0.346	0.775	0.871
%RSD	11.043	0.024	0.529	0.122	0.292	0.000	0.307	0.018	0.016
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
)) -	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Zn Reading	Zr Reading
#1	Reading 3.980	Reading 0.305	Reading 6.475	Reading 8.391					
#2	Reading 3.980 3.992	Reading 0.305 0.307	Reading						
#2 Mean	Reading 3.980 3.992 3.986	Reading 0.305 0.307 0.306	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733	Reading 0.141	Reading 1.081	Reading 0.388	Reading 0.251
#2	Reading 3.980 3.992	Reading 0.305 0.307	Reading 6.475 6.468	Reading 8.391 8.394	Reading 0.733 0.736	Reading 0.141 0.141	Reading 1.081 1.080	Reading 0.388 0.390	Reading 0.251 0.247
#2 Mean	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249
#2 Mean %RSD	Reading 3.980 3.992 3.986 0.213	Reading 0.305 0.307 0.306 0.300	Reading 6.475 6.468 6.471	Reading 8.391 8.394 8.393	Reading 0.733 0.736 0.734	Reading 0.141 0.141 0.141	Reading 1.081 1.080 1.081	Reading 0.388 0.390 0.389	Reading 0.251 0.247 0.249

Method : Paragon File: 120202A Printed: 2/2/2012 17:32:42

SampleId1: B1 SampleId2: Analysis commenced: 2/2/2012 13:16:52
Dilution ratio: 1.00000 to 1.00000 Tray: [STD]

Position : TUBE6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	3.380	0.236	5.142	$15.66\overline{1}$	16.22ī	60.057	0.199	0.046	28.683
#2	3.364	0.236	5.134	15.576	16.037	59.946	0.202	0.046	28.688
Mean	3.372	0.236	5.138	15.618	16.129	60.002	0.201	0.046	28.685
%RSD	0.329	0.090	0.103	0.383	0.805	0.130	0.916	0.612	0.013
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	6.312	25.820	9.168	0.064	0.647	0.104	0.112	8.364	10.617
#2	6.317	25.815	9.070	0.065	0.656	0.106	0.114	8.354	10.575
Mean	6.315	25.817	9.119	0.065	0.652	0.105	0.113	8.359	10.596
%RSD	0.063	0.015	0.761	1.093	0.998	1.145	0.999	0.080	0.284
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading

#1	0.118	31.029	20.957	40.504	23.168	0.011	2.023	4.232	6.157
#2	0.123	30.970	20.916	40.492	23.229	0.011	2.016	4.202	6.185
Mean	0.120	31.000	20.936	40.498	23.199	0.011	2.020	4.217	6.171
%RSD	2.939	0.135	0.142	0.021	0.188	0.634	0.259	0.495	0.322
ил	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	36.705	2.414	61.704	82.421	5.330	0.153	9.722	3.633	0.284
#2	36.586	2.416	61.284	82.042	5.289	0.155	9.700	3.656	0.287
Mean %RSD	36.645 0.231	2.415 0.064	61.494 0.483	82.231 0.326	5.310 0.542	0.154 0.781	9.711 0.160	3.644 0.454	0.286 0.619
#1 #2	Pb Reading	Se Reading							
Mean %RSD	0.000 0.000	0.000 0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A5 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:18:48
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE7

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.101	0.962	0.198	0.087	0.021	0.485	0.150	1.475	0.101
#2	0.101	0.962	0.192	0.085	0.021	0.480	0.151	1.486	0.100
Mean	0.101	0.962	0.195	0.086	0.021	0.482	0.150	1.480	0.100
%RSD	0.070	0.059	1,959	0.987	1.334	0.674	0.424	0.492	0.705
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading								
#1	0.106	0.194	0.073	1.369	1.479	2.142	1.137	0.013	0.088
#2	0.107	0.196	0.073	1.378	1.489	2,156	1.140	0.013	0.086
Mean	0.106	0.195	0.073	1.374	1.484	2.149	1.138	0.013	0.087
∜RSD	0.332	0.544	0.387	0.484	0.491	0.474	0.168	1.651	1.873
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	2.163	0.223	0.083	2.202	0.639	0.009	0.162	0.397	0.277
#2	2.180	0.219	0.080	2.202	0.641	0.009	0.164	0.400	0.278
Mean	2.171	0.221	0.082	2.202	0.640	0.009	0.163	0.399	0.278
%RSD	0.550	1.282	2.943	0.003	0.188	0.000	1.129	0.550	0.255
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	Reading								
#1	0.350	0.072	0.057	0.213	0.231	0.144	0.128	0.022	0.237

#2 Mean %RSD	0.344 0.347 1.265	0.071 0.071 0.594	0.056 0.057 1.876	0.210 0.211 1.138	0.233 0.232 0.579	0.145 0.144 0.538	0.129 0.128 0.055	0.022 0.022 0.000	0.239 0.238 0.653
ш 1	Pb Reading	Se Reading							
#1 #2 Mean %RSD	0.000 0.000	0.000 0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A4 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:20:46
Dilution ratio: 1.00000 to 1.00000 Tray : Position : TUBE8

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.102	7.508	0.212	0.081	0.019	0.485	0.153	13.794	0.102
#2	0.101	7.548	0,212	0.081	0.019	0.490	0.151	13.793	0.101
Mean	0.101	7.528	0.212	0.081	0.019	0.487	0.152	13.793	0.102
%RSD	0.907	0.375	0.300	0.000	2.626	0.609	0.605	0.008	0.278
	Co	Cr	Cu	Fe	К	Li	Ма	Mn	Мо
	Reading								
#1	0.108	0.208	0.072	12.706	6.535	19.008	10.136	0.013	0.092
#2	0.108	0.207	0.073	12.732	6.583	19.206	10.172	0.014	0.091
Mean	0.108	0.208	0.072	12.719	6.559	19.107	10.154	0.014	0.092
%RSD	0.262	0.340	0.489	0.146	0.511	0.732	0.244	2.080	0.927
	Na	Ni.	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	17.025	0.217	0.086	2.411	0.700	0.009	0.199	0.446	0.311
#2	17.193	0.216	0.088	2.398	0.704	0.009	0.198	0.446	0.313
Mean	17.109	0.216	0.087	2.405	0.702	0.009	0.199	0.446	0.312
%RSD	0.695	0.229	1.058	0.403	0.413	1.554	0.249	0.048	0.454
	Si	Sn	Sr	Ti	Tl	Ū	v	Zn	Zr
	Reading								
#1	0.355	0.078	0.039	0.214	0.259	0.167	0.139	0.025	0.245
#2	0.357	0.079	0.041	0.217	0.254	0.166	0.138	0.025	0.243
Mean	0.356	0.078	0.040	0.215	0.256	0.167	0.138	0.025	0.244
%RSD	0,378	0.090	4.950	0.920	1.241	0.636	0.204	1.428	0.754

98 of 195

Mean 0.000 0.000er: MIKE LUNDGREEN

8RSD 0.000 0.000

Method : Paragon File: 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A3 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:22:45

Dilution ratio : 1.00000 to 1.00000 Tray : Position: TUBE9

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.102	$15.05\bar{2}$	0.235	0.082	0.019	0.496	0.153	27.118	0.105
#2	0.103	15.045	0.231	0.083	0.020	0.496	0.154	27.181	0.107
Mean	0.103	15.048	0.233	0.083	0.019	0.496	0.154	27.149	0.106
%RSD	0.756	0.033	1.031	1.027	2.545	0.071	0.184	0.164	1.606
	_	_	_						
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
11.1	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.110	0.216	0.073	24.652	13.540	42.708	20.247	0.015	0.102
#2	0.110	0.217	0.074	24.684	13.551	42.644	20.228	0.015	0.102
Mean	0.110	0.217	0.073	24.668	13.545	42.676	20.238	0.015	0.102
%RSD	0.386	0.490	0.773	0.090	0.056	0.107	0.064	1.861	0.070
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	35.856	0.222	0.093	2,638	0.776	0.010	0.238	0.501	0.350
#2	35.815	0.223	0.090	2.646	0.782	0.010	0.237	0.507	0.348
Mean	35.836	0.222	0.091	2.642	0.779	0.010	0.238	0.504	0.349
%RSD	0.081	0.064	2.323	0.214	0.526	2.886	0.208	0.855	0.487
						2	******	0,000	5.15.
	Si	Sn	Sr	Ti	T1	U	v	Zn	Zr
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.368	0.087	0.049	0.228	0.285	0.183	0.147	0.029	0.256
#2	0.369	0.086	0.052	0.229	0.288	0.184	0.148	0.029	0.258
Mean	0.369	0.086	0.050	0.229	0.287	0.184	0.148	0.029	0.257
%RSD	0.230	0.327	3.518	0.433	0.764	0.578	0.384	0.248	0.577
	Pb	Se							
	Reading	Reading							
#1		1.0001119							
#2									
Mean	0.000	0.000							
%RSD	0.000	0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:42

SampleId1 : A2 SampleId2 : [STD]

Analysis commenced: 2/2/2012 13:24:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE10

#1 #2 Mean %RSD	Ag Reading 0.105 0.104 0.105 0.676	Reading 30.400 30.329 30.365 0.167	As Reading 0.274 0.273 0.273 0.388	Reading 0.091 0.090 0.091 0.545	Ba Reading 0.019 0.020 0.020 1.799	Be Reading 0.508 0.512 0.510 0.471	Bi Reading 0.157 0.158 0.158 0.629	Ca Reading 53.437 53.289 53.363 0.195	Cd Reading 0.112 0.113 0.113 0.628
#1 #2 Mean %RSD	Co Reading 0.115 0.115 0.115 0.123	Cr Reading 0.230 0.228 0.229 0.556	Cu Reading 0.074 0.075 0.074 0.762	Fe Reading 47.306 47.194 47.250 0.167	Reading 27.976 27.850 27.913 0.319	Li Reading 95.822 95.358 95.590 0.343	Mg Reading 40.955 40.861 40.908 0.163	Mn Reading 0.018 0.018 0.018 0.790	Mo Reading 0.124 0.124 0.124 0.000
#1 #2 Mean %RSD	Na Reading 71.287 71.003 71.145 0.282	Ni Reading 0.230 0.229 0.230 0.339	Reading 0.102 0.099 0.101 1.687	Pb I Reading 3.135 3.138 3.137 0.063	Pb II Reading 0.933 0.934 0.934 0.015	Reading 0.011 0.011 0.011 1.886	Sb Reading 0.311 0.314 0.312 0.657	Se I Reading 0.605 0.613 0.609 0.975	Se II Reading 0.424 0.422 0.423 0.401
#1 #2 Mean %RSD	Si Reading 0.385 0.386 0.386 0.257	Sn Reading 0.102 0.102 0.102 0.000	Sr Reading 0.065 0.067 0.066 1.825	Ti Reading 0.241 0.243 0.242 0.556	T1 Reading 0.343 0.349 0.346 1.267	U Reading 0.211 0.210 0.210 0.269	v Reading 0.163 0.164 0.163 0.260	Zn Reading 0.036 0.037 0.036 0.389	Zr Reading 0.260 0.260 0.260 0.000
#1 #2 Mean %RSD	Pb Reading 0.000 0.000	Se Reading 0.000 0.000							
Method:	: Paragon		File : 12020:	2A	Printed:	2/2/2012 17	:32:43		

 Method:
 Paragon
 File:
 120202A
 Printed:
 2/2/2012
 17:32:43

 SampleId1:
 Analysis commenced:
 2/2/2012
 13:26:50

 Dilution ratio:
 1.00000 to 1.00000
 Tray:
 Position:
 TUBE11

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.108	73.527	0.391	0.119	0.022	$0.54\bar{6}$	0.172	122.752	0.130
#2	0.109	73.754	0.387	0.118	0.022	0.540	0.170	123.339	0.132
Mean	0.108	73.641	0.389	0.119	0.022	0.543	0.171	123.045	0.131
%RSD	0.130	0.218	0.636	0.535	0.000	0.716	0.704	0.338	0.811

ted:	2/2/2012 17:3	2:43 Use	r: MIKE LUNDG	REEN					
	Со	Cr	Cu	Fe	ĸ	Li	Ма	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.128	0.261	0.077	102.45Š	66.895	263.192	100.921	0.026	0.188
#2	0.129	0.263	0.077	102.791	67.146	263.662	101.065	0.026	0.187
Mean	0.128	0.262	0.077	102.623	67.021	263.427	100.993	0.026	0.188
%RSD	0.220	0.568	0.183	0.232	0.265	0.126	0.101	0.271	0.264
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	148.479	0.251	0.129	4.539	1.377	0.014	0.538	0.915	0.631
#2	148.948	0.252	0.127	4.570	1.376	0.014	0.538	0.921	0.634
Mean	148.714	0.251	0.128	4.555	1.377	0.014	0.538	0.918	0.633
%RSD	0.223	0.169	1.326	0.487	0.051	0.507	0.000	0.401	0.335
	Si	Sn	Sr	Ti.	Tl	ប	v	Zn	Zr
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.425	0.146	0.115	0.284	0.513	0.287	0.204	0.059	0.285
#2	0.426	0.145	0.116	0.284	0.509	0.291	0.204	0.059	0.287
Mean	0.426	0.145	0.116	0.284	0.511	0.289	0.204	0.059	0.286
₹RSD	0.050	0.097	0.245	0.075	0.609	0.954	0.173	0.119	0.346
	Pb	Se							
	Reading	Reading							
#1 #2									
Mean	0.000	0.000							
%RSD	0.000	0.000							
Method	: Paragon		File : 12020.	2A	Printed:	2/2/2012 17	:32:43		
Sample	Id1 : C3		SampleId2	:		[STD]			

Analysis commenced: 2/2/2012 13:28:46
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE12

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.099	0.192	0.189	0.070	0.018	0.482	0.176	0.044	0.096
#2	0.100	0.192	0.189	0.070	0.019	0.481	0.179	0.045	0.099
Mean	0.099	0.192	0.189	0.070	0.018	0.482	0.177	0.044	0.098
%RSD	0.356	0.111	0.000	0.405	1.537	0.073	1.116	2.073	1.810
	Co	Cr	Cu	Fe	к	Li	Ma	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.104	0.190	0.071	0.051	$0.63\tilde{4}$	0.101	0.108	0.012	0.079
#2	0.105	0.190	0.072	0.051	0.637	0.102	0.108	0.012	0.078
Mean	0.104	0.190	0.072	0.051	0.635	0.102	0.108	0.012	0.079
%RSD	0.474	0.074	0.296	0.693	0.356	0.625	0.328	0.592	0.540

	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
	Reading								
#1	0.112	0.213	0.080	2.131	0.619	0.025	0.158	0.392	0.271
#2	0.113	0.214	0.079	2.144	0.618	0.025	0.158	0.389	0.271
Mean	0.113	0.214	0.079	2.137	0.618	0.025	0.158	0.390	0.271
%RSD	0.942	0.530	0.624	0.427	0.023	1.411	0.045	0.562	0.104
	Si	Sn	Sr	Ti	T1	υ	v	Zn	Zr
	Reading								
#1	0.327	0.069	0.030	0.192	0.230	0.187	0.123	0.021	0.490
#2	0.328	0.069	0.031	0.194	0.229	0.187	0.123	0.021	0.495
Mean	0.327	0.069	0.031	0.193	0.229	0.187	0.123	0.021	0.492
%RSD	0.065	0.000	2.755	0.916	0.309	0.189	0.173	0.344	0.603
	Pb	Se							
	Reading	Reading							
#1 #2									
Mean	0.000	0.000							
%RSD	0.000	0.000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:32:43

[STD]

SampleId1: C2 SampleId2:
Analysis commenced: 2/2/2012 13:30:41
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE13

	Ag Reading	Al Reading	As Reading	B Reading	Ba Reading	Be Reading	Bi Reading	Ca Reading	Cd Reading
#1	0.113	0.198	0.189	0.073	0.018	0.496	0.409	0.045	0.101
#2	0.112	0.199	0.190	0.073	0.018	0.498	0.407	0.045	0.098
Mean	0.112	0.199	0.190	0.073	0.018	0.497	0.408	0.045	0.100
%RSD	0.440	0.320	0.373	0.193	0.387	0.341	0.277	0.473	1.988
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.106	0.218	0.077	0.050	0.638	0.099	0.129	0.013	0.078
#2	0.106	0.217	0.077	0.050	0.631	0.098	0.128	0.013	0.079
Mean	0.106	0.217	0.077	0.050	0.634	0.099	0.128	0.013	0.078
%RSD	0.133	0.260	0.277	0.847	0.758	0.861	0.385	0.555	1.532
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.107	0.218	0.082	2.181	0.637	0.172	0.158	0.390	0.274
#2	0.106	0.215	0.083	2.169	0.635	0.173	0.157	0.386	0.272
Mean	0.106	0.216	0.082	2.175	0.636	0.173	0.158	0.388	0.273
%RSD	0.667	0.817	0.945	0.387	0.322	0.410	0.448	0.711	0.519
	Si	Sn	Sr	Ti.	T1	Ū	v	Zn	Zr

	Reading								
#1	0.348	0.070	0.031	0.211	0.234	0.624	0.132	0.021	3.066
#2	0.348	0.071	0.031	0.208	0.226	0.623	0.131	0.021	3.074
Mean	0.348	0.070	0.031	0.209	0.230	0.624	0.131	0.021	3.070
%RSD	0.020	0.703	0.907	0.879	2.336	0.147	0.593	2.374	0.180
	Pb	Se							
	Reading	Reading							
#1									
#2									
Mean	0.000	0.000							
%RSD	0.000	0.000							

Method: Paragon File : 120202A Printed: 2/2/2012 17:33:11

SampleId1 : RL SampleId2 :

Analysis commenced: 2/2/2012 14:23:30
Dilution ratio: 1.00000 to 1.00000 Position : TUBE2

Raw intensities

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.105	0.203	0.200	0.161	0.024	0.552	0.156	0.115	0.108
#2	0.104	0.203	0.198	0.162	0.024	0.553	0.153	0.115	0.107
Mean	0.104	0.203	0.199	0.161	0.024	0.552	0.154	0.115	0.108
%RSD	1.017	0.035	0.712	0.263	0.293	0.013	1.053	0.246	0.394
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
11	Reading								
#1	0.109	0.198	0.075	0.089	0.935	0.367	0.158	0.014	0.092
#2	0.109	0.196	0.075	0.088	0.933	0.367	0.157	0.014	0.093
Mean	0.109	0.197	0.075	0.089	0.934	0.367	0.157	0.014	0.092
%RSD	0.000	0.538	0.094	0.240	0.136	0.019	0.404	0.496	0.537
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
11.00	Reading								
#1	1.089	0.234	0.111	2.172	0.638	0.011	0.168	0.401	0.278
#2	1.091	0.235	0.109	2.177	0.630	0.011	0.169	0.392	0.280
Mean	1.090	0.234	0.110	2.175	0.634	0.011	0.168	0.396	0.279
%RSD	0.149	0.181	1.418	0.163	0.892	1.297	0.210	1.534	0.608
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	Reading								
#1	0.382	0.073	0.134	0.294	0.235	0.154	0.130	0.023	0.272
#2	0.382	0.072	0.134	0.293	0.236	0.153	0.129	0.023	0.271
Mean	0.382	0.073	0.134	0.294	0.235	0.153	0.130	0.023	0.271
%RSD	0.019	0.970	0.000	0.241	0.301	0.462	0.109	0.000	0.287
	Pb	Se							
#1 #2	Reading	Reading							
Mean	0.000	0.000							
%RSD	0.000	0.000							

[STD]

•

Method : Paragon File : 120202A Printed: 2/2/2012 17:33:11

SampleId1 : BLANK SampleId2 : [STD]

Analysis commenced: 2/2/2012 14:26:32

Di tion ratio : 1.00000 to 1.00000 Tray : Position : TUBE1

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	Reading								
#1	0.101	0.182	0.191	0.069	0.018	0.465	0.151	0.038	0.098
#2	0.100	0.182	0.193	0.068	0.018	0.465	0.151	0.038	0.100
Mean	0.100	0.182	0.192	0.069	0.018	0.465	0.151	0.038	0.099
%RSD	0.565	0.117	0.700	0.822	0.000	0.000	0.375	0.369	1.355
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	Reading								
#1	0.106	0.189	0.073	0.046	0.642	0.093	0.103	0.012	0.078
#2	0.106	0.189	0.073	0.045	0.645	0.093	0.104	0.012	0.080
Mean	0.106	0.189	0.073	0.046	0.643	0.093	0.103	0.012	0.079
%RSD	0.134	0.112	0.097	0.620	0.385	0.303	0.137	0.597	1.706
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	Reading								
#1	0.091	0.215	0.080	2.156	0.623	0.009	0.158	0.393	0.271
#2	0.091	0.215	0.079	2.158	0.626	0.009	0.158	0.393	0.276
Mean	0.091	0.215	0.079	2.157	0.624	0.009	0.158	0.393	0.273
%RSD	0.389	0.000	1.161	0.062	0.385	0.000	0.045	0.126	1.216
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	Reading								
#1	0.330	0.070	0.030	0.192	0.227	0.140	0.124	0.021	0.236
#2	0.331	0.070	0.030	0.193	0.231	0.141	0.125	0.021	0.236
Mean	0.331	0.070	0.030	0.193	0.229	0.141	0.124	0.021	0.236
%RSD	0.150	0.304	0.711	0.441	1.081	0.452	0.909	0.687	0.030
	Pb	Se							
#1 #2	Reading	Reading							
Mean	0.000	0.000							
%RSD	0.000	0.000							

Line calibration information

Analyte	Reporting name	Ç0	C1	C2	C3	Correlation coefficient	Lovr limit	High Iimit	Date of last regression
Ag 328.068	Ag	0.000181	0.5619375	-0.0028144		1.0000	0.000	3.081	2/2/2012 14:32:08
AI 308.215	Al	0.0093258	8.8405378	0.0036255	0	0.9999	-0.007	70.617	2/2/2012 14:32: 08
As 189,042/2	As	0.0051571	1.1099082	-0.000025	0	1.0000	-0.004	4.501	2/2/2012 14:32:08
B 249.678/2	8	-0.0078268	0.739431	0.0003145	0	1.0000	0.001	13.458	2/2/2012 14:32:08
Ba 493,409	Ba	-0.0009868	0.8984842	0.0008898	0	1.0000	0.000	14.111	2/2/2012 14:32:08
Be 313.042	Ве	-0.0082434	0.016717	0.0000014	Ū	1.0000	0.465	60.002	2/2/2012 14:32:08
Bi 223.061	Bi	-0.0028998	2.327283	-0.0024444	Ò	1.0000	0.001	2.155	2/2/2012 14:32:08
Ga 317. 933	Ca	-0.1079293	3.7598142	0.004273	0	1.0000	0.002	117.360	2/2/2012 14:32:08
Cd 228,502/2	Cd	-0.0010199	0.2023378	0.0003093	0	1.0000	0.002	23.847	2/2/2012 14:32:08
Co 228.616	Co	0.0004707	0.8254113	0.0001684	0	1.0000	-0.002	6.050	2/2/2012 14:32:08
Or 267.716	Cr	-0.0006054	0.3968618	0.0000287	0	1.0000	-0.001	25.157	2/2/2012 14:32:08
Cu 324.753	Cu	-0.0306345	1.2602959	-0.0041439	0	1.0000	0.024	8.179	2/2/2012 14:32:08
Fe 259.94	Fø	-0.0157754	1.5446714	0.004334	Ō	1.0000	0.000	100.631	2/2/2012 14:32:09
K 768.491	К	-3.032715	4.0278127	-0.0037695	0	0.9595	0.643	67.021	2/2/2012 14:32:09
Li 570.784	Li	-0.0082958	0.0498561	-0.0000467	0	1.0000	0.093	253.427	2/2/2012 14:32:09
Mg 279.078	Mg	-0.0007409	5.2294065	-0.001206	0	1.0000	-0 .001	97.819	2/2/2012 14:32:09
Mn 257.61	Mo	-0.0008232	1.1834815	0.0042841	O	1.0000	0.000	8.207	2/2/2012 14:32:09
Mo 202.03/2	Mo	-0.0022848	1.016261	0.0012422	0	1.0000	-0.001	9.727	2/2/2012 14:32: 0 9
Na 588.995	Na	-0.2244274	0.8088045	0.0013533	0	0.99998	0.091	148.714	2/2/2012 14:32:09
Ni 231. ED4	Ni	-0.0030333	0.3844065	-0.0000233		1.0000	0.004	25.400	2/2/2012 14:32:09
F 178.287/2	P	-0.0109854	2.2178035	0.0107868	0	1.0000	-0.001	20.505	2/2/2012 14:32:09
Pb 220.351	Pb I	0.0040011	0.2709573	-0.0000003	0	1.0000	-0.022	36.893	2/2/2012 14:32:09
Pb 220.352/2	Pb II	-0.0039965	0.4643665	0.0000087	0	1.0000	0.008	21.535	2/2/2012 14:32:09
S 182.04/2	S	-0.0437811	31.1880343	0.0958129	0	1.0000	0.001	1.597	2/2/2012 14:32:09
5b 206.838/2	Sb	-0.0024561	1.3215983	0.0084922	0	1.0000	0.000	1.504	2/2/2012 14:32:09
Se 196.021	Sel	0.0012321	1.3390715	0.0001741	Ó	1.0000	-0.001	3.731	2/2/2012 14:32:09
Se 198.021/2	Se II	-0.003561	0.8600969	0.0025231	0	1.0000	0.003	5.721	2/2/2012 14:32:09
Si 288.158	Si	-0.223926	1.3981002	0.0001792	0	1.0000	0.151	35.759	2/2/2012 14:32:10
5n 1 89 .989	Sn	0.0002272	4.3839252	0.0193457	Ò	1.0000	-0.001	2.258	2/2/2012 14:32:10
Sr 421.552	⊙ r	-0.0042254	0.1800501	0.0001571	σ	1.0000	0.000	53.093	2/2/2012 14:32:10

ı	>	а	q	e

Meth	od report	Paragon								, age
Ti 334.94	1 Ti	-0.0006283	0.1261675	-0.0000041	0	1.0000	-0.012	79.472	2/2/2012 14:32:10	
TI 190.86	4/2 TI	0.0079779	1.1242362	-0.0007049	O	1.0000	-0.010	4.453	2/2/2012 14:32:10	
U 365.958	3 U	-0.019707	10.9145452	0.0045365	O	1.0000	0.000	4.574	2/2/2012 14:32:10	
V 292,402	2 V	-0.0005423	0.5398791	-0.0001936	0	1.0000	0.001	9.293	2/2/2012 14:32:10	
Zn 206.2	Zn	-0.0030254	2.9674357	0.0135176	O	1.0000	0.000	3.321	2/2/2012 14:32:10	

ū

1.0000

0.004

27.448 2/2/2012 14:32:10

Zr 339.198

ZΓ

-0.0011497

0.1836631

-0.0000531

Method: Paragon File: 120202A Printed: 2/2/2012 17:35:51
SampleId1: MIXBHIGH SampleId2: [CV]

Analysis commenced: 2/2/2012 14:37:45

Dilution ratio : 1.00000 to 1.00000 Tray : Position : TUBE6

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.97131	0.14770	4.92127	9.86862	9.74414	0.97137	0.01510	-0.07936	4.84673
#2	1.98654	0.14256	4.95578	9.93630	9.85295	0.98181	0.00827	-0.07898	4.88513
Mean	1.97893	0.14513	4.93852	9.90246	9.79854	0.97659	0.01168	-0.07917	4.86593
%RSD	0.54433	2.50228	0.49414	0.48326	0.78516	0.75583	41.34626	0.33583	0.55799
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	4.85395	9.68320	9.88710	-0.01933	-0.46491	-0.00312	-0.03264	9.66861	9.71782
#2	4.90814	9.81508	9.95154	-0.01979	-0.45767	-0.00307	-0.03369	9.79455	9.82015
Mean	4.88105	9.74914	9.91932	-0.01956	-0.46129	-0.00309	-0.03316	9.73158	9.76899
%RSD	0.78502	0.95655	0.45940	1.67522	1.11003	1.14096	2.23003	0.91515	0.74065
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	mqq	ppm						
#1	-0.11651	9.67919	49.03220	9.72013	9.57996	-0.01571	1.93890	4.94794	4.92285
#2	-0.11667	9.79858	49.49402	9.82598	9.71248	-0.01883	1.95353	4.97446	4.97386
Mean	-0.11659	9.73889	49.26311	9.77306	9.64622	-0.01727	1.94621	4.96120	4.94836
%RSD	0.09815	0.86687	0.66289	0.76589	0.97145	12.76887	0.53184	0.37802	0.72892
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	mqq	mqq	ppm	ppm
#1	49.43047	9.78886	9.73944	9.72721	4.90951	-0.06444	4.85926	9.59852	-0.01432
#2	49.88565	9.92238	9.83309	9.84176	4.94273	-0.08191	4.91944	9.75551	-0.01487
Mean	49.65806	9.85562	9.78627	9.78448	4.92612	-0.07317	4.88935	9.67701	-0.01459
%RSD	0.64816	0.95799	0.67672	0.82785	0.47686	16.87483	0.87033	1.14717	2.64845
	Pb	Se							
	calc	calc							
#1	9.62663	4.93121							
#2	9.75028	4.97406							
Mean	9.68846	4.95263							
%RSD	0.90240	0.61187							

Method: Paragon File: 120202A

SampleId1: MIXAHIGH SampleId2: Printed: 2/2/2012 17:35:52

[CV]

Analysis commenced: 2/2/2012 14:39:41
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE11

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
12.1	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm 495.54320	ppm -0.00056
#1 #2	0.00021 0.00087	498.27842 498.63928	0.00364 -0.00501	0.00378 0.00437	-0.00015 0.00020	0.00079 0.00081	0.00666 0.01318	493.34320	-0.00010
π2 Mean	0.00054	498.45885	-0.00069	0.00408	0.00020	0.00080	0.00992	496.98492	-0.00033
%RSD	86.75529	0.05119	893.10178	10.26200	1164.95077	1.75577	46.48830	0.41025	100.24430
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00006	0.00164	-0.01003	197.38833	248.79744	9.71879	498.26949	-0.01455	0.00381
#2	0.00089	0.00212	-0.00826	198.29100	248.41951	9.69645	499.02510	-0.01408	0.00442
Mean	0.00047	0.00188	-0.00914	197.83967	248.60848	9.70762	498.64729	-0.01431	0.00412
%RSD	123.48282	17.90578	13.64730	0.32263	0.10749	0.16273	0.10715	2.33829	10.47102
	Nа	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	150.97374	0.00103	0.00567	-0.00253	0.00284	-0.00324	-0.00024	-0.04031	0.01043
#2	150.35435	0.00099	0.01210	0.01065	-0.00741	0.00300	0.00425	-0.04930	-0.00134
Mean	150.66405	0.00101	0.00888	0.00406	-0.00228	-0.00012	0.00201	-0.04481	0.00455
%RSD	0.29069	2.76307	51.19127	229.32793	317.60528	3748.14956	158.31165	14.19919	182.92235
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
II a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00191	-0.00679	0.00755	-0.00104	0.01073	0.17333	-0.01984	-0.00658	0.00515
#2	-0.00173	0.00110	0.00790	-0.00069	0.02117	0.17272	-0.01961 -0.01973	-0.00480 - 0.00569	0.00568 0.00542
Mean %RSD	0.00009 2842.72405	-0.00284 196.42534	0.00772 3 . 13273	-0.00087 28.77889	0.01595 46.25763	0.17302 0.25118	0.82058	22.11026	6.96211
CCM	2042.72403	190,42554	3,13273	20.17009	40.23703	0.23110	0.02038	22.11020	0,90211
	Pb	Se							
	calc	calc							
#1	0.00106	-0.00646							
#2	-0.00140	-0.01731							
Mean %RSD	-0.00017 1020.80182	-0.01189 64.52984							
UCAS	1020.00182	04.34904							
Method	: Paragon		File : 1202	02A	Printed	: 2/2/2012 1	7:35:52		

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:52

SampleId1 : MIXCHIGH SampleId2 : [CV]

Analysis commenced: 2/2/2012 14:41:36
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE14

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01644	0.89200	-0.00568	0.00578	-0.00155	0.00337	5.05429	-0.06432	-0.00159
#2	-0.01772	0.87477	-0.00968	0.00629	-0.00148	0.00339	5.07235	-0.06996	-0.00126
Mean	-0.01708	0.88338	-0.00768	0.00604	-0.00151	0.00338	5.06332	-0.06714	-0.00142
%RSD	5.30660	1.37911	36.79889	6.06407	3.25907	0.46158	0.25221	5.94021	16.44640
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо

Mean %RSD	0.00409 8.58329	-0.00949 3.12380	-0.02929 1.32453	~0.01454 18.02936	-0.50272 2.03712	-0.00308 1.83441	-0.19345 0.57346	0.00320 5.22937	-0.00107 80.95186
#1 #2 Mean %RSD	Na ppm -0.11788 -0.12015 -0.11902 1.34607	ppm -0.00082 0.00036 -0.00023 359.01994	ppm 0.00700 0.01321 0.01010 43.45928	<pre>Pb I ppm -0.02582 -0.02702 -0.02642 3.21835</pre>	<pre>pb II ppm 0.02156 0.01987 0.02072 5.77111</pre>	s ppm 50.74174 50.79213 50.76693 0.07020	ppm 0.00275 0.00156 0.00215 38.90599	Se I ppm 0.01702 0.00774 0.01238 52.99693	Se II ppm -0.00253 0.00263 0.00005 7127.17614
#1 #2 Mean %RSD	ppm -0.05558 -0.05299 -0.05429 3.36696	\$n ppm 0.02346 0.01907 0.02126 14.57691	ppm -0.00241 -0.00239 -0.00240 0.53116	ppm 0.00571 0.00524 0.00547 6.03245	T1 ppm 0.00186 0.00599 0.00393 74.41562	ppm 51.12800 51.08637 51.10718 0.05760	ppm -0.01005 -0.00875 -0.00940 9.74238	Zn ppm -0.00332 -0.00480 -0.00406 25.82854	Zr ppm 5.06532 5.06214 5.06373 0.04442
#1 #2 Mean %RSD	Pb calc 0.00579 0.00426 0.00502 21.51811	Se calc 0.00398 0.00433 0.00416 5.99589							
SampleIo Analysis Dilution		: 2/2/2012 .00000 to 1.		:	Printed :	2/2/2012 17 [CV] Position:			
rinal Co	Jucentiation	112							

ppm

-0.49548

-0.50997

ppm 0.00308

0.00332

ppm

-0.00167

-0.00046

ppm -0.19266

-0.19423

ppm

-0.00304

-0.00312

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10395	25.49245	0.25459	0.49720	0.52954	0.25031	0.26164	25.09105	0.25371
#2	0.10395	25.41965	0.26336	0.49594	0.52745	0.25006	0.26443	25.07884	0.25324
Mean	0.10395	25.45605	0.25898	0.49657	0.52849	0.25019	0.26304	25.08494	0.25348
%RSD	0.00364	0.20221	2.39406	0.17910	0.28009	0.07238	0.74873	0.03443	0.13008
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq
#1	0.24874	0.51023	0.51332	10.24180	23.59254	0.22851	24.83834	0.51326	0.50107
#2	0.24964	0.51007	0.51090	10.22019	23.47166	0.22734	24.83521	0.51290	0.49720
Mean	0.24919	0.51015	0.51211	10.23099	23.53210	0.22792	24.83678	0.51308	0.49914
%RSD	0.25696	0.02201	0.33320	0.14939	0.36323	0.36395	0.00891	0.04908	0.54775
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm

ppm 0.00384

0.00434

#1 #2 ppm -0.00970

-0.00928

ppm -0.02956

-0.02902

ppm -0.01269

-0.01639

#1 #2 Mean %RSD	22.94115 22.82343 22.88229 0.36378	0.49735 0.49751 0.49743 0.02242	2.51184 2.48359 2.49772 0.79976	0.50566 0.50794 0.50680 0.31878	0.51185 0.50761 0.50973 0.58725	2.58917 2.56421 2.57669 0.68505	0.24654 0.24546 0.24600 0.31179	0.51326 0.50657 0.50992 0.92801	0.50647 0.51319 0.50983 0.93310
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	2.57920	0.52365	0.25902	0.25069	0.26657	2.55050	0.25012	0.49292	0.50742
#2	2.57933	0.51882	0.25803	0.25049	0.26477	2.55051	0.25136	0.49143	0.50604
Mean	2.57927	0.52124	0.25853	0.25059	0.26567	2.55050	0.25074	0.49217	0.50673
%RSD	0.00341	0.65485	0.27160	0.05695	0.48155	0.00041	0.34887	0.21349	0.19191
	Pb	Se							
	calc	ca1c							
#1	0.50979	0.50873							
#2	0.50772	0.51099							
Mean	0.50876	0.50986							
%RSD	0.28670	0.31328							

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:52

SampleId1: ICB SampleId2:
Analysis commenced: 2/2/2012 15:09:59
Dilution ratio: 1.00000 to 1.00000 Tray: [CB]

Position : STD2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00081	0.06997	-0.00468	-0.00598	-0.00085	-0.00025	-0.00991	-0.09101	-0.00085
#2	-0.00068	0.06408	0.00120	-0.00687	-0.00085	-0.00026	-0.00897	-0.09176	-0.00079
Mean	-0.00075	0.06703	-0.00174	-0.00642	-0.00085	-0.00026	-0.00944	-0.09139	-0.00082
%RSD	12.08577	6.22142	239.07654	9.76713	0.00000	3.32069	6.98636	0.58184	5.27599
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00068	-0.00098	-0.00311	-0.00913	-0.32561	-0.00336	-0.00231	-0.00035	-0.00432
#2	-0.00085	-0.00122	-0.00312	-0.00836	-0.33063	-0.00340	-0.00492	-0.00059	-0.00239
Mean	-0.00076	-0.00110	-0.00312	-0.00875	-0.32812	-0.00338	-0.00362	-0.00047	-0.00335
%RSD	15.24774	15.58501	0.18598	6.24368	1.08171	0.97735	51.11554	35.74771	40.73443
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.14070	-0.00248	-0.00986	-0.00042	0.00105	-0.02195	-0.00172	-0.00617	-0.00296
#2	-0.13942	-0.00161	-0.00564	-0.00652	-0.00062	-0.02819	-0.00343	-0.00068	-0.00167
Mean	-0.14006	-0.00205	-0.00775	-0.00347	0.00021	-0.02507	-0.00257	-0.00343	-0.00232
%RSD	0.64904	29.96872	38.44943	124.12172	553.42127	17.59464	46.75164	113.46069	39.40823
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.02240	-0.00372	-0.00417	-0.00204	-0.00712	-0.04590	-0.00114	-0.00154	-0.00030

#2 Mean %RSD	-0.02297 -0.02268 1.75443	-0.00284 -0.00328 18.91973	-0.00412 - 0.00414 0.92180	-0.00218 - 0.00211 4.64933	-0.00655 -0.00683 5.86470	-0.03826 - 0.04208 12.83884	-0.00071 -0.00092 33.13731	-0.00332 -0.00243 51.81269	-0.00039 -0.00035 18.72003
	Pb	Se							
	calc	calc							
#1	0.00056	-0.00403							
#2	-0.00259	-0.00134							
Mean	-0.00101	-0.00268							
%RSD	219.67130	70.87346							

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:52

SampleId1: CRI Sampl
Analysis commenced: 2/2/2012 15:12:05
Dilution ratio: 1.00000 to 1.00000 SampleId2 : [FLEXQC]

calc

0.00930

0.00547

calc

0.00816

0.01143

Tray : Position : STD3

Final concentrations

	Ag	Al	As	В	Ba	Ве	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	0.02020	0.49597	0.00686	0.39585	0.41108	0.01167	0.04944	5.12119	0.01150
#2	0.01946	0.50465	0.00498	0.39969	0.41429	0.01174	0.04130	5,13062	0.01151
Mean	0.01983	0.50031	0.00592	0.39777	0.41268	0.01170	0.04537	5.12590	0.01151
%RSD	2.62690	1.22638	22.54280	0.68384	0.54977	0.40723	12.68422	0.13007	0.07944
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10129	0.02132	0.04686	0.20242	3.47105	0.01222	4.97604	0.03208	0.01977
#2	0.10122	0.02183	0.04805	0.20242	3.47105	0.01228	4.98492	0.03208	0.02068
Mean	0.10126	0.02158	0.04745	0.20242	3.47105	0.01225	4.98048	0.03208	0.02023
%RSD	0.05417	1.66775	1.78174	0.00000	0.00000	0.32926	0.12616	0.00000	3.19776
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.65156	0.08015	0.19339	0.01243	0.00773	0.19949	0.12118	0.01141	0.00654
#2	3.66946	0.08117	0.20049	0.00690	0.00475	0.20573	0.11933	0.01089	0.01170
Mean	3.66051	0.08066	0.19694	0.00967	0.00624	0.20261	0.12025	0.01115	0.00912
%RSD	0.34580	0.89896	2.55050	40.44954	33.75654	2.17702	1.08828	3.31827	40.00886
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09758	0.10104	0.01782	0.01999	0.02385	0.18098	0.10385	0.04891	0.05330
#2	0.10231	0.09666	0.01798	0.01976	0.02464	0.19408	0.10336	0.04921	0.05323
Mean	0.09994	0.09885	0.01790	0.01987	0.02424	0.18753	0.10361	0.04906	0.05326
%RSD	3.35212	3.13633	0.64037	0.80801	2.31884	4.93856	0.33157	0.42777	0.09867
	Pb	Se							

#1

#2

Mean 0.00738 0.00980er: MIKE LUNDGREEN

%RSD 36.67534 23.58845

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:52

SampleId1 : ZZZ SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 15:14:01
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD4

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00049	262.23941	0.00342	-0.00702	-0.00085	0.00037	0.00408	261.27052	-0.00036
#2	-0.00194	262.67862	-0.00335	-0.00731	-0.00085	0.00041	0.00058	260.20671	-0.00039
Mean	-0.00122	262.45902	0.00004	-0.00716	-0.00085	0.00039	0.00233	260.73861	-0.00037
%RSD	83.91587	0.11833	13296.05015	2.91964	0.00000	7.58691	106.12742	0.28850	6.55566
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	0.00047	-0.00143	-0.00612	106.58110	-0.43856	-0.00317	263.52913	0.00202	-0.00096
#2	0.00031	-0.00098	-0.00720	106.48028	-0.45780	-0.00322	264.14546	0.00190	-0.00117
Mean	0.00039	-0.00121	-0.00666	106.53069	-0.44818	-0.00320	263.83730	0.00196	-0.00107
%RSD	30.03816	25.97269	11.42377	0.06692	3.03596	1.03286	0.16518	4.27415	13.49197
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	-0.12871	0.00000	0.00811	0.00065	-0.00379	0.04355	-0.00064	-0.02323	-0.00210
#2	-0.12948	-0.00039	0.00855	-0.00369	0.00137	0.04978	-0.00474	-0.01573	-0.00126
Mean	-0.12909	-0.00019	0.00833	-0.00152	-0.00121	0.04666	-0.00269	-0.01948	-0.00168
%RSD	0.42254	144.05347	3.76543	201.29749	300.76977	9.45191	107.87977	27.24133	35.25616
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	-0.02422	0.00286	-0.00251	-0.00044	0.00392	0.05289	-0.00985	-0.00332	0.00328
#2	-0.02783	-0.00459	-0.00255	-0.00057	0.00814	0.04095	-0.01176	-0.00184	0.00238
Mean	-0.02603	-0.00087	-0.00253	-0.00050	0.00603	0.04692	-0.01081	-0.00258	0.00283
%RSD	9.82952	606.97836	1.00566	17.76788	49.43739	17.99132	12.49378	40.69246	22.45748
	Pb	Se							
	calc	calc							
#1	-0.00231	-0.00914							
#2	-0.00032	-0.00608							
Mean	-0.00132	-0.00761							
%RSD	107.10844	28.42436							

Method: Paragon File: 120202A
SampleId1: ICSA SampleId2: Printed: 2/2/2012 17:35:53

[FLEXQC]

Analysis commenced: 2/2/2012 15:18:06
Dilution ratio: 1.00000 to 1.00000 Tray:

Position : STD4

#1 #2 Mean %RSD	Ag ppm 0.00055 -0.00064 -0.0004 2057.49548	ppm 262.66309 262.72634 262.69471 0.01703	As ppm 0.00209 -0.00191 0.00009 3087.76566	ppm -0.00702 -0.00628 -0.00665 7.86759	Pa ppm -0.00071 -0.00036 -0.00054 45.93681	Be ppm 0.00047 0.00051 0.00049 6.34563	Bi ppm 0.00245 -0.00662 -0.00208 307.98771	Ca ppm 263.14455 262.62054 262.88254 0.14095	Cd ppm -0.00029 0.00043 0.00007 701.84913
	Co ppm	Cr ppm	Cu ppm	Fe ppm	K ppm	Li ppm	Mg ppm	Mn ppm	Mo ppm
#1 #2	0.00121 0.00080	-0.00096 -0.00068	-0.00553 -0.00601	107.17118 107.04820	-0.43814 -0.45780	-0.00320 -0.00305	264.38902 264.37064	0.00202 0.00202	0.00117 -0.00167
#2 Mean %RSD	0.00101 28.99039	-0.00088 -0.00082 24.10022	-0.00577 5.90088	107.04820 107.10969 0.08118	-0.43780 -0.44797 3.10341	-0.00303 -0.00313 3.28530	264.37983 0.00492	0.00202 0.00202 0.00000	-0.00167 -0.00025 797.75032
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.12845	0.00162	-0.00431	0.00889	-0.00531	0.04043	0.00175	-0.01837	0.00120
#2	-0.12793	0.00000	0.00722	0.00012	-0.00033	0.04666	-0.00052	-0.01889	0.00289 0.00204
Mean %RSD	-0.12819 0.28367	0.00081 140.79390	0.00145 560.61541	0.00450 137.65222	-0.00282 124.79584	0.04355 10.12887	0.00062 260.36202	-0.01863 1.95847	58.62095
9K2D	0.20307	140.79390	360.61341	137.63222	124.79304	10.12007	260.36202	1.93047	30.02093
	Si	Sn	Sr	Ti	Tl	σ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.02129	0.00637	-0.00239	-0.00035	0.01545	0.06558	-0.00893	-0.00362	0.00354
#2	-0.02256	0.00154	-0.00228	-0.00007	0.01146	0.06348	-0.00922	-0.00273	0.00365
Mean *BCD	-0.02193	0.00395	-0.00233	-0.00021	0.01346	0.06453	-0.00907	-0.00317	0.00359
%RSD	4.08615	86.24997	3.27301	92.61427	20.98939	2.30018	2.28948	19.84686	2.17323
	Pb	Se							
	calc	calc							
#1	-0.00058	-0.00532							
#2	-0.00018	-0.00436							
Mean	-0.00038	-0.00484							
%RSD	74.25825	14.00912							
Sample	: Paragon Id1 : ICSAB	. 0/0/0010	File: 1202 SampleId		Printed	: 2/2/2012 1 [FLEXQC]	7:35:53		

Analysis commenced: 2/2/2012 15:20:04
Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD5

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	0.20297	213.09320	0.10376	1.01963	0.55257	0.48549	0.54471	262.54889	1.00280
#2	0.20083	212.22352	0.09976	1.01659	0.55180	0.48365	0.54493	261.55952	1.00100
Mean	0.20190	212.65836	0.10176	1.01811	0.55218	0.48457	0.54482	262.05421	1.00190
%RSD	0.74836	0.28918	2.77652	0.21081	0.09830	0.26903	0.02729	0.26696	0.12708

ted:	2/2/2012 17:36	5:04 User:	MIKE LUNDO	GREEN					
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.48720	0.49328	0.55210	107.49761	-0.47370	1.08401	265.64604	0.51492	0.99719
#2	0.48406	0.49100	0.55035	107.14007	-0.47160	1.08008	264.88021	0.51361	0.98863
Mean	0.48563	0.49214	0.55122	107.31884	-0.47265	1.08205	265.26313	0.51427	0.99291
%RSD	0.45633	0.32678	0.22492	0.23558	0.31291	0.25682	0.20415	0.17956	0.60939
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.12742	0.99360	1.00326	0.04284	0.05766	1.07911	0.58493	0.04425	0.05822
#2	-0.12716	0.98923	0.98678	0.04143	0.04964	1.08847	0.58556	0.03837	0.05470
Mean	-0.12729	0.99141	0.99502	0.04214	0.05365	1.08379	0.58524	0.04131	0.05646
%RSD	0.14284	0.31215	1.17143	2.36539	10.56888	0.61058	0.07579	10.06203	4.39961
	Si	Sn	Sr	Ti	Т1	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.01897	1.03608	1.07948	0.99191	0.10197	10.81417	0.49728	0.92473	0.50166
#2	1.01440	1.03081	1.07604	0.98985	0.11133	10.76198	0.49290	0.91580	0.50032
Mean	1.01668	1.03344	1.07776	0.99088	0.10665	10.78807	0.49509	0.92026	0.50099
%RSD	0.31777	0.36054	0.22564	0.14758	6.20542	0.34208	0.62637	0.68597	0.18881
	Pb	Se							
	calc	calc							
#1	0.05273	0.05357							
#2	0.04691	0.04926							
Mean	0.04982	0.05142							
%RSD	8.25837	5.91464							

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:53

SampleId1 : CCV SampleId2 :
Analysis commenced : 2/2/2012 15:22:02
Dilution ratio : 1.00000 to 1.00000 Tray : SampleId1 : CCV [CV]

Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	0.20831	51.58678	0.51963	0.99557	1.06331	0.48887	0.52081	50.56437	0.50868
#2	0.20824	51.66391	0.51431	0.99675	1.06709	0.48795	0.53548	50.43074	0.50613
Mean	0.20828	51.62534	0.51697	0.99616	1.06520	0.48841	0.52814	50.49756	0.50741
%RSD	0.02248	0.10565	0.72868	0.08408	0.25062	0.13322	1.96368	0.18711	0.35578
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq
#1	0.49408	1.01136	1.03953	20.42173	51.49804	0.52007	50.07741	1.01311	1.00299
#2	0.49325	1.01014	1.04399	20.40335	51.58758	0.52113	50.08678	1.01264	1.00228
Mean	0.49367	1.01075	1.04176	20.41254	51.54281	0.52060	50.08209	1.01288	1.00264
%RSD	0.11763	0.08598	0.30233	0.06365	0.12283	0.14448	0.01323	0.03325	0.05029

	Na	Ni	P	Pb I	Pb II	s	Slo	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	48.21462	1.00559	4.93899	1.01315	1.00405	5.17354	0.49588	1.02084	1.01650
#2	48.27552	1.00563	4.92721	1.00885	1.00554	5.16729	0.49496	1.01334	1.01667
Mean	48.24507	1.00561	4.93310	1.01100	1.00480	5.17041	0.49542	1.01709	1.01659
%RSD	0.08925	0.00277	0.16885	0.30055	0.10520	0.08539	0.13143	0.52143	0.01179
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.10970	1.02962	0.52562	0.49617	0.51408	5.14199	0.50026	0.97056	1.01135
#2	5.11600	1.02479	0.52739	0.49660	0.52632	5.13873	0.49810	0.96163	1.01199
Mean	5.11285	1.02721	0.52651	0.49638	0.52020	5.14036	0.49918	0.96609	1.01167
%RSD	0.08712	0.33268	0.23824	0.06109	1.66346	0.04489	0.30620	0.65352	0.04470
	Pb	Se							
	ca1c	ca1c							
#1	1.00708	1.01795							
#2	1.00664	1.01556							
Mean	1.00686	1.01675							
%RSD	0.03047	0.16583							
01(0)	0.0001	0.10000							

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:53

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 15:24:10
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00023	0.08311	-0.00335	-0.00605	-0.00078	-0.00015	-0.00804	-0.08499	-0.00029
#2	-0.00015	0.13380	-0.00757	-0.00561	-0.00036	0.00001	-0.00804	-0.02559	-0.00016
Mean	-0.00019	0.10845	-0.00546	-0.00583	-0.00057	-0.00007	-0.00804	-0.05529	-0.00022
%RSD	28.39116	33.04777	54.64105	5.37889	51.76151	166.22528	0.02060	75.97394	41.09889
	Co	Cr	Cu	Fe	к	Lî	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00093	-0.00012	-0.00302	-0.00635	-0.32060	-0.00338	0.00606	-0.00047	-0.00117
#2	-0,00027	0.00017	-0.00227	0.01790	-0.32436	-0.00327	0.06620	0.00001	-0.00025
Mean	-0.00060	0.00003	-0.00265	0.00577	-0.32248	-0.00332	0.03613	-0.00023	-0.00071
%RSD	77.97467	777.75054	19.90455	297.02095	0.82548	2.20747	117.70905	144.59595	91.14968
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.13899	-0.00055	-0.00542	0.00047	-0.00282	-0.01571	-0.00065	-0.00388	0.00315
#2	-0.13299	-0.00051	-0.00720	0.00463	0.00105	-0.01571	-0.00105	-0.00283	0.00203
Mean	-0.13599	-0.00053	-0.00631	0.00255	-0.00088	-0.01571	-0.00085	-0.00335	0.00259
%RSD	3.11959	5.27352	19.88915	115.56662	310.83454	0.00000	32.72258	22.16691	30.38142
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr

SampleId1 : CCV SampleId2 : [CV]

Analysis commenced: 2/2/2012 15:26:08

Pb

calc

Se

calc

Dilution ratio : 1.00000 to 1.00000 Tray : Position : STD6

	Ag	Al	As	В	Ва	Ве	Bi	Ca	Cd
#1	ppm 0.20853	ppm 51.44581	ppm 0.51719	ppm 0.98846	ppm 1.06017	ppm 0.48572	ppm 0.53336	ppm 50.20496	ppm 0.50466
#2	0.20945	51.57090	0.50809	0.98839	1.06436	0.48584	0.53330	50.13178	0.50538
	0.20899	51.50836		0.98842	1.06226	0.48578	0.52882	50.15178 50.16837	0.50500
Mean %RSD	0.20899	0.17173	0.51264 1.25534	0.98842	0.27923	0.48578	1.21194	0.10316	0.10008
91130	0.51254	0.1/1/3	1.23334	0.00550	0.21925	0.01/94	1.21194	0.10510	0,10000
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49234	1.00739	1.03375	20.29611	51.30955	0.51754	49.85822	1.00871	0.98680
#2	0.49243	1.00517	1.03749	20.30554	51.42894	0.51926	49.94413	1.00835	0.98394
Mean	0.49238	1.00628	1.03562	20.30082	51.36925	0.51840	49.90118	1.00853	0.98537
%RSD	0.01251	0.15581	0.25542	0.03285	0.16434	0.23467	0.12173	0.02505	0.20468
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
	Na ppm	Ni ppm	p ppm	Pb I ppm	Pb II ppm	s ppm	Sb ppm	Se I ppm	Se II ppm
#1									
#1 #2	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	ppm 48.10105	ppm 0.99147	ppm 4.92992	ppm 1.00689	ppm 1.00161	ppm 5.09861	ppm 0.48891	ppm 1.00547	ppm 0.99950
#2	ppm 48.10105 48.19276	ppm 0.99147 0.99072	ppm 4.92992 4.92562	ppm 1.00689 1.00179	ppm 1.00161 1.00186	ppm 5.09861 5.15793	ppm 0.48891 0.48931	ppm 1.00547 1.00626	ppm 0.99950 1.00565
#2 Mean	ppm 48.10105 48.19276 48.14691	ppm 0.99147 0.99072 0.99110	ppm 4.92992 4.92562 4.92777	ppm 1.00689 1.00179 1.00434	ppm 1.00161 1.00186 1.00174	ppm 5.09861 5.15793 5.12827	ppm 0.48891 0.48931 0.48911	ppm 1.00547 1.00626 1.00586	ppm 0.99950 1.00565 1.00258
#2 Mean	ppm 48.10105 48.19276 48.14691 0.13469	ppm 0.99147 0.99072 0.99110 0.05345	ppm 4.92992 4.92562 4.92777 0.06176	ppm 1.00689 1.00179 1.00434 0.35876	ppm 1.00161 1.00186 1.00174 0.01754	ppm 5.09861 5.15793 5.12827 0.81790	ppm 0.48891 0.48931 0.48911 0.05796	ppm 1.00547 1.00626 1.00586 0.05565	ppm 0.99950 1.00565 1.00258 0.43378
#2 Mean	ppm 48.10105 48.19276 48.14691 0.13469	ppm 0.99147 0.99072 0.99110 0.05345	ppm 4.92992 4.92562 4.9277 0.06176	ppm 1.00689 1.00179 1.00434 0.35876	ppm 1.00161 1.00186 1.00174 0.01754	ppm 5.09861 5.15793 5.12827 0.81790	ppm 0.48891 0.48931 0.48911 0.05796	ppm 1.00547 1.00626 1.00586 0.05565	ppm 0.99950 1.00565 1.00258 0.43378
#2 Mean %RSD	ppm 48.10105 48.19276 48.14691 0.13469 Si ppm	ppm 0.99147 0.99072 0.99110 0.05345 Sn ppm	ppm 4.92992 4.92562 4.92777 0.06176 Sr ppm	ppm 1.00689 1.00179 1.00434 0.35876	ppm 1.00161 1.00186 1.00174 0.01754	ppm 5.09861 5.15793 5.12827 0.81790 U ppm	ppm 0.48891 0.48931 0.48911 0.05796 V ppm	ppm 1.00547 1.00626 1.00586 0.05565	ppm 0.99950 1.00565 1.00258 0.43378 Zr ppm
#2 Mean %RSD #1	ppm 48.10105 48.19276 48.14691 0.13469 Si ppm 5.08681	ppm 0.99147 0.99072 0.99110 0.05345 Sn ppm 1.02435	ppm 4.92992 4.92562 4.92777 0.06176 Sr ppm 0.52305	ppm 1.00689 1.00179 1.00434 0.35876 Ti ppm 0.49501	ppm 1.00161 1.00186 1.00174 0.01754 T1 ppm 0.51909	ppm 5.09861 5.15793 5.12827 0.81790 U ppm 5.14972	ppm 0.48891 0.48931 0.48911 0.05796 V ppm 0.49646	ppm 1.00547 1.00626 1.00586 0.05565 Zn ppm 0.95211	ppm 0.99950 1.00565 1.00258 0.43378 Zr ppm 1.00469
#2 Mean %RSD #1 #2	ppm 48.10105 48.19276 48.14691 0.13469 Si ppm 5.08681 5.10851	ppm 0.99147 0.99072 0.99110 0.05345 Sn ppm 1.02435 1.02347	ppm 4.92992 4.92562 4.92777 0.06176 Sr ppm 0.52305 0.52464	ppm 1.00689 1.00179 1.00434 0.35876 Ti ppm 0.49501 0.49563	ppm 1.00161 1.00186 1.00174 0.01754 T1 ppm 0.51909 0.51549	ppm 5.09861 5.15793 5.12827 0.81790 U ppm 5.14972 5.13880	ppm 0.48891 0.48931 0.48911 0.05796 V ppm 0.49646 0.49749	ppm 1.00547 1.00626 1.00586 0.05565 Zn ppm 0.95211 0.95389	ppm 0.99950 1.00565 1.00258 0.43378 Zr ppm 1.00469 1.00691

#2 1.00184 1.00586 1.00260 Mean 1.00367 0.30759 %RSD 0.10798

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:54

SampleId1 : CCB SampleId2 :

Analysis commenced: 2/2/2012 15:30:12
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00089	0.10960	0.00031	-0.00568	-0.00071	-0.00001	-0.00594	-0.05755	-0.00031
#2	-0.00043	0.11710	-0.00413	-0.00539	-0.00057	0.00002	0.00453	-0.04965	-0.00045
Mean	-0.00066	0.11335	-0.00191	-0.00554	-0.00064	0.00000	-0.00071	-0.05360	-0.00038
%RSD	49.80510	4.67781	164.67715	3.77749	15.37770	506.15948	1047.60822	10.41652	24.48559
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00043	0.00048	-0.00253	0.00400	-0.31725	-0.00329	0.03534	-0.00011	0.00036
#2	-0.00200	-0.00003	-0.00229	0.00832	-0.32018	-0.00327	0.03743	-0.00011	-0.00167
Mean	-0.00122	0.00022	-0.00241	0.00616	-0.31871	-0.00328	0.03639	-0.00011	-0.00066
%RSD	91.09200	163.34831	7.14470	49.65304	0.64963	0.44708	4.06480	0.00000	218.17990
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.13291	-0.00015	-0.00431	0.00239	-0.00114	-0.01883	-0.00276	0.00188	-0.00003
#2	-0.13111	-0.00011	-0.00764	0.00076	0.00072	-0.01571	-0.00092	-0.00080	0.00143
Mean	-0.13201	-0.00013	-0.00598	0.00157	-0.00021	-0.01727	-0.00184	0.00054	0.00070
%RSD	0.96415	20.74454	39.36850	73.30928	629.52266	12.76887	70.67653	354.16395	148.17993
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.02143	-0.00152	-0.00394	-0.00237	0.00212	-0.02735	-0.00065	-0.00332	-0.00017
#2	-0.02046	-0.00547	-0.00388	-0.00218	-0.00114	-0.02844	-0.00113	-0.00273	0.00012
Mean	-0.02095	-0.00350	-0.00391	-0.00227	0.00049	-0.02790	-0.00089	-0.00302	-0.00003
%RSD	3.28102	79.79591	0.97699	5.88286	469.96944	2.77397	38.44849	13.88057	818.43264
	Pb	Se							
	calc	calc							
#1	0.00004	0.00060							
#2	0.00073	0.00069							
Mean	0.00038	0.00064							
%RSD	127.95485	9.16677							

[CB]

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:54

SampleId1 : ZZZ SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:32:10

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00008	0.07821	-0.00635	-0.00635	-0.00071	-0.00032	-0.00851	-0.07484	-0.00049
#2	0.00024	0.07570	-0.00446	-0.00694	-0.00064	-0.00031	-0.00152	-0.07484	0.00004
Mean	0.00008	0.07695	-0.00540	-0.00665	-0.00068	-0.00031	-0.00502	-0.07484	-0.00022
%RSD	288.07250	2.31007	24.69578	6.29407	7.29238	2.67296	98.51378	0.00000	168.26089
	Co	Cr	Cu	Fe	K	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00216	-0.00074	-0.00203	0.02192	-0.39798	-0.00354	-0.00388	-0.00023	0.00026
#2	-0.00216	-0.00015	-0.00058	0.02269	-0.39965	-0.00354	0.00240	-0.00035	-0.00239
Mean	-0.00216	-0.00044	-0.00130	0.02230	-0.39882	-0.00354	-0.00074	-0.00029	-0.00107
%RSD	0.01013	94.18488	78.41259	2.44895	0.29666	0.00000	598.92542	28.78991	175.39598
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	mqq	ppm	mqq	ppm	ppm	ppm
#1	-0.09159	-0.00051	-0.01407	-0.00286	0.00054	-0.02819	-0.00235	-0.00765	-0.00356
#2	-0.09210	0.00012	-0.00853	-0.00151	-0.00016	-0.01883	0.00000	-0.00309	-0.00166
Mean	-0.09185	-0.00019	-0.01130	-0.00218	0.00019	-0.02351	-0.00118	-0.00537	-0.00261
%RSD	0.39597	230.48554	34.70108	43.69475	259.99647	28.14263	141.39336	60.00107	51.27061
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	mqq
#1	-0.02196	-0.00415	-0.00410	-0.00344	-0.01295	-0.04483	-0.00146	-0.00065	0.00001
#2	-0.02171	-0.00240	-0.00408	-0.00354	-0.00710	-0.03828	0.00006	-0.00213	0.00010
Mean	-0.02184	-0.00328	-0.00409	-0.00349	-0.01002	-0.04155	-0.00070	-0.00139	0.00006
%RSD	0.83908	37.85360	0.31133	2.04369	41.27428	11.14352	152.72125	75.41022	112.92948
	Pb	Se							
	calc	calc							
#1	-0.00059	-0.00492							
#2	-0.00061	-0.00214							
Mean	-0.00060	-0.00353							
%RSD	2.29344	55.69565							

SampleId1 : IP120202-2MB SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:36:22
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE1

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00128	0.07636	0.00054	-0.00379	-0.00085	-0.00029	-0.00781	-0.07033	-0.00027
#2	-0.00099	0.08082	-0.00279	-0.00365	-0.00085	-0.00028	-0.00828	-0.07184	-0.00023

Mean %RSD	-0.00114 17.76446	0.07859 4.01504	-0.00113 208.87549	-0.00372 2.81132	-0.00085 0.00000	-0.00029 1.23020	-0.00804 4.15105	-0.07108 1.49607	-0.00025 12.00951
#1 #2 Mean %RSD	Co ppm -0.00134 -0.00175 -0.00155 18.86697	Cr ppm -0.00078 -0.00089 -0.00083 8.80324	Cu ppm -0.00167 -0.00140 -0.00153 12.57421	Fe ppm 0.02393 0.02315 0.02354 2.32038	ppm -0.35406 -0.34611 -0.35009 1.60528	Li ppm -0.00344 -0.00341 -0.00342 0.64317	Mg ppm -0.00283 -0.00440 -0.00362 30.66933	Mn ppm -0.00035 -0.00035 -0.00035 0.00000	Mo ppm -0.00218 -0.00157 -0.00188 22.95563
#1 #2 Mean %RSD	Na ppm -0.08936 -0.08919 -0.08928 0.13579	Ni ppm -0.00035 -0.00177 -0.00106 94.60101	ppm -0.00365 -0.00276 -0.00320 19.58524	<pre>Pb I ppm 0.00055 -0.00307 -0.00126 203.23999</pre>	Pb II ppm 0.00374 0.00060 0.00217 102.11426	s ppm -0.02819 -0.02819 -0.02819 0.00000	sb ppm -0.00224 -0.00329 -0.00276 26.90200	Se I ppm -0.00778 0.00639 -0.00070 1436.30463	Se II ppm -0.00356 -0.00227 -0.00291 31.35218
#1 #2 Mean %RSD	\$i ppm -0.02073 -0.02459 -0.02266 12.07498	\$n ppm 0.00549 0.00418 0.00483 19.24006	\$r ppm -0.00214 -0.00210 -0.00212 1.20286	Ti ppm -0.00282 -0.00281 -0.00282 0.31667	T1 ppm -0.00738 -0.00065 -0.00402 118.48454	ppm -0.03937 -0.06775 - 0.05356 37.46539	ppm -0.00151 -0.00146 -0.00148 2.56781	Zn ppm -0.00065 -0.00124 -0.00095 44.35498	Zr ppm 0.00001 -0.00017 -0.0008 161.42009
#1 #2 Mean %RSD	Pb calc 0.00268 -0.00062 0.00103 226.62334	Se calc -0.00496 0.00062 -0.00217 181.48564							

File : 120202A Method : Paragon Printed: 2/2/2012 17:35:54

SampleId1 : IP120202-2LCS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:38:14
Dilution ratio: 1.00000 to 1.00000 Tray:

Position : TUBE2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09280	2.17288	1.90251	0.46106	2.07601	0.04733	-0.00901	37.01795	0.04979
#2	0.09405	2.18342	1.90573	0.46003	2.08366	0.04750	-0.00574	37.29277	0.04965
Mean	0.09343	2.17815	1.90412	0.46055	2.07984	0.04742	-0.00737	37.15536	0.04972
%RSD	0.94484	0.34224	0.11952	0.15903	0.26002	0.26585	31.37078	0.52300	0.20417
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	mqq	mqq	ppm	mqq
#1	0.47282	0.19401	0.25652	1.03583	37.53146	0.46907	36.08522	0.49355	0.96316
#2	0.47836	0.19520	0.25772	1.04343	37.76719	0.47170	36.27235	0.49688	0.96377
Mean	0.47559	0.19461	0.25712	1 03963	37 64932	0 47038	36 17879	0 49521	0 96347

%RSD	0.82302	0.43073	0.32940	0.51677	0.44273	0.39553	0.36575	0.47460	0.04485
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	35.82368	0.48134	-0.00342	0.48733	0.48099	-0.00324	0.45578	1.79901	1.77620
#2	35.98586	0.48288	-0.00342	0.48803	0.48688	-0.00947	0.45564	1.81067	1.78935
Mean	35.90477	0.48211	-0.00342	0.48768	0.48393	-0.00636	0.45571	1.80484	1.78277
%RSD	0.31939	0.22557	0.00000	0.10136	0.86117	69.40134	0.02181	0.45690	0.52142
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	1.76293	0.49266	0.53584	0.48154	1.96976	-0.05970	0.48588	0.46201	0.00088
#2	1.77704	0.49222	0.53790	0.48474	1.98928	-0.04989	0.49133	0.46706	0.00112
Mean	1.76998	0.49244	0.53687	0.48314	1.97952	-0.05480	0.48860	0.46453	0.00100
%RSD	0.56372	0.06355	0.27181	0.46891	0.69739	12.66944	0.78883	0.76899	16.72419
	Pb	Se							
	calc	calc							
#1	0.48310	1.78380							
#2	0.48726	1,79645							
Mean	0.48518	1.79012							
%RSD	0.60685	0.49976							
	0.00000	0.13370							

SampleId1 : 1201354-1 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:40:09
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE3

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
11 .0	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm
#1	-0.00223	59.71556	0.06258	0.51589	3.00723	0.00473	-0.00234	86.17257	0.00070
#2	-0.00204	59.65524	0.05503	0.51692	3.00484	0.00472	-0.00257	86.19984	0.00040
Mean	-0.00214	59.68540	0.05881	0.51640	3.00603	0.00472	-0.00245	86.18621	0.00055
%RSD	6.34747	0.07147	9.07497	0.14183	0.05630	0.14242	6.61738	0.02237	37.57627
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03514	0.04520	0.06650	118.19187	12.18095	0.07187	22.51038	1.65166	0.03390
#2	0.03547	0.04515	0.06649	118.13838	12.11771	0.07153	22.47750	1.65142	0.03593
Mean	0.03531	0.04517	0.06649	118.16513	12,14933	0.07170	22,49394	1.65154	0.03491
%RSD	0.65400	0.07217	0.01375	0.03201	0.36805	0.34192	0.10336	0.01024	4.11703
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	mqq	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	7.31988	0.03897	2.39348	0.14181	0.14538	5.91663	0.00243	0.07772	0.11191
#2	7.30086	0.04031	2.37802	0.14440	0.14444	5.88853	0.00020	0.07493	0.10811
Mean	7.31037	0.03964	2.38575	0.14310	0.14491	5.90258	0.00131	0.07633	0.11001
%RSD	0.18392	2.39197	0.45830	1,27914	0.45842	0.33665	120.31213	2.58581	2.44104

ted:	2/2/2012 17:3	36:05 User	: MIKE LUNDG	REEN					
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.52455	0.00618	0.39036	0.15464	0.02206	0.36369	0.80613	1.11732	0.05362
#2	1.52370	-0.00127	0.39020	0.15477	0.01597	0.37574	0.80563	1.12179	0.05322
Mean	1.52412	0.00246	0.39028	0.15470	0.01901	0.36971	0.80588	1.11956	0.05342
%RSD	0.03940	214.36378	0.02948	0.05766	22.64736	2.30329	0.04350	0.28210	0.53456
	Pb	Se							
	ca1c	calc							
#1	0.14419	0.10053							
#2	0.14443	0.09706							
Mean	0.14431	0.09880							
%RSD	0.11535	2.47829							

Printed: 2/2/2012 17:35:55 Method : Paragon File : 120202A

SampleId1 : 1201354-1D SampleId2 : Analysis commenced : 2/2/2012 15:42:39
Dilution ratio : 1.00000 to 1.00000 Tray : [SAMPLE]

Position: TUBE4

	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd
#1	ppm -0.00105	ppm 55.28562	ppm 0.05093	ppm 0.16422	ppm 1.37782	ppm 0.00439	ppm -0.00192	ppm 72.21347	mqq 0.00080
#2	-0.00103	55.47794	0.05614	0.16607	1.38230	0.00439	-0.00309	72.75070	0.00096
#∠ Mean	-0.00087 -0.00096	55.38178	0.05354	0.16515	1.38006	0.00442	-0.00309 -0.00251	72.48209	0.00090
%RSD	13.65129	0.24554	6.89010	0.79166	0.22952	0.48386	32.80146	0.52409	13.39464
6110D	13.03123	0.24334	0.09010	0.75100	0.22752	0.40500	32.00140	0.52405	13.33404
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03199	0.04140	0.06144	112.96626	9.36851	0.06296	20.72951	1.47770	0.03593
#2	0.03291	0.04286	0.06021	113.59655	9.39475	0.06326	20.81303	1.48439	0.03196
Mean	0.03245	0.04213	0.06083	113.28141	9.38163	0.06311	20.77127	1.48104	0.03395
%RSD	1.99005	2.45136	1.42476	0.39343	0.19779	0.33638	0.28431	0.31928	8.25652
				_	_				
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
11 -	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.32470	0.03755	2.32581	0.13076	0.12996	7.08456	-0.00175	0.13380	0.13857
#2	1.33056	0.03869	2.31349	0.13852	0.13353	7.10643	0.00402	0.11348	0.14902
Mean	1.32763	0.03812	2.31965	0.13464	0.13175	7.09550	0.00114	0.12364	0.14380
%RSD	0.31208	2.12147	0.37561	4.07572	1.91300	0.21787	358.54606	11.61992	5.14232
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.48796	0.00577	0.32387	0.13615	0.01752	0.34324	0.80700	0.52561	0.04377
#2	1.49114	0.00840	0.32534	0.13661	0.01412	0.35809	0.80853	0.53096	0.04445
Mean	1.48955	0.00708	0.32460	0.13638	0.01582	0.35066	0.80777	0.52828	0.04411
%RSD	0.15085	26.25460	0.31877	0.24202	15.20876	2.99482	0.13344	0.71611	1.08833

Pb Seer: MIKE LUNDGREEN calc calc

calc calc #1 0.13023 0.13698 #2 0.13519 0.13719

Mean 0.13271 0.13708 %RSD 2.64366 0.10799

Method: Paragon File: 120202A Printed: 2/2/2012 17:35:55

SampleId1: 1201354-1L 5X SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 15:44:53

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE5

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00078	11.56677	0.01430	0.08309	0.51000	0.00081	-0.00188	17.14923	-0.00039
#2	-0.00150	11.58847	0.01197	0.08184	0.51454	0.00079	-0.00165	17.10896	-0.00102
Mean	-0.00114	11.57762	0.01314	0.08247	0.51227	0.00080	-0.00176	17.12909	-0.00071
%RSD	44.67716	0.13257	12.54751	1.07796	0.62605	1.18904	9.26785	0.16623	63.31840
	0	0		-		- •		34.	
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
#1	ppm 0.00624	ppm 0.00834	ppm 0.00973	ppm 22.68907	ppm	mqq	ppm ppm	ppm 0 22194	ppm 0.00706
#± #2	0.00616	0.00874	0.00973		1.52167	0.00822	4.35922	0.33184	0.00708
Mean	0.00620	0.00854	0.00950	22.72542	1.50997	0.00822	4.36863	0.33160	0.00571
%RSD	0.87372	3.31541	1.72747	22.70725 0.11319	1.51582 0.54592	0.00822 0.00000	4.36393 0.15246	0.33172 0.05056	44.01261
9K3D	0.07372	3.31341	1.72/47	0.11319	0.34392	0.00000	0.13246	0.03036	44.01201
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.78307	0.00722	0.49392	0.02744	0.02647	1.17582	0.00051	0.01724	0.01832
#2	0.78969	0.00695	0.48881	0.02762	0.03015	1.16334	-0.00124	0.00571	0.02409
Mean	0.78638	0.00708	0.49136	0.02753	0.02831	1.16958	-0.00037	0.01147	0.02121
%RSD	0.59544	2.75611	0.73568	0.46127	9.17281	0.75441	337.19521	71.06633	19.24177
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	17 m
									Zr
#1	ppm 0.29039	ppm 0.00282	ppm 0.07409	ppm 0.02907	ppm 0.00360	ppm 0.04670	ppm 0.16224	ppm 0.19467	ppm 0.01009
#2	0.29444	-0.00288	0.07429	0.02929	0.00620	0.04073	0.16230	0.19467	0.00974
Mean	0.29242		0.07419	0.02918	0.00490	0.04342	0.16227	0.19467	0.00974
%RSD		15538.67552	0.18895	0.51977	37.48679	10.70598	0.02659	0.00000	2.49375
ONDD	0.01000	15550.07552	0.10033	0.51977	37.40079	10.70330	0.02033	0.00000	2.49373
	Pb								
	calc								
#1	0.02679	0.01796							
#2	0.02930	0.01797							
Mean	0.02805	0.01797							
%RSD	6.32566	0.03996							

SampleId1 : 1201354-1MS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:47:12
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE6

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1	ppm 0.09514	ppm 89.08904	ppm	ppm 0 37577	ppm	ppm	ppm 0.01095	ppm 111.42373	ppm 0.05231
#1 #2	0.09514	88.81946	1.96955 1.97832	0.37577 0.37347	3.38149 3.36401	0.05359 0.05360	0.01093	111.42373	0.05260
Mean	0.09575	88.95425	1.97393	0.37462	3.37275	0.05360	0.00698	111.61500	0.05245
%RSD	0.89925	0.21429	0.31407	0.43286	0.36648	0.00630	80.50656	0.24235	0.38319
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.51734	0.25713	0.33861	126.56492	53.79988	0.61079	63.15000	2.06278	0.97977
#2	0.51824	0.25663	0.33466	126.76957	53.59116	0.60687	63.03716	2.06601	0.98048
Mean	0.51779	0.25688	0.33664	126.66725	53.69552	0.60883	63.09358	2.06439	0.98012
%RSD	0.12216	0.13688	0.82929	0.11424	0.27485	0.45541	0.12647	0.11082	0.05144
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	40.11078	0.53056	2.32626	0.63536	0.60959	6.02904	0.25490	1.90693	1.88241
#2	39.90385	0.53383	2.32514	0.63142	0.61943	6.10710	0.25703	1.88302	1.90362
Mean	40.00731	0.53219	2.32570	0.63339	0.61451	6.06807	0.25596	1.89497	1.89302
%RSD	0.36575	0.43488	0.03406	0.44074	1.13221	0.90967	0.58806	0.89233	0.79217
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
n -1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	14.09943	0.51487	0.89332	0.63275	2.00513	0.44422	1.51182	0.75515	0.05667
#2	14.11056	0.50829	0.88918	0.62761	1.99231	0.40915	1.51046	0.76229	0.05585
Mean %RSD	14.10499 0.05582	0.51158 0.90903	0.89125 0.32858	0.63018 0.57741	1.99872	0.42669 5.81138	1.51114	0.75872	0.05626 1.04102
3K3D	0.05562	0.90903	0.32030	0.57741	0.45353	5.81138	0.06370	0.66529	1.04102
	₽b	Şe							
11 -1	calc	calc							
#1	0.61817	1.89058							
#2	0.62342	1.89676							
Mean %RSD	0.62080 0.59779	1.89367 0.23084							

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:55

SampleId1 : 1201354-1MSD SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:49:29
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE7

Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Man O.09669 91.20298 1.97349 0.37203 3.44556 0.05345 -0.00378 116.34026 0.05210	#1	0.09726	91.24915	1.96500	0.37288	3.44924	0.05350	-0.00029	116.36556	0.05245
Co	#2	0.09612	91.15681	1.98198	0.37118	3.44388	0.05340	-0.00727	116.31496	0.05176
Co	Mean	0.09669	91.20298	1.97349	0.37203	3.44656	0.05345	-0.00378	116.34026	0.05210
Ppm	%RSD	0.82969	0.07159	0.60841	0.32339	0.10993	0.14355	130.60976	0.03075	0.92752
Ppm			_						.,	34.
#1 0.51625 0.25741 0.34027 129.62779 54.62351 0.62170 63.87644 2.12702 0.98109 #2 0.51501 0.25677 0.34062 129.52556 54.44060 0.61931 63.84369 2.12666 0.97804 Mean 0.51563 0.25709 0.34045 129.57668 54.53206 0.62050 63.86007 2.12684 0.97956 RRSD 0.17055 0.17723 0.07135 0.05579 0.23718 0.27273 0.03627 0.01196 0.22060 Na								_		
#2 0.51501 0.25677 0.34062 129.52556 54.44060 0.61931 63.84369 2.12666 0.97804 Mean 0.51563 0.25709 0.34045 129.57668 54.53206 0.62050 63.86007 2.12684 0.97956 RRSD 0.17055 0.17723 0.07135 0.05579 0.23718 0.27273 0.03627 0.01196 0.22060 Na	11.1									
Mean 0.51563 0.25709 0.34045 129.57668 54.53206 0.62050 63.86007 2.12684 0.97956										
RSD 0.17055 0.17723 0.07135 0.05579 0.23718 0.27273 0.03627 0.01196 0.22060 Na Ni P Pb I Pb II S Sb Se I Se II ppm ppm <td></td>										
Na Ni ppm ppm										
#1 40.49746 0.53462 2.34598 0.63543 0.63036 6.06551 0.25835 1.88407 1.88931 #2 40.38669 0.53600 2.35628 0.63826 0.62556 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.53531 2.35113 0.63685 0.62796 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.18232 0.30999 0.31428 0.54075 0.00000 0.29458 0.37171 0.61915 Si	*KSD	0.17055	0.17723	0.07135	0.05579	0.23/18	0.27273	0.03627	0.01196	0.22060
#1 40.49746 0.53462 2.34598 0.63543 0.63036 6.06651 0.25835 1.88407 1.88931 #2 40.38669 0.53600 2.35628 0.63826 0.62556 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.53531 2.35113 0.63685 0.62796 6.06651 0.25781 1.87913 1.89762 %RSD 0.19368 0.18232 0.30999 0.31428 0.54075 0.00000 0.29458 0.37171 0.61915 Si Sn Sr Ti Tl U V V Zn Zr ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
#2 40.38669 0.53600 2.35628 0.63826 0.62556 6.06651 0.25727 1.87419 1.90592 Mean 40.44208 0.53531 2.35113 0.63685 0.62796 6.06651 0.25781 1.87913 1.89762 % RSD 0.19368 0.18232 0.30999 0.31428 0.54075 0.00000 0.29458 0.37171 0.61915 Si		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Mean %RSD 40.44208 0.19368 0.53531 0.30999 0.31428 0.54075 0.62796 0.00000 6.06651 0.25781 0.37171 1.87913 0.61915 Si ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		40.49746	0.53462	2.34598	0.63543	0.63036	6.06651	0.25835	1.88407	1.88931
**RSD	#2	40.38669	0.53600	2.35628	0.63826	0.62556	6.06651	0.25727	1.87419	1.90592
Si	Mean	40.44208	0.53531	2.35113	0.63685	0.62796	6.06651	0.25781	1.87913	1.89762
#1 12.88649 0.49998 0.91540 0.60796 1.98712 0.35700 1.56382 0.74979 0.05607 #2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 **Pb	%RSD	0.19368	0.18232	0.30999	0.31428	0.54075	0.00000	0.29458	0.37171	0.61915
#1 12.88649 0.49998 0.91540 0.60796 1.98712 0.35700 1.56382 0.74979 0.05607 #2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 **Pb		Si	Sn	Sr	Тì	ጥገ	TJ	v	7n	2r
#1 12.88649 0.49998 0.91540 0.60796 1.98712 0.35700 1.56382 0.74979 0.05607 #2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 **Pb calc calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
#2 13.02842 0.50261 0.91403 0.60687 1.98069 0.37453 1.56520 0.75455 0.05566 Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 Pb calc calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 RSD 0.25335 0.29134	#1									
Mean 12.95746 0.50129 0.91471 0.60742 1.98390 0.36576 1.56451 0.75217 0.05587 %RSD D Se Calc C										
*RSD 0.77454 0.37158 0.10534 0.12627 0.22929 3.38963 0.06242 0.44738 0.52138 Pb										
calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
calc calc #1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134		Ph	So							
#1 0.63205 1.88756 #2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
#2 0.62979 1.89536 Mean 0.63092 1.89146 %RSD 0.25335 0.29134	# 1									
Mean 0.63092 1.89146 %RSD 0.25335 0.29134										
%RSD 0.25335 0.29134										
M + b = A , $D = 0.00000$										

SampleId1 : 1201354-2 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:51:21
Dilution ratio: 1.00000 to 1.00000 Tray:

Position: TUBE8

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00167	41.80258	0.09299	0.00693	0.89725	0.00365	-0.00407	103.79595	0.00016
#2	-0.00180	41.98890	0.09355	0.00737	0.90207	0.00363	-0.00523	103.73412	0.00030
Mean	-0.00173	41.89574	0.09327	0.00715	0.89966	0.00364	-0.00465	103.76504	0.00023
%RSD	5.27712	0.31446	0.42072	4.38763	0.37894	0.35568	17.70839	0.04213	41.83516
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02594	0.02839	0.04792	92.95195	5.96450	0.05413	17.35177	1.92682	0.07140

#2	0.02561	0.02796	0.04768	93.08753	6.03250	0.05446	17.40869	1.93065	0.06845
Mean	0.02577	0.02817	0.04780	93.01974	5.99850	0.05429	17.38023	1.92874	0.06993
%RSD	0.89288	1.08538	0.34564	0.10306	0.80154	0.42487	0.23155	0.14047	2.98071
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.26113	0.02442	1.84619	0.12034	0.12031	4.35876	0.00379	0.22983	0.24860
#2	0.25993	0.02611	1.84797	0.11335	0.11782	4.36500	-0.00019	0.23354	0.24552
Mean	0.26053	0.02527	1.84708	0.11685	0.11907	4.36188	0.00180	0.23169	0.24706
%RSD	0.32615	4.74647	0.06847	4.22580	1.47960	0.10121	156.45925	1.13486	0.87971
	Si	Sn	sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.19711	0.00698	0.44857	0.22305	0.01757	1.44622	0.95083	0.17774	0.03726
#2	5.23825	0.00435	0.45095	0.22403	0.01359	1.43849	0.95075	0.17804	0.03782
Mean	5.21768	0.00567	0.44976	0.22354	0.01558	1.44235	0.95079	0.17789	0.03754
%RSD	0.55759	32.83905	0.37537	0.30727	18.09558	0.37913	0.00607	0.11802	1.05800
	Pb	Se							
	calc	calc							
#1	0.12032	0.24235							
#2	0.11633	0.24154							
Mean	0.11833	0.24194							
%RSD	2.38264	0.23729							

SampleId1 : 1201354-3 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 15:53:14
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE9

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00133	37.16636	0.10065	0.00885	1.08093	0.00368	-0.00356	97.30603	0.00072
#2	-0.00140	37.35885	0.10254	0.00782	1,09002	0.00372	-0.00217	97.21619	0.00040
Mean	-0.00136	37.26261	0.10159	0.00833	1.08548	0.00370	-0.00286	97.26111	0.00056
%RSD	3.91569	0.36528	1.31325	8.78430	0.59211	0.84072	34.39271	0.06531	39.92816
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	mqq
#1	0.02038	0.02486	0.06012	65.73685	5.55398	0.04730	15.90170	1.43806	0.11165
#2	0.01941	0.02378	0.06059	65.82323	5.55607	0.04751	15.95914	1.44045	0.11084
Mean	0.01989	0.02432	0.06035	65.78004	5.55503	0.04740	15.93042	1.43925	0.11125
%RSD	3,43950	3.14134	0.54636	0.09286	0.02656	0.30904	0.25497	0.11731	0.51690
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.37995	0.01976	1.57313	0.18101	0.17451	4.83949	-0.00052	0.51389	0.52226
#2	0.38167	0.01783	1.58207	0.17129	0.17799	4.83637	0.00121	0.52126	0.51839

Mean %RSD	0.38081 0.31890	0.01880 7.26999	1.57760 0.40038	0.17615 3.90141	0.17625 1.39712	4.83793 0.04563	0.00034 353.87032	0.51757 1.00633	0.52032 0.52547
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
#1 #2	ppm 12.16782 12.22034	ppm 0.00463 0.00245	ppm 0.43997 0.44312	ppm 0.35875 0.35397	ppm 0.00610 0.01268	ppm 4.05096 4.06728	ppm 1.64857 1.65123	ppm 0.12846 0.12490	ppm 0.04389 0.04337
Mean %RSD	12.19408 0.30458	0.00354 43.68522	0.44155 0.50397	0.35636 0.94864	0.00939 49.49837	4.05912 0.28427	1.64990 0.11385	0.12668 1.98845	0.04363 0.84894
	Pb calc	Se calc							
#1 #2 Mean %RSD	0.17667 0.17576 0.17622 0.36661	0.51947 0.51934 0.51941 0.01718							

Method : Paragon Printed: 2/2/2012 17:35:56 File : 120202A

SampleId1 : CCV SampleId2 : [CV]

Analysis commenced: 2/2/2012 15:55:23
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD6

	Ag	Al	As	В	Ba	Be	Bi ppm	Ca ppm	Cd ppm
#1	ppm 0.21103	ppm 51.98046	ppm 0.52286	ppm 1.00145	ppm 1.07723	ppm 0.48669	0.53087	50.45902	0.51009
#2	0.20837	51.53632	0.51309	0.99931	1.06835	0.48477	0.53804	50.25066	0.50536
Mean	0.20970	51.75839	0.51797	1.00038	1.07279	0.48573	0.53445	50.35484	0.50773
%RSD	0.89770	0.60676	1.33334	0.15175	0.58527	0.27971	0.94848	0.29259	0.65801
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49402	1.00879	1.05571	20.38779	52.07730	0.52685	50.10604	1.01085	0.99647
#2	0.49178	1.00413	1.04601	20.28585	51.59126	0.52085	49.78481	1.00633	0.99535
Mean	0.49290	1.00646	1.05086	20.33682	51.83428	0.52385	49.94543	1.00859	0.99591
%RSD	0.32078	0.32753	0.65251	0.35446	0.66305	0.80988	0.45478	0.31724	0.07956
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	48.69245	1.01004	4.95711	1.01499	1.00399	5.18602	0.49453	1.02505	1.01329
#2	48.17450	1.00472	4.92789	1.00548	1.00557	5.14232	0.49391	1.00347	1.01613
Mean	48.43348	1.00738	4.94250	1.01023	1.00478	5.16417	0.49422	1.01426	1.01471
%RSD	0.75619	0.37363	0.41811	0.66592	0.11064	0.59847	0.08911	1.50487	0.19776
	Si	Sn	Sr	Ti	Tl	ប	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.13002	1.03006	0.53377	0.49467	0.52281	5.19880	0.49993	0.95032	1.01441
#2	5.09356	1.02392	0.52994	0.49204	0.52240	5.15628	0.49759	0.94705	1.01070
Mean	5.11179	1.02699	0.53186	0.49335	0.52261	5.17754	0.49876	0.94868	1.01255

0.37603 0.58063 0.33170 0.24401 0.25906 &RSD 0.50440 0.42324 0.51021 0.05520

Se Pb calc calc 1.00766 1.01721 #1 1.00554 #2 1.01191 1.00660 1.01456 Mean %RSD 0.14889 0.36905

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:56

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 15:57:27
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cđ
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00015	0.15284	-0.00279	-0.00268	-0.00022	0.00003	-0.01316	-0.05304	-0.00047
#2	-0.00074	0.15104	0.00143	-0.00202	-0.00001	0.00005	-0.00153	-0.03724	-0.00016
Mean	-0.00044	0.15194	-0.00068	-0.00235	-0.00012	0.00004	-0.00735	-0.04514	-0.00032
%RSD	93.45318	0.83958	436.49214	20.00986	125.04034	28.84629	111.98458	24.73760	70.24163
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00101	-0.00019	-0.00275	0.01018	- 0.37330	-0.00328	0.02854	0.00001	-0.00188
#2	-0.00118	-0.00050	-0.00274	0.02022	- 0.36703	-0.00325	0.03482	0.00024	-0.00005
Mean	-0.00109	-0.00034	-0.00275	0.01520	-0.37016	-0.00326	0.03168	0.00012	-0.00096
%RSD	10.63185	64.44907	0.33183	46.72227	1.19859	0.78674	14.00597	135.47279	134.23420
	Na	Ni	Р	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.12999	-0.00079	-0.00653	0.00146	-0.00335	-0.01259	-0.00264	-0.00082	0.00117
#2	-0.12596	-0.00240	-0.00808	0.00100	0.00139	-0.01883	-0.00249	-0.00043	0.00014
Mean	-0.12798	-0.00159	-0.00731	0.00123	-0.00098	-0.01571	-0.00257	-0.00062	0.00066
%RSD	2.22581	71.74550	15.02562	26.08348	341.98745	28.07239	4.08472	44.00395	110.79412
	Si	Sn	Sr	Ti	Tl	Ū	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01639	0.00023	-0.00190	-0.00186	-0.00289	-0.04263	-0.00016	-0.00243	0.00005
#2	-0.01650	-0.00547	-0.00179	-0.00203	0.00745	-0.05465	0.00011	-0.00124	0.00016
Mean	-0.01644	-0.00262	-0.00185	-0.00195	0.00228	-0.04864	-0.00003	-0.00184	0.00010
%RSD	0.49072	153.80140	4.13629	5.95760	321.02420	17.46340	725.36560	45.70523	76.15229
	Pb	Se							
	calc	calc							
#1	-0.00175	0.00051							

#2

Mean

&RSD

0.00126

-0.00024

871.50925

-0.00005

171.04039

0.00023

ted: 2/2/2012 17:36:05 User: MIKE LUNDGREEN

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:56

SampleId1 : 1201354-4 SampleId2 :

Analysis commenced: 2/2/2012 15:59:27

Dilution ratio : 1.00000 to 1.00000 Tray: Position: TUBE10

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
11.1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00025	29.35629	0.03850	0.00892	0.58314	0.00259	-0.00306	110.01119	0.00042
#2	-0.00199	29.41332	0.03783	0.00900	0.58474	0.00256	0.00273	109.68463	0.00000
Mean	-0.00112	29.38481	0.03816	0.00896	0.58394	0.00258	-0.00016	109.84791	0.00021
%RSD	110.26830	0.13723	1.23388	0.58344	0.19439	0.77189	2503.96867	0.21021	144.42025
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03240	0.02263	0.02810	57.76040	4.96645	0.03995	11.80842	1.53443	0.03268
#2	0.03266	0.02195	0.02805	57.66783	4.94391	0.03998	11.80999	1.53180	0.03288
Mean	0.03253	0.02229	0.02808	57.71411	4.95518	0.03997	11.80921	1.53312	0.03278
%RSD	0.57064	2.16637	0.14555	0.11341	0.32160	0.05499	0.00938	0.12121	0.43851
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.62393	0.02864	1.17107	0.09465	0.08889	4.36812	-0.00052	0.12643	0.13049
#2	0.62359	0.02670	1.16037	0.09021	0.09089	4.40558	-0.00434	0.13121	0.13934
Mean	0.62376	0.02767	1.16572	0.09243	0.08989	4.38685	-0.00243	0.12882	0.13491
%RSD	0.03897	4.93850	0.64906	3.39212	1.56856	0.60378	111.22805	2.62448	4.63792
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	11.98836	0.00205	0.25949	0.31545	0.00795	0.40484	0.65898	0.14232	0.02938
#2	12.05935	-0.00013	0.26019	0.30943	0.00978	0.34596	0.65713	0.14202	0.02929
Mean	12.02385	0.00096	0.25984	0.31244	0.00886	0.37540	0.65806	0.14217	0.02934
%RSD	0.41753	160.98006	0.19162	1.36181	14.65616	11.09016	0.19900	0.15064	0.20843
	Pb	Se							
	calc	calc							
#1	0.09081	0.12914							
#2	0.09066	0.13663							
Mean	0.09074	0.13288							
%RSD	0.11421	3.98794							

[SAMPLE]

Method : Paragon File : 120202A Printed: 2/2/2012 17:35:56

SampleId1 : 1201354-5 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:01:28
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE11

	Ag	Al	As	В	Ba	Ве	Bi	Ca	Cd
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00107	36.09753	0.12185	0.01107	1.53640	0.00347	0.00271	85.32053	0.00055
#2	-0.00230	36.22416	0.11852	0.01040	1.54326	0.00350	-0.01103	85.84743	0.00082
Mean	-0.00168	36.16084	0.12019	0.01074	1.53983	0.00348	-0.00416	85.58398	0.00069
%RSD	51.68351	0.24762	1.95902	4.38304	0.31516	0.47586	233.33898	0.43533	27.38084
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02622	0.03195	0.04803	93.22595	5.88316	0.04455	14.72197	1.32898	0.09752
#2	0.02457	0.03149	0.04613	93.71216	5.91695	0.04458	14.74234	1.33673	0.09793
Mean	0.02540	0.03172	0.04708	93.46906	5.90005	0.04456	14.73216	1.33285	0.09773
%RSD	4.60191	1.01969	2.85044	0.36782	0.40497	0.04931	0.09776	0.41143	0.29420
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.90014	0.02852	1.62204	0.15146	0.14127	5.00807	0.00605	0.38183	0.38464
#2	0.90255	0.02607	1.63857	0.14127	0.14199	4.99246	0.00170	0.37596	0.39078
Mean	0.90134	0.02730	1.63031	0.14637	0.14163	5.00027	0.00387	0.37889	0.38771
%RSD	0.18899	6.33449	0.71693	4.92511	0.36048	0.22074	79.47700	1.09687	1.11890
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	14.28974	0.00727	0.39819	0.35615	0.00783	2.35863	1.11144	0.15868	0.04319
#2	14.29778	-0.00063	0.39967	0.36163	0.00972	2.32336	1.11617	0.16141	0.04269
Mean	14.29376	0.00332	0.39893	0.35889	0.00877	2.34099	1.11381	0.16004	0.04294
%RSD	0.03977	168.36106	0.26277	1.07865	15.24743	1.06516	0.30031	1.20441	0.81924
	Pb	Se							
	calc	calc							
#1	0.14466	0.38371							
#2	0.14175	0.38584							
Mean	0.14321	0.38477							
%RSD	1.43842	0.39232							

SampleId1 : 1201354-6 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:03:21
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE12

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00118	34.02411	0.05170	0.00841	1.49361	0.00307	-0.00850	124.48653	-0,00008
#2	-0.00067	34.03096	0.05270	0.00959	1.49326	0.00297	0.00569	125.17833	0.00048
Mean	-0.00093	34.02753	0.05220	0.00900	1.49344	0.00302	-0.00141	124.83243	0.00020
%RSD	39.06002	0.01424	1.35304	9.29675	0.01658	2.33861	714.45149	0.39187	197.21701
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо

#1 #2 Mean %RSD	ppm 0.02549 0.02706 0.02627 4.23722	ppm 0.02599 0.02609 0.02604 0.29505	ppm 0.03986 0.04020 0.04003 0.60410	ppm 68.42955 68.63033 68.52994 0.20717	ppm 5.60781 5.61073 5.60927 0.03682	ppm 0.04466 0.04467 0.04466 0.00820	ppm 14.55485 14.56007 14.55746 0.02537	ppm 1.36000 1.36322 1.36161 0.16732	ppm 0.08594 0.08482 0.08538 0.92605
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.14725	0.02702	1.56398	0.13179	0.13404	4.13089	-0.00216	0.37297	0.39074
#2	1.14381	0.02761	1.53740	0.13427	0.12813	4.14962	-0.00085	0.37857	0.38992
Mean	1.14553	0.02732	1.55069	0.13303	0.13109	4.14026	-0.00151	0.37577	0.39033
%RSD	0.21262	1.53143	1.21167	1.31812	3.19193	0.31986	61.60388	1.05523	0.14890
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	11.99391	0.00073	0.41806	0.32380	0.00791	2.52834	1.03450	0.15171	0.04207
#2	11.95744	0.00205	0.41813	0.32064	0.00757	2.54786	1.03718	0.15414	0.04307
Mean	11.97568	0.00139	0.41809	0.32222	0.00774	2.53810	1.03584	0.15293	0.04257
%RSD	0.21530	67.24778	0.01223	0.69207	3.12696	0.54364	0.18300	1.12039	1.65858
	Pb	Se							
	calc	calc							
#1	0.13329	0.38482							
#2	0.13017	0.38614							
Mean	0.13173	0.38548							
%RSD	1.67533	0.24197							
Method	: Paragon		File : 12020	2A	Printed:	2/2/2012 17	:35:57		

SampleId1: 1201354-7 SampleId2: Analysis commenced: 2/2/2012 16:05:14 Dilution ratio: 1.00000 to 1.00000 Tray: [SAMPLE]

Position : TUBE13

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00005	40.05348	0.08156	0.01033	1.18058	0.00339	0.00578	296.84764	0.00079
#2	-0.00117	40.00234	0.07424	0.00937	1.17743	0.00337	-0.00563	296.96774	0.00041
Mean	-0.00061	40.02791	0.07790	0.00985	1.17901	0.00338	0.00008	296.90769	0.00060
%RSD	129.83681	0.09034	6.64948	6.90144	0.18877	0.30928	10621.35086	0.02860	44.06531
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02983	0.03360	0.04838	82.75483	7.48455	0.05972	17.31888	1.85296	0.04325
#2	0.02983	0.03316	0.04826	82.71242	7.48788	0.05965	17.28285	1.85057	0.04192
Mean	0.02983	0.03338	0.04832	82.73363	7.48621	0.05968	17.30087	1.85176	0.04259
%RSD	0.00019	0.91868	0.16851	0.03625	0.03150	0.08587	0.14725	0.09140	2.19390
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	mqq	ppm	mqq	mag	mag	mag	mag	mag

#1 #2 Mean %RSD	0.67680 0.67791 0.67735 0.11666	0.04390 0.04433 0.04412 0.69535	1.84171 1.84328 1.84250 0.06006	0.13048 0.12274 0.12661 4.32131	0.12550 0.12104 0.12327 2.55790	4.58351 4.62097 4.60224 0.57555	0.00103 -0.00188 -0.00043 480.40602	0.29046 0.27747 0.28396 3.23404	0.30383 0.30357 0.30370 0.06218
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	16.16795	-0.00214	0.49302	0.52382	0.01164	1.35601	0.84909	0.19685	0.04632
#2	16.12140	0.00137	0.49202	0.52168	0.01173	1.35058	0.85043	0.19836	0.04627
Mean	16.14467	-0.00038	0.49252	0.52275	0.01169	1.35330	0.84976	0.19760	0.04630
%RSD	0.20389	651.58577	0.14288	0.28834	0.53938	0.28367	0.11150	0.54199	0.07086
	Pb	Se							
	calc	calc							
#1	0.12716	0.29938							
#2	0.12161	0.29488							
Mean	0.12438	0.29713							
%RSD	3.15564	1.07161							

SampleId1: 1201354-8 SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 16:07:07
Dilution ratio: 1.00000 to 1.00000

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE14

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppm 0.00064	ppm	ppm
#1 #2	-0.00158 -0.00185	51.81947 51.95146	0.07113 0.06680	0.01632 0.01713	0.72066 0.72332	0.00483 0.00478	0.00064 -0.00471	80.27883 80.20676	0.00019 0.00055
Mean	-0.00172	51.88546	0.06896	0.01673	0.72199	0.00480	-0.00204	80.24279	0.00037
%RSD	11.04794	0.17987	4.43830	3.43872	0.25988	0.79070	186.10325	0.06351	67.69514
	Co	Cr	Cu	Fe	К	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.04651	0.04646	0.07865	110.41670	11.24635	0.06428	19.80504	1.57457	0.10342
#2	0.04661	0.04682	0.07876	110.46129	11.27964	0.06465	19.84419	1.57720	0.10342
Mean	0.04656	0.04664	0.07871	110.43899	11.26300	0.06447	19.82462	1.57589	0.10342
%RSD	0.14314	0.53361	0.09922	0.02855	0.20904	0.40877	0.13965	0.11795	0.00000
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.02827	0.05585	2.13657	0.13142	0.13452	9.98995	0.00171	0.12628	0.15136
#2	1.03490	0.05585	2.15269	0.13245	0.13568	10.06808	0.00343	0.12695	0.15550
Mean	1.03159	0.05585	2.14463	0.13194	0.13510	10.02901	0.00257	0.12662	0.15343
%RSD	0.45431	0.00000	0.53144	0.55066	0.60816	0.55083	47.17948	0.37473	1.90852
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	13.50315	0.00326	0.61014	0.40892	0.01847	2.67770	0.54058	0.28531	0.05018

#2	13.60602	0.00019	0.61199	0.40512	0.01524	2.68749	0.54555	0.28501	0.04935
Mean	13.55458	0.00173	0.61106	0.40702	0.01685	2.68260	0.54307	0.28516	0.04977
%RSD	0.53664	125.50203	0.21382	0.65962	13.56855	0.25818	0.64740	0.07513	1.17502
#1 #2 Mean %RSD	Pb calc 0.13349 0.13461 0.13405 0.58931	Se calc 0.14301 0.14599 0.14450 1.46098							

SampleId1 : 1201354-9 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:09:08
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE15

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00137	44.10507	0.09865	0.01070	0.73295	0.00403	-0.00319	150.82734	0.00065
#2	-0.00267	43.88158	0.09410	0.00892	0.73072	0.00392	-0.00995	148.55993	-0.00023
Mean	-0.00202	43.99332	0.09638	0.00981	0.73184	0.00398	-0.00657	149.69363	0.00021
%RSD	45.35659	0.35922	3.33869	12.78913	0.21591	1.96504	72.78695	1.07105	293,73697
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03087	0.03580	0.04705	110.77206	7.67964	0.05973	19.44588	1.87941	0.07201
#2	0.02897	0.03447	0.04455	109.39208	7.63837	0.05957	19.26003	1.85907	0.07059
Mean	0.02992	0.03514	0.04580	110.08207	7.65900	0.05965	19.35296	1.86924	0.07130
%RSD	4.49655	2.67911	3.86592	0.88642	0.38100	0.19024	0.67904	0.76974	1.41127
	Na	Ni.	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.37471	0.03846	2.07927	0.11973	0.11946	4.50859	0.00015	0.22255	0.25333
#2	0.37016	0.03578	2.05063	0.10693	0.12460	4.49298	0.00042	0.20830	0.24891
Mean	0.37244	0.03712	2.06495	0.11333	0.12203	4.50079	0.00028	0.21543	0.25112
%RSD	0.86406	5.10928	0.98091	7.98864	2.98188	0.24521	67.00638	4.67797	1.24289
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
41	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	7.47164	-0.00365	0.40932	0.31862	0.01538	1.46247	1.54276	0.23078	0.04451
#2	7.38782	0.00292	0.40744	0.31912	0.00347	1.42848	1.53021	0.22593	0.04404
Mean	7.42973	-0.00036	0.40838	0.31887	0.00942	1.44547	1.53649	0.22835	0.04428
%RSD	0.79772	1281,18332	0.32558	0.10910	89.41091	1.66280	0.57765	1.50097	0.73770
	Pb	Se							
	calc	calc							
#1	0.11955	0.24308							
#2	0.11872	0.23539							

Mean 0.11913 0.23923er: MIKE LUNDGREEN

%RSD 0.49336 2.27294

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:57

SampleId1 : 1201354-10 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:11:09

Dilution ratio : 1.00000 to 1.00000 Tray : Position: TUBE16

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00199	67.10127	0.04793	0.01795	0.77583	0.00574	-0.00121	136.86737	0.00070
#2	-0.00172	66.88770	0.04926	0.01735	0.77360	0.00570	0.00389	136.21801	0.00059
Mean	-0.00185	66.99448	0.04860	0.01765	0.77472	0.00572	0.00134	136.54269	0.00064
%RSD	10.16221	0.22542	1.93797	2.36992	0.20399	0.56679	269.12930	0.33629	12.18239
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm
#1	0.05921	0.06290	0.11267	140.87651	15.29077	0.08603	22.50829	2.00239	0.00920
#2	0.05889	0.06135	0.11025	140.25346	15.21931	0.08572	22.43888	1.99640	0.01022
Mean	0.05905	0.06213	0.11146	140.56499	15.25504	0.08588	22.47359	1.99940	0.00971
%RSD	0.37750	1.76122	1.53399	0.31342	0.33124	0.25978	0.21840	0.21182	7.40294
01(02)	0.07.00	1.,0122	1.00000	0.01012	0.00124	0.23570	0.21040	0.21102	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.68728	0.08551	3.01801	0.12542	0.12511	5.85730	-0.00308	-0.01057	0.01946
#2	0.68849	0.08350	2.94791	0.12489	0.12259	5.86042	0.00157	-0.01006	0.02948
Mean	0.68788	0.08450	2.98296	0.12515	0.12385	5.85886	-0.00076	-0.01032	0.02447
%RSD	0.12372	1.68310	1.66167	0.29771	1.43505	0.03768	433.49067	3.50036	28.96430
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	14.41718	0.00540	0.44421	0.45357	0.01382	0.28276	0.21634	0.37440	0.05645
#2	14.33000	0.00015	0.44256	0.44499	0.01892	0.28209	0.21541	0.37259	0.05612
Mean	14.37359	0.00277	0.44338	0.44928	0.01637	0.28242	0.21588	0.37350	0.05629
%RSD	0.42889	133.87600	0.26248	1.34996	22.04782	0.16706	0.30474	0.34428	0.41769
	T01-	0-							
	Pb	Se calc							
#1	calc								
#1 #2	0.12521	0.00946							
	0.12336	0.01631							
Mean %RSD	0.12428	0.01289							
UCNE	1.05366	37.62081							

Method: Paragon File: 120202A SampleId1: 1201354-11 SampleId2: Printed: 2/2/2012 17:35:58

[SAMPLE]

Analysis commenced: 2/2/2012 16:13:02
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE17

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
u a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00113	47.89922	0.16713	0.00989	0.74043	0.00435	-0.00485	72.48128	0.00057
#2	-0.00132	47.44356	0.16747	0.01018	0.73240	0.00430	-0.00230	71.66935	0.00071
Mean	-0.00123	47.67139	0.16730	0.01003	0.73641	0.00433	-0.00357	72.07532	0.00064
%RSD	10.92824	0.67589	0.14073	2.08440	0.77111	0.79534	50.42539	0.79655	15.48530
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.03950	0.03493	0.07291	114.18188	9.17855	0.06991	19.22401	1.95173	0.18638
#2	0.03768	0.03346	0.07316	112.80308	9.04441	0.06895	19.05956	1.93389	0.18302
Mean	0.03859	0.03420	0.07304	113.49248	9.11148	0.06943	19.14179	1.94281	0.18470
%RSD	3.33049	3.02425	0.24571	0.85905	1.04102	0.97509	0.60748	0.64939	1.28451
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.67069	0.04414	2.13142	0.16121	0.15810	7.98412	0.00149	0.63222	0.65633
#2	0.66167	0.04217	2.10300	0.16208	0.15573	7.90603	0.00373	0.64611	0.65191
Mean	0.66618	0.04315	2.11721	0.16165	0.15692	7.94507	0.00261	0.63917	0.65412
%RSD	0.95805	3.23146	0.94943	0.37902	1.06731	0.69502	60.71284	1.53691	0.47838
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	8.67589	0.00733	0.36655	0.30346	0.02385	2.95352	1.36560	0.26198	0.05460
#2	8.54524	0.01215	0.36216	0.29890	0.02488	2.94245	1.34987	0.25956	0.05426
Mean	8.61056	0.00974	0.36436	0.30118	0.02437	2.94798	1.35773	0.26077	0.05443
%RSD	1.07288	35.04556	0.85230	1.07213	3.00147	0.26553	0.81944	0.65725	0.44544
	Pb	Se							
	calc	ca1c							
#1	0.15914	0.64830							
#2	0.15785	0.64998							
Mean	0.15849	0.64914							
%RSD	0.57609	0.18240							

SampleId1 : 1201354-12 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:15:03
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE18

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00111	27.71180	0.01463	0.00678	0.47281	0.00248	-0.00029	9.96767	0.00013
#2	-0.00039	27.57958	0.01918	0.00700	0.46905	0.00243	0.00156	9.93816	0.00065
Mean	-0.00075	27.64569	0.01691	0.00689	0.47093	0.00245	0.00064	9.95291	0.00039
%RSD	67.76122	0.33818	19,03019	2.27620	0.56568	1.56756	206.49208	0.20961	92.95031

ted:	2/2/2012 17:3	36:05 User	: MIKE LUNDG	REEN					
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.01996	0.03225	0.03167	71.62442	7.07805	0.02047	8.91189	1.15583	0.00280
#2	0.02120	0.03280	0.03323	71.37194	6.99799	0.02029	8.89465	1.15214	0.00117
Mean	0.02058	0.03252	0.03245	71.49818	7.03802	0.02038	8.90327	1.15399	0.00198
8RSD	4.28603	1.19643	3.40388	0.24971	0.80433	0.64761	0.13695	0.22639	57.96526
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.04268	0.03688	1.51128	0.06262	0.05702	2.30522	0.00155	-0.00359	0.00982
#2	0.04080	0.03739	1.49476	0.06168	0.05877	2.30834	-0.00203	0.00088	0.01382
Mean	0.04174	0.03714	1.50302	0.06215	0.05789	2.30678	-0.00024	-0.00136	0.01182
%RSD	3.19635	0.97626	0.77721	1.07256	2.13585	0.09565	1049.03180	233.07069	23.87623
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
ii a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	4.75623	0.00552	0.07470	0.35149	0.01065	0.01447	0.08190	0.17231	0.03168
#2	4.69297	-0.00193	0.07420	0.34460	0.02010	0.02447	0.08115	0.17170	0.03248
Mean	4.72460	0.00180	0.07445	0.34804	0.01538	0.01947	0.08152	0.17201	0.03208
%RSD	0.94688	293.24766	0.47929	1.39931	43.44228	36.29557	0.65113	0.24904	1.76695
	Pb	Se							
	calc	ca1c							
#1	0.05889	0.00536							
#2	0.05974	0.00951							
Mean	0.05931	0.00743							
%RSD	1.01632	39.49886							

Method : Paragon
SampleId1 : 1201354-13 Printed: 2/2/2012 17:35:58 File: 120202A

SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:16:56
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE19

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00098	57.44101	0.06791	0.01491	0.98292	0.00606	0.01092	43.39259	0.00086
#2	-0.00182	57.33626	0.06347	0.01381	0.98187	0.00599	0.00696	43.06513	0.00091
Mean	-0.00140	57.38864	0.06569	0.01436	0.98240	0.00602	0.00894	43.22886	0.00089
%RSD	42.71662	0.12907	4.77900	5.46185	0.07546	0.81828	31.38251	0.53564	4.03624
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1.	0.06599	0.07072	0.09299	266.48378	21.55162	0.06054	26.32953	2.57416	0.00158
#2	0.06484	0.06910	0.09240	264.55440	21.55162	0.06053	26.23145	2.55998	0.00087
Mean	0.06542	0.06991	0.09269	265.51909	21.55162	0.06054	26.28049	2.56707	0.00122
%RSD	1.24463	1.63716	0.44809	0.51382	0.00000	0.00605	0.26391	0.39067	41.18575

	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
14 .00	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.22080	0.07202	4.04853	0.10736	0.10092	18.08377	0.00670	-0.03590	0.01591
#2	1.22528	0.07186	4.00226	0.09628	0.10840	18.03056	-0.00135	-0.04615	0.02025
Mean	1.22304	0.07194	4.02540	0.10182	0.10466	18.05717	0.00267	-0.04102	0.01808
%RSD	0.25896	0.15506	0.81266	7.69371	5.05189	0.20836	213,18598	17.67544	16.96675
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	4.56468	0.00342	0.38694	0.26896	0.03545	0.13938	0.18525	0.37471	0.04358
#2	4.48872	0.00342	0.38627	0.26630	0.03396	0.12323	0.18315	0.36986	0.04267
Mean	4.52670	0.00342	0.38661	0.26763	0.03470	0.13131	0.18420	0.37228	0.04313
%RSD	1.18654	0.06396	0.12233	0.70327	3.03229	8.69697	0.80662	0.92106	1.48225
	Pb	Se							
	calc	calc							
#1	0.10307	-0.00134							
#2	0.10437	-0.00186							
Mean	0.10372	-0.00160							
%RSD	0.88504	23.02152							

SampleId1 : CCV SampleId2 : [CV]

Analysis commenced: 2/2/2012 16:19:19
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.21312	52.22613	0.53451	1.01034	1.08177	0.48999	0.54090	50.45437	0.50878
#2	0.21115	52.08788	0.52463	1.00886	1.07904	0.48934	0,53531	50.37962	0.50824
Mean	0.21214	52.15701	0.52957	1.00960	1.08041	0.48967	0.53811	50.41700	0.50851
%RSD	0.65553	0.18742	1.31895	0.10370	0.17846	0.09368	0.73501	0.10484	0.07565
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49426	1.01034	1.06484	20.39408	52.06422	0.52699	50.43820	1.01216	1.00248
#2	0.49492	1.00780	1.06196	20.38034	51.95059	0.52569	50.30804	1.01026	0.99790
Mean	0.49459	1.00907	1.06340	20.38721	52.00740	0.52634	50.37312	1.01121	1.00019
%RSD	0.09393	0.17768	0.19124	0.04765	0.15450	0.17364	0.18270	0.13323	0.32409
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	48.75992	1.00559	4.98815	1.01701	1.00276	5.24222	0.50318	1.01743	1.00584
#2	48.58353	1.00701	5.01738	1.00841	1.00698	5.19539	0.49668	1.02586	1.01052
Mean	48.67172	1.00630	5.00277	1.01271	1.00487	5.21881	0.49993	1.02164	1.00818
%RSD	0.25627	0.09974	0.41317	0.60000	0.29692	0.63452	0.92022	0.58353	0.32780
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 16:21:26

Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD2

Final concentrations

m ppm
9 -0.00057
2 -0.00060
1 -0.00059
8 3.96192
in Mo
mqq ppm
.2 0.00005
0.00137
0.00071
130.98072
I Se II
om ppm
0.00134
-0.00545
-0.00205
28 234.09425
In Zr
om ppm
.2 0.00043
0.00027
0.00035
33.53769
5 9 4 M p1 0 0 4 p2 4 4 2 Z p1 7 4

Pb Se calc calc

#1 -0.00111 0.00197er: MIKE LUNDGREEN

#2 0.00133 -0.00444 0.00011 -0.00123 Mean %RSD 1582.94962 368.15725

Method : Paragon File: 120202A Printed: 2/2/2012 17:35:59

SampleId1 : EX120201-2MB SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:23:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE20

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00043	0.11005	-0.00146	0.00737	-0.00008	-0.00007	-0.01386	-0.06620	-0.00063
#2	-0.00016	0.11903	-0.00168	0.00796	-0.00001	-0.00006	-0.01130	-0.06544	-0.00097
Mean	-0.00029	0.11454	-0.00157	0.00767	-0.00005	-0.00007	-0.01258	-0.06582	-0.00080
%RSD	64.15243	5.54282	9.99027	5.45526	101.52161	7.45568	14.39037	0.80786	30.39365
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	mqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00192	-0.00079	-0.00374	-0.01222	-0.39422	-0.00351	0.00083	-0.00059	-0.00249
#2	-0.00101	-0.00150	-0.00362	-0.01176	-0.41597	-0.00354	-0.00440	-0.00070	-0.00350
Mean	-0.00146	-0.00115	-0.00368	-0.01199	-0.40509	-0.00353	-0.00179	-0.00065	-0.00300
%RSD	43.90974	44.13379	2.28137	2.73272	3.79692	0.62424	206.95301	12.95993	23.98437
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	141.25450	-0.00153	-0.00453	-0.00035	-0.00091	-0.02507	-0.00198	-0.00375	0.00383
#2	140.58168	-0.00019	-0.00032	0.00021	0.00271	-0.01259	-0.00264	0.00201	0.00117
Mean	140.91809	-0.00086	-0.00243	-0.00007	0.00090	-0.01883	-0.00231	-0.00087	0.00250
%RSD	0.33761	109.73584	122.78921	569.69493	282.99484	46.84578	20.24512	469.64467	75.39252
	Si	Sn	Sr	Ti	T1	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00191	-0.00021	-0.00205	-0.00237	-0.00110	-0.02843	-0.00098	-0.00181	0.00003
#2	0.00288	0.00330	-0.00210	-0.00279	0.00464	-0.02625	-0.00135	-0.00333	-0.00056
Mean	0.00239	0.00155	-0.00207	-0.00258	0.00177	-0.02734	-0.00117	-0.00257	-0.00027
%RSD	28.71565	160.49657	1.84348	11.42188	228.84105	5.64515	22.92225	41.66066	154.84777
	Pb	Se							
	calc	calc							
#1	-0.00072	0.00131							
#2	0.00188	0.00145							
Mean	0.00058	0.00138							
%RSD	317.31919	7.15797							

Method: Paragon File : 120202A Printed: 2/2/2012 17:35:59

SampleId1 : EX120201-2RVS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:25:38

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
11.1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	0.00956	1.07265	0.04660	0.04420	0.04979	0.00947	0.08819	4.71126	0.01938
	0.01002	1.08606	0.04305	0.04560	0.05000	0.00952	0.09099	4.71955	0.01898
Mean %RSD	0.00979 3.28139	1.07935 0.87850	0.04482	0.04490	0.04989	0.00949	0.08959	4.71540	0.01918
dens	3.20139	0.87830	5.60300	2.21269	0.29617	0.32779	2,20925	0.12440	1.47705
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.01770	0.04792	0.04595	0.96172	7.52874	0.03429	4.66607	0.04806	0.09752
#2	0.01803	0.04867	0.04715	0.96622	7.56584	0.03448	4.67757	0.04842	0.09813
Mean	0.01786	0.04830	0.04655	0.96397	7.54729	0.03438	4.67182	0.04824	0.09783
%RSD	1.30737	1.09462	1.81821	0.32976	0.34761	0.39432	0.17406	0.52059	0.44084
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	7.66860	0.04745	0.91618	0.04725	0.04816	0.94498	0.09156	0.04274	0.04368
#2	7.71532	0.04832	0.93155	0.04868	0.04727	0.95745	0.09010	0.05133	0.04334
Mean	7.69196	0.04788	0.92386	0.04796	0.04772	0.95121	0.09083	0.04703	0.04351
%RSD	0.42946	1.28131	1.17604	2.10983	1.31757	0.92755	1.13525	12.90001	0.55811
	Si	Sn	Sr	Ti	T1	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.25223	0.09312	0.04778	0.04440	0.09752	0.46207	0.04796	0.04754	0.04912
#2	0.25025	0.09532	0.04791	0.04449	0.10067	0.47407	0.04904	0.04330	0.04925
Mean	0.25124	0.09422	0.04784	0.04444	0.09910	0.46807	0.04850	0.04542	0.04919
%RSD	0.55536	1.64528	0.18641	0.14051	2.25198	1.81333	1.57534	6.59951	0.18532
	Pb	Se							
	calc	calc							
#1	0.04786	0.04337							
#2	0.04774	0.04600							
Mean	0.04780	0.04468							
%RSD	0.17229	4.15924							

SampleId1 : EX120201-2LCS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:27:32
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE22

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1	ppm 0.09934	ppm 2.36891	ppm 1.98475	ppm 0.49569	ppm 2.15138	ppm 0.04833	ppm -0.00547	ppm 38.62788	ppm 0.05184
#2	0.09736	2.35415	1.97698	0.49154	2.14156	0.04821	-0.00594	38.43786	0.05178

Mean %RSD	0.09835 1.42704	2.36153 0.44211	1.98087 0.27732	0.49362 0.59351	2.14647 0.32368	0.04827 0.18169	-0.00571 5.76384	38.53287 0.34871	0.05181 0.09322
#1 #2	Co ppm 0.49000 0.48628	Cr ppm 0.20048 0.19909	Cu ppm 0.26691 0.26762	Fe ppm 1.01056 1.00420	K ppm 50.27689 50.01138	Li ppm 0.58627 0.58328	Mg ppm 37.35758 37.27627	Mn ppm 0.50388 0.50103	Mo ppm 1.00289 0.99087
Mean %RSD	0.48814 0.53963	0.19978 0.49289	0.26726 0.18994	1.00420 1.00738 0.44619	50.14414 0.37440	0.58478 0.36161	37.31692 0.15407	0.50246 0.40095	0.99688 0.85265
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
#1 #2 Mean %RSD	ppm 173.87868 172.75541 173.31705 0.45827	ppm 0.50055 0.50224 0.50139 0.23914	ppm -0.00276 -0.00542 -0.00409 46.01145	ppm 0.50178 0.49439 0.49808 1.04906	ppm 0.48743 0.48356 0.48550 0.56317	ppm -0.00324 -0.00947 -0.00636 69.40134	ppm 0.48066 0.47834 0.47950 0.34278	ppm 1.94409 1.93981 1.94195 0.15582	ppm 1.90648 1.91336 1.90992 0.25477
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
#1 #2 Mean %RSD	ppm 2.03203 2.02051 2.02627 0.40223	ppm 0.52074 0.51197 0.51636 1.20165	ppm 0.53808 0.53528 0.53668 0.36970	ppm 0.48787 0.48609 0.48698 0.25824	ppm 2.07204 2.06049 2.06626 0.39529	ppm -0.05423 -0.04768 -0.05095 9.09396	ppm 0.50271 0.50136 0.50203 0.19015	ppm 0.48353 0.47989 0.48171 0.53404	ppm 0.00134 0.00057 0.00096 56.68070
#1 #2 Mean %RSD	Pb calc 0.49221 0.48717 0.48969 0.72774	Se calc 1.91900 1.92217 1.92058 0.11652							

SampleId1 : 1201363-11 SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:29:26
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE23

	Agr	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00076	1.81216	0.00187	0.00981	0.08629	0.00003	-0.00793	21.95283	-0.00010
#2	-0.00055	1.81417	-0.00290	0.00944	0.08643	0.00004	-0.00747	21.84998	-0.00045
Mean	-0.00065	1.81317	-0.00052	0.00963	0.08636	0.00003	-0.00770	21.90140	-0.00028
%RSD	22.98847	0.07818	653.05382	2.71556	0.11409	22.34226	4.25114	0.33208	89.51437
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
#1	0.00130	0.00108	-0.00120	1.16859	1.07692	-0.00023	9.57235	0.38568	-0.00208
#2	0.00072	0.00081	-0.00166	1.16502	1.05560	-0.00027	9.56295	0.38521	-0.00096
Mean	0.00101	0.00094	-0.00143	1.16681	1.06626	-0.00025	9.56765	0.38545	-0.00152

9.D.C.D	40 66006	10 00756	22 22421	0.01600	1 41200	11 61075	0.00051	0 00705	E1 01714
%RSD	40.66026	19.98756	22.89431	0.21623	1.41388	11.61875	0.06951	0.08705	51.91714
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
u a	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	129.30372	0.00095	0.05957	0.00235	0.00230	0.17766	-0.00107	-0.00047	0.00313
#2	129.15974 129.23173	0.00134 0.00115	0.06201 0.06079	-0.00108	0.00761	0.17766	-0.00145 -0.00126	-0.00357 -0.00202	0.00528 0.00420
Mean %RSD	0.07878	24.30642	2.83852	0.00063 383.95648	0.00495 75.77844	0.17766 0.00000	21.63849	108.28031	36.17988
01102	0,0,0,0	21,00012	2,00002	303.33010	, 3 , , , 3 , 1	0,0000	44,00015	100.20001	00,200
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.67718	-0.00334	0.07731	0.05381	0.00085	-0.02923	0.00174	0.12082	0.00131
#2	3.67763	0.00104	0.07719	0.05601	-0.00108	-0.04997	0.00114	0.12112	0.00138
Mean	3.67740	-0.00115	0.07725	0.05491	-0.00012	-0.03960	0.00144	0.12097	0.00134
%RSD	0.00872	268.96659	0.11548	2.82695	1162.43703	37.02346	29.22803	0.17702	3.85827
	Pb	Se							
	calc	calc							
#1	0.00232	0.00193							
#2	0.00471	0.00233							
Mean	0.00352	0.00213							
%RSD	48.22869	13.35588							
Method	: Paragon		File: 12020)2A	Printed	: 2/2/2012 17	7:36:00		
	[d1 : 120136;		SampleId2	2 :		[SAMPLE]			
	s commenced						m: 70 0 4		
Dilutio	on ratio : 1	.00000 to 1.0	00000 Tray	<i>;</i> :		Position :	TUBEZ4		

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00044	1.83582	-0.00568	0.01055	0.08734	0.00005	-0.00443	22.20009	0.00015
#2	0.00023	1.84249	-0.00046	0.01055	0.08762	0.00003	-0.00606	22.13875	-0.00041
Mean	-0.00011	1.83915	-0.00307	0.01055	0.08748	0.00004	-0.00525	22.16942	-0.00013
%RSD	441.21602	0.25645	120.16969	0.00000	0.22526	21.08859	22.03068	0.19566	308.31729
	Co	Cr	Cu	Fe	к	Li	Ма	Mn	Мо
	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm
#1	0.00088	0.00056	-0.00157	1.17604	1.10534	-0.00025	9.68991	0.39007	-0.00228
#2	0.00105	0.00131	-0.00144	1.17821	1,09280	-0.00024	9.67162	0.38936	0.00127
Mean	0.00097	0.00093	-0.00151	1.17712	1.09907	-0.00025	9.68077	0.38972	-0.00051
%RSD	12.46882	57.29373	5.89695	0.13047	0.80685	2.96560	0.13357	0.12915	496.77887
	Na	Ní	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	130.51198	0.00182	0.05868	0.00280	0.00137	0.17142	-0.00490	0.00087	0.00003
#2	130.02998	0.00091	0.05735	0.00286	0.00137	0.17454	-0.00118	0.00542	0.00055
Mean	130.27098	0.00136	0.05802	0.00283	0.00137	0.17298	-0.00304	0.00315	0.00029
%RSD	0.26163	47.01594	1.62227	1.53831	0.19788	1.27495	86.52907	102.16396	125.91361

ted:	2/2/2012 17:3	36:05 User	: MIKE LUNDG	REEN					
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.72025	0.00279	0.07775	0.05814	-0.00465	-0.01832	0.00168	0.12234	0.00172
#2	3.74294	-0.00597	0.07766	0.05560	-0.00038	-0.02269	0.00212	0.12203	0.00170
Mean	3.73159	-0.00159	0.07770	0.05687	-0.00252	-0.02051	0.00190	0.12218	0.00171
%RSD	0.42994	389.17854	0.08201	3.15297	119.91184	15.05791	16.09538	0.17527	0,93078
	Pb	Se							
	calc	calc							
#1	0.00184	0.00031							
#2	0.00187	0.00217							
Mean	0.00186	0.00124							
%RSD	0.87868	105.86465							

[SAMPLE]

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:00

SampleId1: 1201363-11L 5X Sampl
Analysis commenced: 2/2/2012 16:33:35
Dilution ratio: 1.00000 to 1.00000 SampleId2 :

Tray : Position : TUBE25

	Ag ppm	Al ppm	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca ppm	Cd ppm
#1	-0.00087	0.40057	0.00187	-0.00098	0.01573	-0.00015	-0.00082	4.33573	-0.00047
#2	-0.00044	0.40134	0.00276	-0.00098	0.01601	-0.00014	-0.00429	4.33158	-0.00023
Mean	-0.00065	0.40095	0.00231	-0.00098	0.01587	-0.00015	-0.00255	4.33366	-0.00035
%RSD	46.69366	0.13672	27.13888	0.00000	1.24164	1.84972	96.24560	0.06766	48.12334
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.00109	-0.00014	-0.00395	0.22283	-0.12191	-0,00272	1,88796	0.07695	-0.00239
#2	-0.00010	0.00008	-0.00303	0.22221	-0.12903	-0.00273	1.88378	0.07707	-0.00279
Mean	-0.00060	-0.00003	-0.00349	0.22252	-0.12547	-0.00273	1.88587	0.07701	-0.00259
%RSD	117.14999	474.59528	18.70941	0.19651	4.00718	0.26903	0.15683	0.10872	11.09973
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	25.59960	0.00111	0.00722	0.00459	0.00164	0.01548	-0.00185	0.00757	0.00139
#2	25.60885	-0.00090	0.00057	0.00643	-0.00145	0.03107	-0.00437	-0.00645	0.00319
Mean	25.60423	0.00010	0.00389	0.00551	0.00010	0.02327	-0.00311	0.00056	0.00229
%RSD	0.02556	1391.64426	120.81488	23.48988	2276.15840	47.37890	57.23282	1773.09140	55.74370
	Si	Sn	Sr	Ti	Tl	ប	v	Zn	Zr
	ppm	mqq	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.64163	-0.00285	0.01312	0.00761	0.00081	-0.05369	-0.00055	0.02241	-0.00046
#2	0.65149	-0.00241	0.01316	0.00843	0.00094	-0.01222	0.00058	0.02180	0.00027
Mean	0.64656	-0.00263	0.01314	0.00802	0.00088	-0.03296	0.00001	0.02211	-0.00009
%RSD	1.07867	11.75348	0.19389	7.23008	10.91422	88.99078	5862.15544	1.93698	548.79452

calc ca1c #1 0.00263 0.00345 #2 0.00117 -0.00002 0.00190 Mean 0.00171 54.11151 142.94746 %RSD

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:01

SampleId1 : 1201363-11MS SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:35:29
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE26

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
N	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09868	4.76942	1.95978	0.49591	2.20318	0.04822	-0.00537	60.90493	0.05210
#2	0.09828	4.77781	1.97443	0.49917	2.20964	0.04835	-0.00768	60.95441	0.05175
Mean	0.09848	4.77362	1.96711	0.49754	2.20641	0.04828	-0.00652	60.92967	0.05192
%RSD	0.28742	0.12430	0.52660	0.46266	0.20697	0.18472	24.98123	0.05742	0.46766
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.48756	0.19897	0.26304	2.30584	50.50187	0.57743	46.95582	0.88503	0.98883
#2	0.48904	0.20032	0.26774	2.31114	50.61312	0.57875	47.11414	0.88622	0.98476
Mean	0.48830	0.19964	0.26539	2.30849	50.55749	0.57809	47.03498	0.88563	0.98680
%RSD	0.21515	0.47712	1.25429	0.16222	0.15560	0.16151	0.23800	0.09500	0.29198
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	162.25698	0.49889	0.06778	0.50062	0.49157	0.19325	0.47037	1.92163	1.89419
#2	161.78894	0.49641	0.05913	0.49941	0.49198	0.19325	0.47099	1.94762	1.90325
Mean	162.02296	0.49765	0.06345	0.50002	0.49177	0.19325	0.47068	1.93463	1.89872
%RSD	0.20427	0.35301	9.64173	0.17038	0.05981	0.00000	0.09323	0.94997	0.33745
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	6.88931	0.51980	0.60860	0.54716	2.04117	-0.05075	0.50004	0.60391	0.00191
#2	6.88060	0.51233	0.60998	0.55162	2.04409	-0.04638	0.49940	0.60300	0.00206
Mean	6.88495	0.51606	0.60929	0.54939	2.04263	-0.04857	0.49972	0.60346	0.00198
%RSD	0.08942	1.02293	0.15978	0.57306	0.10106	6.35135	0.09147	0.10661	5.28818
	Pb	Se							
	calc	ca1c							
#1	0.49458	1.90333							
#2	0.49446	1.91803							
Mean	0.49452	1.91068							
%RSD	0.01770	0.54398							

File: 120202A Printed: 2/2/2012 17:36:01

Method : Paragon

SampleId1 : 1201363-11MSD SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:38:09
Dilution ratio: 1.00000 to 1.00000 Tray:

Position: TUBE27

Final concentrations

#1 #2 Mean %RSD	Ag ppm 0.09999 0.09980 0.09990 0.13635	Al ppm 4.84979 4.87479 4.86229 0.36355	As ppm 1.98808 1.99641 1.99224 0.29543	ppm 0.50094 0.50568 0.50331 0.66525	ppm 2.22108 2.22424 2.22266 0.10050	ppm 0.04894 0.04896 0.04895 0.02867	ppm -0.00394 -0.00114 -0.00254 77.82238	Ca ppm 61.50034 61.48047 61.49040 0.02286	Cd ppm 0.05233 0.05229 0.05231 0.04970
#1 #2 Mean %RSD	Co ppm 0.49325 0.49383 0.49354 0.08308	Cr ppm 0.20166 0.20179 0.20173 0.04337	Cu ppm 0.26870 0.26968 0.26919 0.25636	Fe ppm 2.34058 2.34152 2.34105 0.02823	K ppm 50.93949 50.84052 50.89000 0.13751	Li ppm 0.58265 0.58250 0.58258 0.01849	Mg ppm 47.51824 47.55469 47.53647 0.05422	Mn ppm 0.89646 0.89681 0.89663 0.02815	Mo ppm 0.99199 0.99729 0.99464 0.37659
#1 #2 Mean %RSD	Na ppm 163.24278 162.87352 163.05815 0.16013	Ni ppm 0.50122 0.49854 0.49988 0.37932	ppm 0.06734 0.06734 0.06734 0.00000	<pre>pb I ppm 0.50369 0.49939 0.50154 0.60654</pre>	pb II ppm 0.50026 0.49948 0.49987 0.11010	s ppm 0.19949 0.20261 0.20105 1.09695	Sb ppm 0.47699 0.47610 0.47655 0.13244	Se I ppm 1.93784 1.94547 1.94166 0.27776	Se II ppm 1.93349 1.92739 1.93044 0.22341
#1 #2 Mean %RSD	Si ppm 7.14969 7.19508 7.17238 0.44752	\$n ppm 0.51540 0.52066 0.51803 0.71865	\$r ppm 0.61418 0.61499 0.61459 0.09380	Ti ppm 0.55822 0.55939 0.55881 0.14684	ppm 2.06608 2.08144 2.07376 0.52378	ppm -0.04095 -0.04968 -0.04531 13.62665	ppm 0.50518 0.50539 0.50528 0.03023	Zn ppm 0.61241 0.61059 0.61150 0.21043	Zr ppm 0.00162 0.00172 0.00167 4.29761
#1 #2 Mean %RSD	Pb calc 0.50140 0.49945 0.50042 0.27578	Calc 1.93494 1.93341 1.93418 0.05587							

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:01

SampleId1: 1201363-13 SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 16:40:44

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE28

Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm

#1 #2 Mean %RSD	0.00024 -0.00180 -0.00078 184.69365	1.44649 1.44708 1.44678 0.02916	0.00020 -0.00412 -0.00196 156.19227	0.01425 0.01151 0.01288 15.01938	0.08748 0.08755 0.08751 0.05629	0.00001 0.00001 0.00001 42.85208	0.00043 -0.00680 - 0.00319 160.31593	20.88990 20.81261 20.85125 0.26209	-0.00013 -0.00063 -0.00038 92.55553
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
#1	ppm 0.00149	ppm 0.00096	ppm -0.00155	ppm 0.94033	ppm 0,93938	ppm -0.00041	ppm 9.23951	ppm 0.39055	ppm 0.00046
#2	0.00149	-0.00038	-0.00133	0.93754	0.92516	-0.00038	9.24265	0.38984	-0.00086
Mean	0.00125	0.00029	-0.00166	0.93894	0.93227	-0.00040	9.24108	0.39019	-0.00020
%RSD	27.85178	322.04136	9.31984	0.21012	1.07812	6.49684	0.02399	0.12899	463.82363
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	135.53099	0.00261	0.04094	0.00141	0.00409	0.07473	-0.00052	0.00157	0.00368
	135.10150	-0.00035	0.03872	-0.00308	0.00540	0.07785	-0.00303	0.00074	0.00394 0.00381
Mean %RSD	135.31625 0.22443	0.00113 185.48616	0.03983 3.93837	-0.00083 381.84498	0.00474 19.57297	0.07629 2.89062	-0.00177 99.92446	0.00115 50.44182	4.78239
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
11 -1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	2.90188 2.89702	-0.00728 -0.00201	0.06811 0.06802	0.04361 0.04160	-0.00061 0.00140	-0.03781 -0.05964	0.00088 0.00099	0.12930 0.12476	0.00125 0.00050
π∠ Mean	2.89945	-0.00201	0.06806	0.04160	0.00140	-0.03964	0.00099	0.12703	0.00030
%RSD	0.11869	80.12440	0.09361	3.32954	358.77061	31.67659	8.12196	2.52878	60.89817
	Pb	Se							
11 -	calc	calc							
#1	0.00320	0.00298							
#2 Mean	0.00258 0.00289	0.00288 0.00293							
%RSD	15.19057	2.47175							

Method : Paragon Printed: 2/2/2012 17:36:01 File : 120202A

SampleId1 : 1201363-15 [SAMPLE] SampleId2 :

Analysis commenced: 2/2/2012 16:42:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE29

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00010	1.46093	0.00065	0.01395	0.09082	0.00007	0.00206	23.38814	0.00009
#2	-0.00069	1.45549	0.00009	0.01351	0.09103	0.00002	-0.01632	23.41941	-0.00003
Mean	-0.00029	1.45821	0.00037	0.01373	0.09093	0.00004	-0.00713	23.40378	0.00003
%RSD	189.66010	0.26417	105.72478	2.28474	0.16254	90.55535	182.36993	0.09446	280.14124
	Co	Cr	Cu	Fe	к	Li	Мд	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00232	0.00029	-0.00046	0.94917	1.10827	-0.00019	9.48770	0.37453	-0.00259

#2 Mean %RSD	0.00239 0.00235 2.27446	0.00033 0.00031 9.02764	-0.00095 - 0.00071 48.66344	0.94824 0.94870 0.06932	1.11120 1.10973 0.18646	-0.00015 -0.00017 15.37790	9.47987 9.48379 0.05844	0.37442 0.37447 0.02240	-0.00137 - 0.00198 43.55465
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
#1	ppm 129.71648	ppm 0.00146	ppm 0.05181	ppm 0.00582	ppm 0.00325	ppm 0.13399	ppm 0.00145	0.00103	ppm 0.00274
#2 Mean	129.63076 129.67362	0.00308 0.00227	0.05159 0.05170	0.00105 0.00344	0.00562 0.00444	0.13711 0.13555	0.00000 0.00072	-0.00178 - 0.00037	-0.00199 0.00037
%RSD	0.04674	50.33979	0.30344	98.08474	37.76556	1.62697	141.03539	531.25541	896.59890
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
шп	ppm	ppm	ppm	ppm	ppm	ppm	ppm 0 00153	ppm	ppm 0.00221
#1 #2	2.94859 2.96677	0.00061 -0.00071	0.07932 0.07906	0.04638 0.04976	0.00366 0.00422	-0.03563 -0.03454	0.00153 0.00223	0.14293 0.14263	0.00221
Mean %RSD	2.95768 0.43478	-0.00005 1946.48072	0.07919 0.22531	0.0497 0.04807 4.97355	0.00394 10.03713	-0.03509 2.20084	0.00188 26.36259	0.14278 0.15000	0.00169 43.97863
	Pb	Se							
#1	calc 0.00411	calc 0.00217							
#2 Mean	0.00410 0.00410	-0.00192 0.00012							
%RSD	0.12215	2328.01080							

SampleId1: CCV SampleId2:
Analysis commenced: 2/2/2012 16:44:33
Dilution ratio: 1.00000 to 1.00000 Tray: [CV]

Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.21174	51.71560	0.53218	1.00123	1.06338	0.49086	0.52851	50.79601	0.51212
#2	0.21100	51.73992	0.52574	1.00138	1.06163	0.49131	0.53618	51.00946	0.51288
Mean	0.21137	51.72776	0.52896	1.00130	1.06251	0.49108	0.53234	50.90273	0.51250
%RSD	0.24753	0.03324	0.86053	0.01046	0.11632	0.06548	1.01853	0.29652	0.10455
	Со	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49581	1.01414	1.04843	20.31414	51.34962	0.51698	50.17841	1.01216	1.00686
#2	0.49895	1.01708	1.04433	20.36297	51.42118	0.51720	50.28357	1,01478	1.00758
Mean	0.49738	1.01561	1.04638	20.33855	51.38540	0.51709	50.23099	1.01347	1.00722
%RSD	0.44549	0.20434	0.27676	0.16974	0.09846	0.02924	0.14804	0.18278	0.05006
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	47.83492	0.99999	4.97501	1.00972	1.00439	5.17978	0.49455	1.02394	1.00254
#2	47.94731	1.00831	4.96255	1.01998	1.00550	5.14544	0.49254	1.02461	1.00393

Mean %RSD	47.89112 0.16595	1.00415 0.58584	4.96878 0.17734	1.01485 0.71504	1.00494 0.07827	5.16261 0.47037	0.49354 0.28871	1.02428 0.04599	1.00323 0.09835
	Si ppm	Sn ppm	Sr ppm	Ti ppm	T1 ppm	U mqq	V mqq	Zn mqq	Zr ppm
#1	5.13504	1.04061	0.52760	0.49516	0.52690	5.14425	0.50057	0.98414	1.01031
#2	5.13014	1.04324	0.52820	0.49579	0.53423	5.14968	0.50112	0.98627	1,01289
Mean	5.13259	1.04192	0.52790	0.49547	0.53056	5.14696	0.50084	0.98521	1.01160
%RSD	0.06756	0.17883	0.08001	0.09001	0.97683	0.07455	0.07751	0.15254	0.18050
	Pb calc	Se calc							
#1	1.00616	1.00967							
#2	1.01032	1.01082							
Mean %RSD	1.00824 0.29170	1.01024 0.08067							

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 16:46:42
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00010	0.15457	-0.00168	-0.00239	-0.00001	0.00010	-0.00059	-0.04025	-0.00020
#2	-0.00081	0.15259	-0.00168	-0.00254	-0.00022	0.00011	-0.00967	-0.04251	-0.00046
Mean	-0.00035	0.15358	-0.00168	-0.00246	-0.00012	0.00010	-0.00513	-0.04138	-0.00033
%RSD	182.05018	0.91122	0.00000	4.24636	125.04034	3.97564	125.09750	3.85506	56.26456
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00019	0.00104	-0.00350	0.01636	-0.29424	-0.00304	0.03586	0.00036	-0.00056
#2	-0.00052	-0.00050	-0.00324	0.01512	-0.29592	-0.00309	0.03064	0.00024	-0.00035
Mean	-0.00035	0.00027	-0.00337	0.01574	-0.29508	-0.00306	0.03325	0.00030	-0.00046
%RSD	66.61191	408.11574	5.47579	5.55289	0.40094	0.95773	11.12094	27.79609	31.55404
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.07890	-0.00110	-0.00742	0.00159	-0.00104	0.00300	0.00040	-0.00281	-0.00390
#2	-0.08439	-0.00153	-0.00897	-0.00084	-0.00326	-0.01571	-0.00183	0.01378	-0.00072
Mean	-0.08165	-0.00132	-0.00819	0.00037	-0.00215	-0.00636	-0.00072	0.00548	-0.00231
%RSD	4.75159	23.28193	13.39863	459.60898	72.88939	208.20428	219.59231	213.99621	97,40871
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01948	0.00417	-0.00179	-0.00194	0.00409	-0.02627	0.00000	-0.00423	0.00023
#2	-0.01903	-0.00109	-0.00187	-0.00190	0.00588	-0.04373	-0.00076	-0.00181	-0.00039
Mean	-0.01926	0.00154	-0.00183	-0.00192	0.00498	-0.03500	-0.00038	-0.00302	-0.00008

%RSD 1.63981 240.83196 2.78468 1.39289 25.37223 35.28138 141.68909 56.64495 546.59103

[SAMPLE]

Pb Se calc calc #1 -0.00017 -0.00354 #2 -0.00245 0.00411 -0.00131 Mean 0.00028 123.56403 1901.38320 %RSD

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:02

SampleId1 : 1201363-17 SampleId2 :

Analysis commenced: 2/2/2012 16:48:59
Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE30

	•		_	_	_	_		_	- 1
	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
#1	ppm 0.00024	ppm 1.48002	ppm 0.00587	ppm 0.00706	ppm	ppm 0.0016	ppm	ppm	ppm
#2	-0.00024	1.48002		0.00796	0.08532	0.00016	-0.00260	19.19576	-0.00047
			-0.00301	0.00848	0.08532	0.00015	-0.01285	19.09725	-0.00009
Mean %RSD	-0.00019 320.91015	1.48104	0.00143	0.00822	0.08532	0.00015	-0.00772	19.14651	-0.00028
6K2D	320.91015	0.09770	440.42472	4.45140	0.00000	3.64568	93.74782	0.36380	96.75668
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	mag	mqq	ppm	ppm	mqq	ppm
#1	0.00190	0.00108	-0.00215	0.92204	0.86454	-0.00073	7.66193	0.28180	-0.00218
#2	0.00149	0.00022	-0.00213	0.91770	0.85158	-0.00080	7.65305	0.28121	-0.00239
Mean	0.00170	0.00065	-0.00214	0.91987	0.85806	-0.00077	7.65749	0.28150	-0.00228
%RSD	17.38972	93.79695	0.69548	0.33360	1.06804	6.70309	0.08204	0.14890	6.29044
	Na	Ni	P	Pb I	Pb II	S	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	133.94292	0.00123	0.04316	0.00168	0.00423	0.14335	0.00025	0.00344	0.00265
#2	133.19879	0.00182	0.04116	0.00341	0.00805	0.13399	-0.00331	0.00851	0.00093
Mean	133.57086	0.00152	0.04216	0.00254	0.00614	0.13867	-0.00153	0.00598	0.00179
%RSD	0.39394	27.48439	3.34873	48.29627	44.02142	4.77112	164.82299	59.96112	68.10639
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq
#1	2.94664	-0.00026	0.06776	0.04218	-0.00423	-0.03780	0.00109	0.12355	0.00177
#2	2.98220	-0.00421	0.06724	0.04426	0.00182	-0.05744	0.00061	0.12203	0.00122
Mean	2.96442	-0.00223	0.06750	0.04322	-0.00121	-0.04762	0.00085	0.12279	0.00149
%RSD	0.84820	124.94734	0.54746	3.40576	355.24993	29.16828	40.45912	0.87202	26.37876
	Pb	Se							

ted: 2/2/2012 17:36:05 User: MIKE LUNDGREEN

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:02

SampleId1: 1201363-19 SampleId2: [SAMPLE]

Analysis commenced: 2/2/2012 16:50:52

Dilution ratio: 1.00000 to 1.00000 Tray: Position: TUBE31

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00155	1.90881	0.00076	0.00759	0.10288	0.00022	-0.01491	22.16885	-0.00042
#2	-0.00070	1.90447	0.00120	0.00833	0.10322	0.00020	-0.00606	22.27058	0.00045
Mean	-0.00112	1.90664	0.00098	0.00796	0.10305	0.00021	-0.01048	22,21972	0.00002
%RSD	53.73409	0.16089	31.98098	6.56580	0.23904	6.83572	59,72477	0.32375	3984.51609
		0.10003	01130030	0.0000	0.4000	0,000,2	334.22.	0.020.0	4 3 3 3 3 3 3 3 3 3 3
	Co	Cr	Cu	Fe	ĸ	Li	Mg	Mn	Mo
	ppm	ppm	ppm	ppm	ppm	ppm	mag	ppm	mqq
#1	0.00149	0.00041	-0.00130	1.88668	1.02633	-0.00034	9.93653	0.34832	-0.00035
#2	0.00189	0.00072	-0.00095	1.89415	1.06229	-0.00033	9.94854	0.34927	-0.00188
Mean	0.00169	0.00057	-0.00113	1.89042	1.04431	-0.00033	9.94253	0.34880	-0.00112
%RSD	16.97181	38.82870	21.91262	0.27925	2.43432	1.10163	0.08546	0.19235	96.58271
VI.02	. 0. 7, 101	50.02070	21.712.02	0.27929	2.10102	1.10103	0.00010	0.15255	30.000.1
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	135.52481	0.00304	0.06445	0.00483	0.00476	0.09345	-0.00290	-0.00061	0.00224
#2	135.48142	0.00265	0.06268	0.00431	0.00499	0.08409	-0.00318	-0.00087	0.00353
Mean	135.50312	0.00284	0.06356	0.00457	0.00488	0.08877	-0.00304	-0.00074	0.00289
%RSD	0.02264	9.80848	1.97434	8.07348	3.24887	7.45316	6.47460	24.43543	31.64202
******	0,02201	3.00010	1.5,151	0.01010	3.21007	,,,,,,,,,,	0.1,100	21110010	01,01202
	Si	Sn	Sr	Ti	Т1	U	v	Zn	Zr
	mqq	ppm	ppm	mqq	ppm	ppm	ppm	ppm	mqq
#1	3.69161	0.00235	0.07422	0.05644	-0.00097	-0.04391	0.00133	0.15081	0.00193
#2	3.69522	-0.00247	0.07445	0.06013	0.00399	-0.03082	0.00279	0.15111	0.00174
Mean	3.69342	-0.00006	0.07433	0.05828	0.00151	-0.03737	0.00206	0.15096	0.00184
%RSD	0.06908	5707.79755	0.22288	4,48469	231.70838	24.77574	49.97527	0.14187	7.10041
	Pb	Se							
	calc	calc							
#1	0.00479	0.00129							
#2	0.00476	0.00207							
Mean	0.00477	0.00168							
%RSD	0.36210	32.70467							

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:03

SampleId1 : ZZZ SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 16:52:46

Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD3

	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02019	0.56956	0.01297	0.40550	0.41708	0.01179	0.04782	5.09026	0.01158
#2	0.02046	0.56662	0.01186	0.40402	0.41770	0.01175	0.04526	5.07517	0.01187
Mean	0.02033	0.56809	0.01241	0.40476	0.41739	0.01177	0.04654	5.08272	0.01172
%RSD	0.92967	0.36535	6.32225	0.25847	0.10635	0.25275	3.89129	0.20988	1.75462
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10048	0.02191	0.04829	0.20056	3.41802	0.01239	4.96349	0.03161	0.01977
#2	0.10089	0.02132	0.04830	0.19995	3.41676	0.01238	4.96193	0.03149	0.02028
Mean	0.10069	0.02161	0.04829	0.20025	3.41739	0.01239	4.96271	0.03155	0.02002
%RSD	0.29027	1.93797	0.00858	0.21834	0.02592	0.08882	0.02234	0.26531	1.79457
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.72213	0.08251	0.20204	0.00537	0.00554	0.19637	0.12144	0.00594	0.01067
#2	3.72752	0.08358	0.19916	0.00692	0.00420	0.21197	0.12290	0.00446	0.01024
Mean	3.72482	0.08304	0.20060	0.00614	0.00487	0.20417	0.12217	0.00520	0.01045
%RSD	0.10230	0.90671	1.01724	17.80819	19.48900	5.40098	0.84780	20.10763	2.90946
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10077	0.10192	0.02020	0.01914	0.02874	0.19736	0.10266	0.04754	0.05288
#2	0.09938	0.09929	0.02031	0.01928	0.01918	0.19190	0.10293	0.04875	0.05321
Mean	0.10007	0.10061	0.02025	0.01921	0.02396	0.19463	0.10280	0.04814	0.05304
%RSD	0.98075	1.84921	0.37735	0.51081	28.20828	1.98256	0.18558	1.77886	0.44096
	Pb	Se							
	calc	calc							
#1	0.00549	0.00909							
#2	0.00511	0.00831							
Mean	0.00530	0.00870							
%RSD	5.07956	6.32957							

SampleId1 : 1201354-1A SampleId2 : [SAMPLE]

Analysis commenced: 2/2/2012 16:58:45
Dilution ratio: 1.00000 to 1.00000 Tray: Position : TUBE32

	Ag	A1	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00181	60.71775	2.04091	0.99338	5.04354	0.05284	0.00020	121,98443	0.05359
#2	-0.00177	60.51100	2.03336	0.98657	5.01568	0.05273	-0.00096	121.67875	0.05352
Mean	-0.00179	60.61438	2.03714	0.98998	5.02961	0.05279	-0.00038	121.83159	0.05355
%RSD	1.75904	0.24118	0.26195	0.48645	0.39170	0.14440	218.39178	0.17742	0.09220
	Co	Cr	Cu	Fe	ĸ	Li	Мд	Mn	Мо

#1 #2 Mean %RSD	ppm 0.52149 0.52162 0.52156 0.01798	ppm 0.24119 0.24101 0.24110 0.05120	ppm 0.33655 0.33591 0.33623 0.13370	ppm 111.46442 111.18333 111.32388 0.17854	ppm 54.93582 54.61698 54.77640 0.41159	ppm 0.60946 0.60583 0.60764 0.42326	ppm 59.13733 59.02184 59.07959 0.13822	ppm 2.05151 2.04684 2.04918 0.16125	ppm 1.02357 1.02459 1.02408 0.07034
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
#1	ppm 46.85944	ppm 0.54061	ppm 2.22860	mqq	ppm	ppm	ppm	ppm	ppm
#2	46.56271	0.53876	2.22322	0.63121 0.63467	0.62882 0.62076	5.55131 5.57941	0.47986 0.47668	2.01666 2.02169	1.99498 2.01514
Mean	46.71107	0.53969	2.22591	0.63294	0.62479	5.56536	0.47827	2.01917	2.00506
%RSD	0.44919	0.24284	0.17074	0.38664	0.91278	0.35703	0.46928	0.17629	0.71116
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
#1	ppm	ppm	ppm 0.91236	ppm	ppm 2.07545	ppm	ppm	ppm	ppm
# 1			11 91/36	0.63062	7 11/545	0.34208	1.26230	1.54692	0.05185
	3.47278 3.45623	0.52145							0 05209
#2 Mean	3.45623 3.46451	0.52014 0.52080	0.90749 0.90993	0.62755 0.62908	2.05661 2.06603	0.37174 0.35691	1.25982 1. 26106	1.54084 1.54388	0.05209 0.05197
#2	3.45623	0.52014	0.90749	0.62755	2.05661	0.37174	1.25982	1.54084	

[SAMPLE]

Position : TUBE33

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00067	11,26495	0.01752	-0.00113	0.19458	0.00122	-0.00067	8,70587	-0.00043
#2	-0.00083	11.26049	0.01352	0.00123	0.19444	0.00118	-0.00369	8.71079	-0.00016
Mean	-0.00075	11.26272	0.01552	0.00005	0.19451	0.00120	-0.00218	8.70833	-0.00030
%RSD	14.30175	0.02799	18.20301	3251.43292	0.05067	1.93795	97.91234	0.03990	64.39492
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.01293	0.01428	0.01463	51.31836	3.16159	0.00701	5.21805	0.52074	-0.00025
#2	0.01211	0.01387	0.01496	51.23023	3.17412	0.00702	5.19714	0.52026	-0.00279
Mean	0.01252	0.01407	0.01479	51.27429	3.16785	0.00701	5.20760	0.52050	-0.00152
%RSD	4.65531	2.07048	1.58929	0.12154	0.27968	0.05230	0.28390	0.06452	117.99363
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm

#1 #2 Mean %RSD	0.08531 0.08574 0.08553 0.35459	0.01326 0.01464 0.01395 6.99923	0.82913 0.82935 0.82924 0.01898	0.01901 0.02241 0.02071 11.63000	0.02240 0.02020 0.02130 7.30777	3.78131 3.75946 3.77039 0.40974	0.00105 -0.00121 -0.00008 2123.15072	-0.01195 -0.00321 - 0.00758 81.60344	0.00279 0.00440 0.00360 31.76988
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.84764	-0.00246	0.07549	0.05116	0.00716	-0.00117	0.03661	0.07328	0.00811
#2	0.87919	0.00192	0.07531	0.05058	0.01197	0.02727	0.03611	0.07509	0.00800
Mean	0.86341	-0.00027	0.07540	0.05087	0.00957	0.01305	0.03636	0.07419	0.00806
%RSD	2.58389	1146.71854	0.16901	0.80667	35.53964	154.08086	0.97808	1.73178	1.01855
#1 #2 Mean %RSD	Pb calc 0.02127 0.02094 0.02110 1.11990	Se calc -0.00212 0.00187 -0.00012 2258.54964							

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:03

SampleId1 : CRI SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 17:02:40
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD3

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.02008	0.54549	0.01053	0.40484	0.41129	0.01177	0.05200	5.14080	0.01119
#2	0.02000	0.54948	0.01497	0.40099	0.41205	0.01174	0.04898	5.15212	0.01126
Mean	0.02004	0.54748	0.01275	0.40292	0.41167	0.01176	0.05049	5.14646	0.01123
%RSD	0.28167	0.51544	24.62840	0.67511	0.13179	0.17776	4.23129	0.15547	0.44577
	Co	Cr	Cu	Fe	к	Li	Ма	Mn	Мо
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.10154	0.02133	0.04795	0.20520	3.49486	0.01235	4.95827	0.03184	0.02028
#2	0.10105	0.02211	0.04781	0.20582	3.49068	0.01242	4.96977	0.03208	0.01946
Mean	0.10130	0.02172	0.04788	0.20551	3.49277	0.01239	4.96402	0.03196	0.01987
%RSD	0.34502	2.55560	0.20461	0.21276	0.08454	0.44410	0.16381	0.52375	2.89333
			, ,			0.11120	0,10001	0.020,0	5,403000
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	3.68058	0.08172	0.19894	0.00885	0.00653	0.21509	0.11999	0.01368	0.01110
#2	3.68953	0.08322	0.19738	0.00987	0.00838	0.20261	0.11998	0.01343	0.01144
Mean	3.68506	0.08247	0.19816	0.00936	0.00746	0.20885	0.11999	0.01355	0.01127
%RSD	0.17176	1.28496	0.55449	7.72731	17.51030	4.22400	0.00815	1.31674	2.15760
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.09493	0.10148	0.01998	0.01939	0.02705	0.17443	0.10212	0.04845	0.05194

#2	0.09672	0.10894	0.01995	0.01942	0.02750	0.19081	0.10320	0.04814	0.05251
Mean	0.09583	0.10521	0.01996	0.01941	0.02728	0.18262	0.10266	0.04830	0.05223
%RSD	1.32056	5.00988	0.12760	0.09194	1.18954	6.33914	0.74369	0.44332	0.77027
#1 #2 Mean %RSD	Pb calc 0.00730 0.00888 0.00809 13.74069	Se calc 0.01196 0.01210 0.01203 0.85427							

Method: Paragon File: 120202A Printed: 2/2/2012 17:36:03

SampleId1 : ICSA SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 17:04:39
Dilution ratio: 1.00000 to 1.00000 Tray: Position: STD4

Final concentrations

	Ag ppm	Al ppm	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca ppm	Cd ppm
#1	-0.00192	260.36265	-0.00301	-0.00505	-0.00099	0.00050	0.00081	259.41016	-0.00084
#2	-0.00219	259.35871	-0.00079	-0.00527	-0.00071	0.00047	0.00732	258.53680	-0.00053
Mean	-0.00205	259.86068	-0.00190	-0.00516	-0.00085	0.00048	0.00406	258.97348	-0.00068
%RSD	9.15084	0.27318	82.43304	3.03895	23.19043	5.23202	113.35159	0.23846	31.93536
	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00085	-0.00248	-0.00766	104.60093	-0.41053	-0.00304	262.26165	0.00107	-0.00472
#2	-0.00135	-0.00312	-0.00827	104.18100	-0.41304	-0.00303	261.22845	0.00083	-0.00533
Mean	-0.00110	-0.00280	-0.00796	104.39097	-0.41178	-0.00304	261.74505	0.00095	-0.00503
%RSD	31.86698	16.08432	5.39757	0.28444	0.43099	0.12084	0.27912	17,58122	8.57408
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.12211	-0.00106	-0.00342	-0.00384	0.00170	0.04666	-0.00396	-0.01288	0.00730
#2	-0.11979	-0.00236	-0.00342	-0.01375	0.00502	0.03107	-0.00647	-0.03356	0.00601
Mean	-0.12095	-0.00171	-0.00342	-0.00879	0.00336	0.03887	-0.00521	-0.02322	0.00666
%RSD	1.35299	53.75549	0.00000	79.72955	69.78967	28.37001	34.03731	62.98164	13.69711
	Si	Sn	Sr	Ti	Tl	υ	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.03746	-0.00547	-0.00055	-0.00043	0.01752	0.01603	-0.01142	-0.00363	0.00198
#2	-0.03635	-0.00503	-0.00059	-0.00046	0.00979	0.01850	-0.01075	-0.00454	0.00178
Mean	-0.03690	-0.00525	-0.00057	-0.00045	0.01365	0.01727	-0.01109	-0.00408	0.00188
%RSD	2.13140	5.90267	4.47957	6.00993	40.03972	10.10989	4.30244	15.72915	7.61271

-0.00069 Mean -0.00329er: MIKE LUNDGREEN

%RSD 112.14307 166.36241

Method : Paragon File : 120202A Printed: 2/2/2012 17:36:03

SampleId1 : ICSAB SampleId2 : [FLEXQC]

Analysis commenced: 2/2/2012 17:06:58
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD5

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.20352	209.54168	0.10376	1.00678	0.53889	0.47958	0.54017	261.87315	1.00863
#2	0.20163	209.12352	0.10287	1.00826	0.53729	0.47883	0.54085	261.20539	1.00274
Mean	0.20257	209.33260	0.10331	1.00752	0.53809	0.47920	0.54051	261.53927	1.00569
&RSD	0.65986	0.14125	0.60771	0.10391	0.21092	0.11020	0.08969	0.18054	0.41404
	_	_	_	_					
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
11 1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm o cocor	ppm
#1	0.48152	0.48921	0.54418	105.37331	-0.36242	1.05187	262.76008	0.50637	0.98303
#2	0.48169	0.48823	0.54312	105.19231	-0.35950	1.04809	262.35255	0.50542	0.98191
Mean	0.48161	0.48872	0.54365	105.28281	-0.36096	1.04998	262.55631	0.50590	0.98247
%RSD	0.02424	0.14139	0.13726	0.12157	0.57360	0.25425	0.10975	0.13274	0.08065
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	mqq	ppm	mag	mqq	mqq	mag	ppm	ppm	ppm
#1	-0.11902	0.98087	0.99034	0.04575	0.05354	1.05728	0.58567	0.04063	0.05074
#2	-0.10676	0.98260	0.97698	0.05026	0.05339	1.07911	0.57983	0.03340	0.05216
Mean	-0.11289	0.98173	0.98366	0.04801	0.05347	1.06819	0.58275	0.03701	0.05145
%RSD	7.67751	0.12496	0.96073	6.64925	0.19961	1.44549	0.70837	13.80490	1.96028
		_	_	_,				_	
	Si	Sn	Sr	Ti	Tl	U	V	Zn	Zr
и 1	mqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.99667	1.03258	1.05797	0.97218	0.11380	10.55126	0.48808	0.92798	0.49299
#2	0.99349	1.02028	1.05449	0.97113	0.11067	10.52299	0.48729	0.92676	0.49189
Mean	0.99508	1.02643	1.05623	0.97166	0.11223	10.53712	0.48768	0.92737	0.49244
%RSD	0.22578	0.84728	0.23263	0.07617	1.97627	0.18976	0.11461	0.09259	0.15790
	Pb	Se							
	calc	calc							
#1	0.05095	0.04737							
#2	0.05235	0.04591							
Mean	0.05165	0.04664							
%RSD	1.92012	2.20575							

Method: Paragon Fin File : 120202A Printed: 2/2/2012 17:36:04

SampleId2 : [CV]

Analysis commenced: 2/2/2012 17:09:05

Dilution ratio : 1.00000 to 1.00000 Tray : Position : STD6

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
11.4	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	0.21185	51.65307	0.52618	1.00316	1.05877	0.48782	0.52685	50.86109	0.51229 0.50882
	0.21325	51.43325	0.52308	1.00005	1.05297	0.48762	0.53987	50.72550	0.51055
Mean %RSD	0.21255 0.46506	51.54316 0.30156	0.52463 0.41886	1.00160 0.21950	1.05587 0.38860	0.48772 0.02857	0.53336 1.72562	50.79329 0.18875	0.47997
UCM	0.40500	0.30136	0.41000	0.21930	0.30000	0.02637	1.72502	0.100/3	0.4/99/
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.49523	1.01076	1.04548	20.29528	51.15704	0.51371	50.21746	1.00716	1.00534
#2	0.49473	1.01028	1.04223	20.23820	50.88632	0.51072	50.05606	1.00716	1.00116
Mean	0.49498	1.01052	1.04386	20.26674	51.02168	0.51222	50.13676	1.00716	1.00325
%RSD	0.07152	0.03346	0.22024	0.19916	0.37518	0.41327	0.22762	0.00000	0.29438
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	47.84778	1.00153	4.93151	1.01242	1.00284	5.14544	0.49497	1.01305	0.98773
#2	47.66714	1.00456	4.91860	1.00810	0.99687	5.08924	0.49813	1.01360	0.98953
Mean	47.75746	1.00304	4.92505	1.01026	0.99985	5.11734	0.49655	1.01332	0.98863
%RSD	0.26746	0.21403	0.18539	0.30259	0.42191	0.77650	0.44990	0.03830	0.12922
	Si	Sn	Sr	Ti	T1	ប	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	5.09915	1.03622	0.52681	0.49242	0.52360	5.09076	0.49776	0.97564	1.00909
#2	5.09060	1.03007	0.52413	0.49107	0.54628	5.09408	0.49823	0.97868	1.00546
Mean	5.09488	1.03314	0.52547	0.49175	0.53494	5.09242	0.49799	0.97716	1.00727
%RSD	0.11877	0.42083	0.36050	0.19407	2.99688	0.04602	0.06738	0.21971	0.25436
	Pb	Se							
	ca1c	calc							
#1	1.00603	0.99616							
#2	1.00061	0.99755							
Mean	1.00332	0.99685							
%RSD	0.38190	0.09845							

Printed: 2/2/2012 17:36:04 Method : Paragon File : 120202A

SampleId1 : CCB SampleId2 : [CB]

Analysis commenced: 2/2/2012 17:10:58
Dilution ratio: 1.00000 to 1.00000 Tray: Position : STD2

Final concentrations

	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.00056	0.26650	0.00265	0.00020	0.00117	0.00103	-0.00222	0.07782	0.00040
#2	-0.00070	0.22775	-0.00324	-0.00039	0.00075	0.00076	0.00081	0.03570	0.00068
Mean	-0.00063	0.24713	-0.00029	-0.00010	0.00096	0.00090	-0.00070	0.05676	0.00054
%RSD	15.19194	11.08673	1411.06685	433.77828	30.73605	21.59662	303.50254	52.46665	37.06518

ted: 2	2/2/2012 17:		r: MIKE LUND						
	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo
и 1	ppm	ppm	mqq	ppm	ppm	mqq	ppm	ppm	ppm
#1	-0.00060	0.00187	-0.00204	0.06425	-0.26538	-0.00270	0.15196	0.00166	0.00198
#2	-0.00085	0.00080	-0.00253	0.04911	-0.29131	-0.00289	0.11483	0.00131	-0.00056
Mean	-0.00072	0.00134	-0.00228	0.05668	-0.27835	-0.00279	0.13339	0.00148	0.00071
%RSD	24.21491	56.93275	15.20288	18.89021	6.58811	4.86155	19.68153	16.91123	251.88550
	Na	Ni	P	Pb I	Pb II	s	Sb	Se I	Se II
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.05996	0.00166	0.00500	0.00425	-0.00029	-0.00324	-0.00052	0.00534	0.00015
#2	-0.08319	-0.00090	0.00012	0.00000	-0.00015	-0.00636	0.00331	-0.00202	0.00152
Mean	-0.07157	0.00038	0.00256	0.00213	-0.00022	-0.00480	0.00139	0.00166	0.00084
%RSD	22.95256	479.20183	134.58831	141.21894	42.03095	45.98375	194.09834	312.81483	115.93188
	Si	Sn	Sr	Ti	Tl	U	v	Zn	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	-0.01289	0.00505	-0.00096	-0.00091	0.00096	-0.03285	0.00141	0.00091	0.00209
#2	-0.01347	-0.00416	-0.00129	-0.00127	0.01242	-0.02629	0.00109	-0.00121	0.00170
Mean	-0.01318	0.00045	-0.00113	-0.00109	0.00669	-0.02957	0.00125	-0.00015	0.00189
%RSD	3.10722	1454.06129	20.34173	23.76226	121.13656	15.68532	18.48638	1017.48426	14.40696
	Pb	Se							
	calc	calc							
		0 0000							
#1	0.00123	0.00188							
#1 #2	0.00123 -0.00010	0.00188							

Header Information for Analytical Sequence 12B03m00

Instrument: Agilent ICPMS Model 7700X; Serial No. JP09400112

Software Revision: B.01.01 Date of Analysis: 02/03/2012

Analyst: Ross Miller

Calibration Standards

High Calibration Standard: ST100324-6 (expires 2/28/2015)
This standard contains the following elements at the listed concentrations (ng/ml).

100000	50000	10000	5000	2000	1000	500	200	100	50	30	10	2
Na	Ca	Mg	Fe	Zn	В	Cr	Mn	V	Pb	Sb	Th	Tl
	K	-	Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		Pr		
								Sr		Nd		

1/10,1/100, and 1/1000 dilutions of the High Calibration Standard are prepared daily to provide additional calibration standards.

<u>ICV</u>

The ICV is prepared by diluting 1ml of the 2nd Source intermediate (ST110707-8, expires 06/20/2012) to 5ml giving the following concentrations (ng/ml).

20000	10000	2000	1000	400	200	100	40	20	10	6	2	0.4
Na	Ca	Mg	Fe	Zn	В	Cr	Mn	V	Pb	Sb	Th	T1
	K		Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		Pr		
								Sr		Nd		

CRI1

The RL1 is prepared by diluting 0.05ml of the Reporting Limit Verification Spike Solution (ST100324-9 expires 2/28/2015) to 50ml giving the following concentrations (ng/ml).

_	100	50	10	5	2	1_	0.5	0.2	0.1	0.05	0.03	0.02	0.01
	Na	Ca	Mg	Al	Zn	В	Cr	Mn	V	Pb	Sb	Th	U
		K		Fe	Ti	Cu	Ni		Co	Be	Cd	Tl	Ag
						Li	Sn		As		Y		
									Se		La		
									Mo)	Ce		
									Ba		Pr		
									Sr		Nd		

CRI2

The RL2 is prepared by diluting 0.1ml of the Reporting Limit Verification Spike Solution (ST100324-9 expires 2/28/2015) to 50ml giving the following concentrations (ng/ml).

20	00	100	20	10	4	2	1	0.4	0.2	0.1	0.06	0.04	0.02
1	Na	Ca	Mg	Al	Zn	В	Cr	Mn	V	Pb	Sb	Th	U
		K		Fe	Ti	Cu	Ni		Co	Be	Cd	Tl	Ag
						Li	Sn		As		Y		_
									Se		La	L.	
									Mo	ı	Ce	:	
									Ba		\mathbf{Pr}		
									Sr		Nd		

<u>ICSA</u>

The ICSA is prepared by diluting 0.5ml of ICSA intermediate (ST111103-1, expires 12/01/12) to a final volume of 50ml giving the following concentrations (ng/ml).

42.5 X 10 ⁶	30000	25000	20000	10000	200
C1	Ca	Fe	С	Al	Mo
		Na		K	Ti
				Mg	
				P	
				S	

<u>ICSAB</u>

The ICSAB is prepared by diluting 0.5ml of ICSA intermediate (ST111103-1, expires 12/01/12) and 5ml of High Calibration Standard: ST100324-6 (expires 2/28/2015) to a final volume of 50ml. The ICSAB contains the following elements at the listed concentrations (ng/ml).

CCV

The CCV is prepared by diluting 5ml of the High Calibration Standard: ST100324-6 (expires 2/28/2015) to a final volume of 50ml. The CCV contains the following elements at the listed concentrations (ng/ml).

10000	5000	1000	500	200	100_	50	20	10	5	3	1	0.2
Na	Ca	Mg	Fe	Zn	В	\mathbf{Cr}	Mn	V	Pb	Sb	Th	Tl
	K		Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		\mathbf{Pr}		
								\mathbf{Sr}		Nd		

Linear Dynamic Range Standards

LDR-Ca,Na,K

The LDR-Ca,Na,K standard is prepared by diluting 1ml of the High Calibration Standard Intermediate Mix (ST100324-5, expires 2/28/2015) to a final volume of 10ml. The LDR-Ca,Na,K standard contains the following elements at the listed concentrations (ng/ml).

100000	50000	20000	10000	5000	2000	1000	500	300	100	20
Mg	Fe	Zn	В	Cr	Mn	V	Pb	Sb	Th	Tl
	Al	Ti	Cu	Ni		Co	Be	Cd	U	
			Li	Sn		As		Y	Ag	
						Se		La		
						Mo		Ce		
						Ba		Pr		
						Sr		Nd		

1000 Na

The 1000 Na standard is prepared by diluting 1ml of the 10000mg/L Na stock solution (ST100301-26, expires 2/28/2015) to a final volume of 10ml. The 1000 Na standard contains Na at 1000000 ng/ml.

500 Ca

The 500 Ca standard is prepared by diluting 0.5ml of the 10000mg/L Ca stock solution (ST100301-9, expires 2/28/2015) to a final volume of 10ml. The 500 Ca standard contains Ca at 500000 ng/ml.

500 K

The 500 K standard is prepared by diluting 0.5ml of the 10000mg/L K stock solution (ST100301-22, expires 2/28/2015) to a final volume of 10ml. The 500 K standard contains K at 500000 ng/ml.

Linear Dynamic Range

The instrument Linear Dynamic Range (LDR) is determined at least every 6 months. The current LDR was determined on 9/22/2011 The instrument LDR is given below (ng/ml).

1000000	500000	100000	50000	20000	10000	5000	2000	1000	500	300	100	20
Na	Ca	Mg	Fe	Zn	В	Cr	Mn	V	Pb	Sb	Th	Tl
	K		Al	Ti	Cu	Ni		Co	Be	Cd	U	
					Li	Sn		As		Y	Ag	
								Se		La		
								Mo		Ce		
								Ba		Pr		
								Sr		Nd		

ICB/CCB and all diluent

1% HNO₃, 1%HCl in double deionized water

HNO₃ Lot No. K23022 HCl Lot No. K33031

Internal Standards

The internal standard intermediate contains 2 PPM each of Ga, Ge and Pt; 1 PPM each of In and Rh and 0.5 PPM of Bi. This intermediate is added to all standards and samples in the same proportion of 1 on top of 100. Most often this is done by adding 0.05ml of internal standard intermediate on top of 5ml of sample or standard. The final concentration of internal standard added to the standards or samples is about 20ppb each of Ga, Ge and Pt; 10ppb each of In and Rh; and 5ppb of Bi.

Pipet ID Numbers

1.0 to 5.0 ml -- M-66 0.1 to 1.0ml -- M-60 0.01 to 0.1ml -- M-56 0.5ml -- M-14

Dilutions

2X dilutions made by diluting 5ml of sample to 10ml final volume 5X dilutions made by diluting 1ml of sample to 5ml final volume 10X dilutions made by diluting 1ml of sample to 10ml final volume 50X dilutions made by diluting 0.1ml of sample to 5ml final volume 100X dilutions made by diluting 0.1ml of sample to 10ml final volume 200X dilutions made by diluting 0.05ml of sample to 10ml final volume 500X dilutions made by diluting 0.02ml of sample to 10ml final volume

Analytical Spikes

None in this sequence.

Daily Maintenance Items

- 1. Check / change pump tubing
- 2. Check / clean drain containers
- 3. Tune instrument per manufacturer's procedures
- 4. Perform resolution / mass calibration / stability test and print QC tune report

Monthly Maintenance Items

- 1. Check / clean torch and cones
- 2. Check / clean nebulizer and spray chamber
- 3. Check / fill water recirculating reservoir4. Check / fill vacuum pump oil

Additional Comments

No additional comments.

C:\ICPMH\1\7500\QCTUNE.D

QC Tune Report

Data File: C:\ICPMH\1\7500\QCTUNE.D
Date Acquired: 3 Feb 2012 08:38:47 am

Operator: Misc Info:

Vial Number:

Current Method: C:\ICPMH\1\METHODS\2008TUNE.m

Minimum Response (CPS)

Elemen	ıt	Actual	Required	Flag
RSD (%	:)			
Elemen	t	Actual	Required	Flag
9	Be	0.92	5.00	
24	Mg	0.46	5.00	
25	Mg	0.61	5.00	
26	Mg	1.35	5.00	
59	Co	0,60	5.00	
115	In	0.63	5.00	
206	Pb	0.91	5.00	
207	Pb	0.62	5.00	
208	Pb	1.32	5.00	
Ion Ra	tio			
Elemen	t	Actual	Required	Flag
Maximu	m Bkg.	. Count (CPS)		
Elemen	t	Actual	Required	Flag

165 of 195 2/3/2012 AM 08:43

C:\ICPMH\1\7500\QCTUNE.D

9 Be
Mass Calib.
Actual: 9.05
Required: 8.90-9.10
Flag:
Peak Width
Actual: 0.50
Required: 0.80
Flag:

24 Mg
Mass Calib.
Actual: 24.00
Required: 23.90-24.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

25 Mg
Mass Calib.
Actual: 25.00
Required: 24.90-25.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

26 Mg
Mass Calib.
Actual: 26.00
Required: 25.90-26.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

C:\ICPMH\1\7500\QCTONE.D

59 Co
Mass Calib.
Actual: 58.95
Required: 58.90-59.10
Flag:
Peak Width
Actual: 0.60
Required: 0.80
Flag:

115 In
Mass Calib.
Actual: 114.95
Required: 114.90-115.10
Flag:
Peak Width
Actual: 0.55
Required: 0.80
Flag:

206 Pb
Mass Calib.
Actual: 206.00
Required: 205.90-206.10
Flag:
Peak Width
Actual: 0.50
Required: 0.80
Flag:

207 Pb
Mass Calib.
Actual: 207.00
Required: 206.90-207.10
Flag:
Peak Width
Actual: 0.50
Required: 0.80
Flag:

2/3/2012 AM 08:43 167 of 195

C:\ICPMH\1\7500\QCTUNE.D

208 Pb
Mass Calib,
Actual: 208.00
Required: 207.90-208.10
Flag:
Peak Width
Actual: 0.45
Required: 0.80
Flag:

QC Tune Result: Pass

Batch Summary Report

Batch Folder:

C:¥ICPMH¥1¥DATA¥12B03m00.B¥

Analysis File:

12B03m00.batch.xml

Tune Step:

#1 hehe.u

	Rjot	Acq. Date-Time	Data File	Sample Name	Туре	Level	Dilution
1		2/3/2012 9:56:16 AM	001SMPL_12B03j00,D	blank	Sample		1.0000
2		2/3/2012 9:58:36 AM	002CALB_12B03j00.D	blank	CalBik	1	1,0000
3		2/3/2012 10:00:57 AM	003CALB_12B03j00.D	blank .	CalBlk	1	1.0000
4		2/3/2012 10:03:18 AM	004CALS_12B03j00.D	H/1000	CalStd	2	1,0000
5		2/3/2012 10:05:37 AM	005CALS_12B03j00.D	H/100	CalStd	3	1.0000
6		2/3/2012 10:07:55 AM	006CALS_12B03j00.D	H/10	CalStd	4	1,0000
7		2/3/2012 10:10:11 AM	007CALS_12B03j00,D	HIGH	CalStd	5	1,0000
8		2/3/2012 10:12:27 AM	008SMPL_12B03j00.D	ICV	6-ICV		1.0000
9		2/3/2012 10:14:46 AM	009SMPL_12B03j00.D	ICB	6-CCB		1.0000
10		2/3/2012 10:17:06 AM	010SMPL_12B03j00,D	CRI1	Sample		1.0000
11		2/3/2012 10:19:25 AM	011SMPL_12B03j00.D	CRI2	Sample		1,0000
12		2/3/2012 10:21:44 AM	012SMPL_12B03j00.D	ICSA	Sample		1.0000
13		2/3/2012 10:24:01 AM	013SMPL_12B03j00.D	ICSAB	Sample		1.0000
14		2/3/2012 10:26:20 AM	014SMPL_12B03j00.D	CCV	6-CCV		1.0000
15		2/3/2012 10:28:38 AM	015SMPL_12B03j00.D	CCB	6-CCB		1.0000
16		2/3/2012 10;30:55 AM	016SMPL_12B03j00.D	EX120201-2MB 10X	6-CCB		1,0000
17		2/3/2012 10:33:12 AM	017SMPL_12B03j00.D	EXM120201-2RVS 10X	Sample		1,0000
18		2/3/2012 10:35:28 AM	018SMPL_12B03j00.D	EXM120201-2LCS 10X	6-LCS		1,0000
19		2/3/2012 10:37:44 AM	019SMPL_12B03j00.D	1201363-11 10X	Sample		1,0000
20		2/3/2012 10:40:01 AM	020SMPL_12B03j00.D	1201363-11D 10X	Sample		1.0000
21		2/3/2012 10:42:18 AM	021SMPL_12B03j00.D	1201363-11L 50X	Sample		1.0000
22		2/3/2012 10:44:36 AM	022SMPL_12B03j00.D	1201363-11MS 10X	Sample		1,0000
23		2/3/2012 10:47:06 AM	023SMPL_12B03j00.D	1201363-11MSD 10X	Sample		1.0000
24		2/3/2012 10:49:27 AM	024SMPL_12B03j00.D	1201358-2 50X	Sample		1,0000
25		2/3/2012 10:51:48 AM	025SMPL_12B03j00.D	CCV	6-CCV		1.0000
26		2/3/2012 10:54:08 AM	026SMPL_12B03j00.D	CCB	6-CCB		1,0000
27		2/3/2012 10:56:27 AM	027SMPL_12B03j00_D	IP120202-2MB 10X	6-CCB		1.0000
28		2/3/2012 10:58:45 AM	028SMPL_12B03j00.D	IM120202-2LCS 10X	6-LCS		1.0000

169 of 195

Page 1 / 12 2/3/2012 1:07:43 PM

	Rjct	Acq. Date-Time	Data File	Sample Name	Туре	Level	Dilution
29		2/3/2012 11:01:05 AM	029SMPL_12B03j00.D	1201354-1 10X	Sample		1.0000
3 0		2/3/2012 11:03:24 AM	030SMPL_12B03j00.D	1201354-1D 10X	Sample		1.0000
31		2/3/2012 11:05:44 AM	031SMPL_12B03j00.D	1201354-1L 50X	Sample		1,0000
32		2/3/2012 11:08:02 AM	032SMPL_12B03j00.D	1201354-1MS 10X	Sample		1,0000
33		2/3/2012 11:10:18 AM	033SMPL_12B03j00,D	1201354-1MSD 10X	Sample		1.0000
34		2/3/2012 11:12:36 AM	034SMPL_12B03j00.D	ZZZZZ Z	Sample		1,0000
35		2/3/2012 11:14:55 AM	035SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
36		2/3/2012 11:17:13 AM	036SMPL_12B03j00.D	ZZZZZZ	Sample		1,0000
37		2/3/2012 11:19:30 AM	037SMPL_12B03j00.D	CCV	6-CCV		1.0000
38		2/3/2012 11:21:48 AM	038SMPL_12B03j00.D	CCB	6-CCB		1,0000
39		2/3/2012 11:24:07 AM	039SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
40		2/3/2012 11:26:27 AM	040SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
41		2/3/2012 11:28:48 AM	041SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
42		2/3/2012 11:31:09 AM	042SMPL_12B03j00,D	ZZZZZZ	Sample		1.0000
43		2/3/2012 11:33:29 AM	043SMPL_12B03j00,D	ZZZZZZ	Sample		1.0000
44		2/3/2012 11:35:49 AM	044SMPL_12B03j00,D	ZZZZZZ	Sample		1,0000
45		2/3/2012 11:38:07 AM	045SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
46		2/3/2012 11:40:24 AM	046SMPL_12B03j00,D	ZZZZZZ	Sample		1.0000
47		2/3/2012 11:42:42 AM	047SMPL_12B03j00.D	ZZZZZZ	Sample		1.0000
48		2/3/2012 11:45:03 AM	048SMPL_12B03j00.D No A5.5e	1201358-1 50X	Sample		1,0000
49		2/3/2012 11:47:22 AM	049SMPL_12B03j00.D	CCV	6-CCV		1.0000
50		2/3/2012 11:49:42 AM	050SMPL_12B03j00.D	CCB	6-CCB		1.0000
51		2/3/2012 12:16:05 PM	001SMPLD	1201354-12 10X	Sample		1.0000
52		2/3/2012 12:18:24 PM	002SMPLD	1201354-13 10X	Sample		1,0000
53		2/3/2012 12:20:44 PM	003SMPLD	1201354-2 100X	Sample		1,0000
54		2/3/2012 12:23:04 PM	004SMPLD	1201354-3 100X	Sample		1.0000
55		2/3/2012 12:25:24 PM	005SMPLD	1201354-4 10X	Sample		1.0000
56		2/3/2012 12:27:42 PM	006SMPLD	1201354-5 100X	Sample		1.0000
57		2/3/2012 12:30:02 PM	007SMPLD	1201354-6 100X	Sample		1.0000
58		2/3/2012 12:32:22 PM	008SMPLD	1201354-7 100X	Sample		1.0000
59		2/3/2012 12:34:42 PM	009SMPLD	1201354-8 100X	Sample		1,0000
60		2/3/2012 12:37:02 PM	010SMPLD	1201354-9 100X	Sample		1.0000
61		2/3/2012 12:39:22 PM	011SMPLD	CCV	6-CCV		1,0000

Batch Summary Report

	Rjot	Acq. Date-Time		Data File	Sample Name	Туре	Level	Dilution
62		2/3/2012 12:41:40 PM	012SMPLD		CCB	6-CCB		1,0000
63		2/3/2012 12:43:59 PM	013SMPLD		1201354-10 10X	Sample		1.0000
64		2/3/2012 12:46:17 PM	014SMPLD	1	1201354-11 100X	Sample		1.0000
65		2/3/2012 12:55:04 PM	015SMPLD	HS.Se onla	1201358-1 50X	Sample		1.0000
66		2/3/2012 12:57:22 PM	016SMPLD	J	ccv	6-CCV		1,0000
67		2/3/2012 12:59:40 PM	017SMPLD		CCB	6-CCB		1,0000

Analyte Table

		52 Gr	[1]	75 As	[1]	78 Se [1]		109 Ag [1]		111 Go	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
1	blank	·	586,71		7.33		2.67		3.33		2.66
2	blank	0.006	510.03	0,000	5.33	-0.006	2.67	0.000	2.22	-0 ,001	1.33
3	blank	0.000	496.70	0.000	5.67	0.000	3,20	0.000	4.44	0 .000	2.66
4	H/1000	0.519	2763.69	0.094	75.67	0.089	11.47	0.013	82.23	0.039	57.28
5	H/100	4.954	22830.20	0.994	776.02	0.982	96.27	0.112	722.25	0.312	462.81
6	H/10	50.260	219037.12	9,646	7231.30	9.916	908.16	1.043	6463.64	3.116	4461.47
7	HIGH	499.974	2183608.20	100.035	75274.60	100.009	9167.52	9.996	62249.47	29.988	44082.74
8	ICV	99.494	453452.35	18.500	14517.48	19.580	1873.98	1.907	12381.65	5.856	8773.19
9	ICB	0.019	566.70	0.008	11,00	0.007	3.73	0.002	15.56	0.008	13.29
10	CRI1	0.480	2590.34	0.104	82.67	0.099	12.40	0.011	74.44	0,034	50.61
11	CRI2	0.929	4544.15	0.209	161.00	0.199	21.47	0.015	95.56	0.073	106,55
12	ICSA	0.283	1820.19	0.015	18,00	-0.012	2.53	0.012	83.34	0.092	141.23
13	ICSAB	50.915	230137.16	10.037	7804.89	10.287	976.96	1.042	6703.74	3.141	4712.45
14	CCV	49.822	216843.81	9.714	7272.98	10.028	917.23	1.020	6321.35	3.167	4608.63
15	CCB	0.009	526.70	0.005	9.00	-0.001	3.07	0.001	10.00	0.003	5.94
16	EX120201-2MB	0.020	630.04	0,002	8.00	-0.014	2.27	0.001	13.33	0,003	7.30
17	EXM120201-2RV	0.518	2586.99	0.082	62,33	0.100	11.73	0.011	68.89	0.022	31.93
18	EXM120201-2LC	49.596	218281_90	9.477	7175.94	9.903	915.63	1,010	6332.48	3.001	4334.18
19	1201363-11 10X	0.109	1016.76	0.037	34.00	0.018	5.20	0.002	17.78	0.022	33.97
20	1201363-11D 10X	0.084	916.74	0.037	34.00	0.008	4.27	0.001	12.22	0.022	33.95
21	1201363-11L 50X	0.032	673.38	0.012	14.67	-0.021	1.60	0.001	10.00	0.005	9,99
22	1201363-11MS	49.906	214737.91	9.697	7178.60	10.083	911.50	0.990	6061.24	3.022	4380.93
23	1201363-11MSD	49.861	209332.35	9.602	6935.16	9.802	864.82	0.997	5962.32	3.006	4262.35
24	1201358-2 50X	0.016	613.38	0.725	542.68	0.652	62.27	0.000	2.22	0.006	11.98
25	CCV	50,344	218271.54	9.819	7323.67	10.018	912.83	1.045	6452.54	3.068	4429.46
26	CCB	0.015	553.37	-0.001	5.00	-0.018	1.73	0.002	15.55	0.002	5.31
27	IP120202-2MB	0.018	570.03	0.003	8.00	-0.011	2.27	0.000	6.67	0.002	5.32
28	IM120202-2LCS	50.702	220994.81	9.704	7276.31	10.264	940.16	0.985	6114.61	3.099	4474.87
29	1201354-1 10X	4.679	20997.66	5.597	4219,23	11.497	1057.50	0.038	244.45	0.101	150.20
30	1201354-1D 10X	4.471	19913.04	5.312	3971.84	15.758	1436.33	0.064	400.01	0.123	178.93
31	1201354-1L 50X	0.947	4524.18	1.091	798.69	2.198	197.87	0.015	92.23	0.021	31.63

Analyte Table

Allalyto											
		52 Cr	[1]	75 As	[1]	78 Se	[1]	109 Ag [1]		111 Cd	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
32	1201354-1MS 10X	55,010	236342.34	15.096	11157.84	22.338	2012.93	1.042	6378.04	3,143	4440.53
33	1201354-1MSD	55.437	237056.07	15.325	11271,92	21.055	1889.18	1.055	6421.39	3,123	4437.07
34	<u> </u>	2.993	13369.50	8.739	6459.30	25.905	2332.84	0.024	148.89	0,065	97.22
35	ZZZZZZ	2.467	11191.00	9.897	7367.02	55. 3 18	5013.44	0.019	124.45	0,097	142.42
36	ZZZZZZ	2.103	9499.84	3.961	2913,27	15.014	1345,13	0.016	102,22	0.052	7 7. 6 8
37	CCV	50,257	215699.49	9.744	7193.95	10. 0 87	909.76	1.026	6266.89	3.106	4356.84
38	CCB	0.041	653.38	0.002	7.33	-0.011	2.27	0.000	4.44	0.003	5.98
39	777777	3.151	13969.96	11.687	8590.96	42.683	3821.52	0.028	176.67	0.087	126.43
40	777777	2.605	11634.63	5.779	4247.57	41.995	3757.77	0.018	115.56	0.071	103.67
41	7777 77	3.386	14717.31	7.746	5599.65	33,751	2971.48	0.018	114.45	0,070	101.86
42	ZZ ZZZZ	4.731	20547.01	6.878	5019.79	16,897	1503.27	0.038	232.23	0.103	148.90
43	ZZZZZZ	3,834	17029,62	9.961	7386.70	27.429	2478.06	0.028	175.56	0.087	129.63
44	ZZZZZZ	6.453	28038.45	5.269	3875.48	2.130	194.00	0,045	281.12	0.083	122.79
45	ZZZZZZ	3.537	15888.50	16.556	12380,38	71.384	6501.17	0.025	15 <u>8,</u> 89	0.078	116.73
46	7777ZZ	3.373	15424.76	1.913	1459.74	1.163	111.20	0.018	116,67	0.080	119.13
47	777277	7.544	33391.86	6.673	5011.80	0.562	54.93	0.027	175,56	0.102	153.12
48	1201358-1 50X	2.024	9336,43	63.007	47160.87	32.997	3010.28	0.014	88.89	0.016	26.02
49	CCV	50.242	215375.09	9.731	7175,93	10.087	908.56	1.015	6192.42	2.987	4252.13
50	CCB	-0.012	440.03	0.002	7.00	-0.022	1.33	0.002	14.44	0.001	3.32
51	1201354-12 10X	3.381	14914.04	1,942	1428.73	1.035	95.87	0.016	104.45	0.086	124,50
52	1201354-13 10X	7.260	31835.60	6.779	5041.13	0.668	63.87	0.026	164.45	0.114	166.47
53	1201354-2 100X	0.376	2103.60	0,929	675.02	2.760	245.73	0.004	27.78	0.004	8,97
54	1201354-3 100X	0,280	1723.51	1.021	752.02	5.644	505.48	0.002	18,89	0.010	16.77
55	1201354-4 10X	2.124	9566,61	3.874	2844.93	14.810	1325.12	0.014	91.11	0.044	64.39
56	1201354-5 100X	0.322	1840.20	1.210	861.36	4.308	374.14	0,000	3.33	0.007	12.18
57	1201354-6 100X	0.262	1626,82	0,652	477.34	4.349	386.01	0.003	25.56	0,009	15.56
58	1201354-7 100X	0,333	1946.86	0.757	560.01	3.357	302.40	0.002	17.78	0.016	25,10
59	1201354-8 100X	0.422	2296.94	0.686	500,68	1,755	157.47	0.005	34.44	0.013	20.15
60	1201354-9 100X	0.366	2060.23	0.972	707.02	2.771	246.67	0.001	13.33	0.012	18.98
61	CCV	50.064	210862.25	9.635	6982.52	10.096	893.50	1,010	6054.59	3.067	4299.55
62	ССВ	0.014	530.04	-0.001	4.67	0.018	4.53	0.002	14.44	0.019	25.32

1/3 OI J

Analyte Table

		52 Cr [1]		75 As	75 As [1]		78 Se [1]		g [1]	111 Cd [1]	
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CP\$	Conc. [ppb]	CPS	Conc. [ppb]	CPS
63	1201354-10 10X	6.247	27063,52	5.116	3750.45	2.206	200.00	0.048	297.79	0.083	119,49
64	1201354-11 100X	0.393	2156.90	1.717	1233.72	7.369	644.94	0,005	35.55	0.009	15,08
65	1201358-1 50X	0.221	1453.47	0.575	420.68	0,011	4.40	0.023	138.89	0.014	22.17
66	CCV	49.992	212182.65	9.666	7057.89	9.966	888.83	0.988	5971.21	3,016	4232.76
67	CCB	0.011	520.04	0.010	11,67	0.002	3.20	0.003	18.89	0.004	7.32

1/4 01 195

Analyte Table

		137 Ba	a [1]	206 (Pt)[1]	207 (Pb) [1]		208 Pb [1]		238 U	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
1	blank		33.33		60.00		86.67		340.02		10,00
2	blank	0,006	36.67	-0.010	66.67	0.001	73.34	-0,002	353.35	0.000	14.44
3	blank	0.000	26,67	0.000	106.67	0.000	73.34	0.000	396.69	0.000	10,00
4	H/1000	0.175	356.69	0.050	320.02	0.059	283.35	0.059	1380,10	0.010	188.89
5	H/100	1,002	2013.56	0.509	2373.64	0.493	1943.55	0.495	9108.21	0.095	1722.35
6	H/10	10.294	19820.33	5.115	22087.68	5.065	18606.02	5.119	87278.75	1,060	18197.02
7	HIGH	99.971	197514.22	49,988	215022.05	49.994	183205.98	49.988	849420.94	9,994	183189.65
8	ICV	19.810	39902.86	9.350	42288.42	9.467	36463.21	9.389	167741.77	1,911	35762.63
9	ICB	0.020	00.00	-0.005	86.67	0.005	86.67	0.005	456.70	0.001	22.22
10	CRI1	0.139	290.02	0.051	330.02	0.059	290,02	0.054	1323.43	0.011	195.56
11	CRI2	0.271	546.71	0.104	563,38	0.110	483.36	0.099	2113.50	0.023	405.57
12	ICSA	0.078	186.68	0.074	456.70	0.065	333.36	0.071	1730.14	0.001	28.89
13	ICSAB	10,493	21168.76	5.132	22731.96	5.077	19146.58	5.059	88527.21	1.033	18886.80
14	CCV	10.095	19760.14	5.222	22241.16	5,152	18682.85	5.133	86332.12	0.991	17490.68
15	CCB	-0.007	13.33	-0.015	50.00	0.004	86.67	-0.004	336.68	0.000	16.66
16	EX120201-2MB	0.073	170.01	0.000	120.01	0.006	103.34	0.005	536.70	0.017	310.01
17	EXM120201-2RV	0.125	25 3.35	0.062	353.36	0.049	240.02	0.057	1300.10	0.027	444,46
18	EXM120201-2LC	9.934	19299.50	4.886	21276.23	4.945	18332.23	4.950	85127.29	0.982	17349,31
19	1201363-11 10X	8.066	15568.50	0.265	1256.79	0.247	983.41	0.249	4657.19	0.032	582.24
20	1201363-11D 10X	8.013	15521.86	0.256	1200.11	0.253	990.09	0.265	4853.90	0.027	484.46
21	1201363-11L 50X	1.635	3087.12	0.030	243.35	0.066	316.69	0.054	1326.75	0.007	122.22
22	1201363-11MS	17,620	34329.04	5.031	21676,93	5.201	19066.57	5.101	86783.57	1.020	17641.92
23	1201363-11MSD	17.780	33888.29	5.390	21790.45	5.213	17938.34	5.272	84170.55	1.026	17382.69
24	1201358-2 50X	11.420	21822.97	0.300	1380.13	0.295	1140.11	0.301	5447.34	0.162	2805.88
25	CCV	10,090	19593.18	5.064	21923.98	4.989	18382.21	4.981	85162.51	1.042	17829.84
26	CCB	-0.004	20.00	-0.011	63,33	-0.002	66.67	-0.007	286.68	0.000	8.89
27	IP120202-2MB	0.010	43.33	-0.012	60.00	-0.004	60.00	-0.001	393.35	0.013	220.00
28	IM120202-2LCS	9.632	18702.14	5.232	220 50.82	5.149	18475.69	5.173	86118,51	0.990	17392.70
29	1201354-1 10X	125.079	245643.10	24.377	107846.89	10.116	38183.75	13.414	234658.22	34.085	606159.15
30	1201354-1D 10X	117,109	225229.51	22.622	98870.99	9.261	34535.49	12.415	214554.13	33.028	570528.00
31	1201354-1L 50X	25.003	46607.80	4.921	20715.40	2.122	7648.98	2.710	45251.69	6.933	113267.92

T 10 C/T

Analyte Table

		137 Ba	[1]	206 (Pi)[1]	207 (Pb)[1]	208 Pt	[1]	238 U	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
32	1201354-1MS 10X	139.077	263953.08	28.167	119878.76	15.056	54633.08	17.985	302533.01	32.987	561193.02
33	1201354-1MSD	139.061	265425.62	28.710	126315.52	15,360	57610.29	18.269	317689.06	34.261	586766.03
34	ZZZZZZ	101.768	198427.15	25.443	108321.05	7.404	26908.90	11.537	194269.77	130.241	2257039.45
35	ZZZZZZ	120.707	232681.92	50.639	218897.58	7.836	28926.19	17.256	294973.97	357.226	6301541.91
36	ZZZZZZ	66.962	129301.38	16.427	71655,14	6.364	23700.00	8.750	150981.33	37.176	643894.10
37	CCV	10.415	19649.96	5.068	21520.09	5.027	18155.22	5.135	86073.31	1.028	17763.13
38	CCB	0.028	73.33	-0.006	83.34	0.000	73.34	0.000	390.02	0.005	82.22
39	7.7.7. 7.7	170.201	323074.66	31.729	136601.58	8.863	32570.44	13.949	237491.97	214.686	3707706.83
40	ZZZZZZ	166.229	316880.73	29.517	125028.07	8.289	29961.76	12.996	217701.57	237.104	4046617.62
41	ZZZZZZ	136.765	258799.67	26.135	113644.02	7.554	28044.65	11.739	201902.73	129.170	2186821.20
42	ZZZZZZ	77.926	148324.82	21.042	92259.04	9.982	37352.15	12.516	217004.80	247.144	4280149.93
43	ZZZZZZ	81.413	158662.40	22.545	99032_43	7.633	28625.71	11.047	191909.92	137.410	2409434.71
44	ZZZZZZ	78.197	151108.96	14.065	61951.78	10.591	39748.30	11.548	201024,63	23.949	416180.39
45	ZZZZZZ	92.105	179436.52	36.109	161612,68	9.090	34732.21	15.170	268505.70	273.232	4732557.53
46	ZZZZZZ	46.418	90511.35	6.222	27383.23	5.419	20318.23	5. 6 46	98196.24	2.320	40824.76
47	ZZZZZZ	97.836	194158.28	9.361	41610.15	8.889	33660.01	9,067	159226.16	1.086	19115.98
48	1201358-1 50X	1049.658	2001449.35	349.194	1521887.89	387.742	1439910.60	373.274	642701 <u>4.</u> 90	12.222	209367.52
49	CCV	10.087	19319.53	5.099	21419.72	5.189	18545.83	5.078	84233.47	1.033	17655,27
50	CCB	0.014	50 .00	0.008	133.34	0.018	126,68	0.007	493.37	0.003	52.22
51	1201354-12 10X	46,057	88114.46	6.196	26484.78	5.737	20872.39	5.798	97895.67	1.882	32543.98
52	1201354-13 10X	98.627	189965.24	9.324	41409.63	8.629	32644.24	8.944	156924.37	1.089	18461.76
53	1201354-2 100X	10.467	19790.17	2.604	10897.96	0.780	2827.08	1.191	19906.66	13.320	226882.73
54	1201354-3 100X	12.213	22974.61	5.255	22251.01	0.765	2827.10	1.785	30142.59	38.851	648775.76
55	1201354-4 10X	67.959	129043.25	16,550	71481_23	6.562	24177.45	8.855	151248.09	37.940	642993.86
56	1201354-5 100X	17.164	31873.81	3.203	13573.53	0.907	3330,56	1.409	23822.74	22.539	374450,66
57	1201354-6 100X	17.234	32745.77	3.094	13199.84	0.807	2990.45	1.341	22848.85	25.181	425816.68
58	1201354-7 100X	14.108	26573.86	2.637	11585.08	0.775	2950.43	1.182	20740.46	12.824	219367.31
59	1201354-8 100X	7.872	14614.30	2.205	9566.90	1.015	3787.34	1.312	22647.62	26.324	435607.37
60	1201354-9 100X	8.465	15581.94	2.248	9534.87	0.794	2917.12	1.109	18793.67	13.654	228312.81
61	CCV	10.051	18952.54	5.114	21406.59	5.286	18826.12	5.106	84393.60	1.011	17383.80
62	CCB	0.019	56.67	-0.008	73.34	0.003	00,08	0.000	383.36	0.005	86.72

T/0 0I 15

Batch Summary Report

Analyte Table

		137 Ba	[1]	206 (Pt)[1]	207 (Pt)[1]	208 Pt	[1]	238 U	[1]
	Sample Name	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS	Conc. [ppb]	CPS
63	1201354-10 10X	79.318	148840.17	13.786	61108.01	10.726	40520.46	11.435	200302.19	23.685	409609.33
64	1201354-11 100X	9,659	17767.62	3.775	15889,27	0.968	3523.93	1.578	26468.61	28.339	475280.51
65	1201358-1 50X	0.022	70.00	0.050	323,35	0.063	303.35	0.062	1446.77	0.001	20.00
66	CCV	10.248	19339.60	5.100	21713.66	5.002	18118.56	5.072	85243.76	1.023	17681,92
67	ССВ	0.007	36.67	-0.016	43.33	-0.005	53.33	-0.002	346.68	0,002	45.56

ISTD Table

		103 Rh (IS	TD)[1]	115 In (IS	TD)[1]	195 Pt (IS	TD)[1]	209 Bi (IS	TD)[1]
	Sample Name	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%
1	blank	130786.73		118854.41		42151.48		62256.61	
2	blank	131253.58	100.0	118845.62	100.0	41923.63	100.0	61463.16	100.0
3	blank	133223.47	100.0	120833.16	100.0	43181,14	100.0	62956.33	100.0
4	H/1000	145391.42	109.1	129868,40	107.5	46731.67	108.2	66939.94	106.3
5	H/100	152563.83	114.5	137263.05	113.6	48895.27	113.2	72060.46	114,5
6	H/10	147604.29	110.8	133290.56	110.3	46387.21	107.4	69950.51	111.1
7	HIGH	148255.16	111.3	136960.18	113.3	49520.49	114.7	70027.92	111.2
8	ICV	154547.38	116,0	139570.78	115.5	50567.47	117.1	73437.66	116,6
9	ICB	132298.76	99.3	118958.69	98.4	42261.50	97.9	61556.80	97.8
10	CRI1	145015.69	108.9	129820,54	107.4	46334.09	107.3	68367.02	108.6
11	CRI2	146149.32	109.7	132767.62	109.9	46748.09	108.3	69850.43	111.0
12	ICSA	150770.60	113.2	139647.48	115.6	48450.51	112.2	73245.59	116.3
13	ICSAB	153092,89	114.9	139646.33	115.6	49346.31	114.3	71759.37	114.0
14	CCV	147403,86	110.6	135494.29	112.1	47664.57	110.4	69006,46	109.6
15	CCB	132241.91	99.3	120558.44	99.8	42442.26	98.3	62417,08	99.1
16	EX120201-2MB	146427.84	109.9	133587.11	110.6	48286.69	111,8	70774.64	112.4
17	EXM120201-2RV	136413.09	102.4	125063.74	103.5	43722.39	101.3	64224.79	102.0
18	EXM120201-2LC	149086.34	111.9	134456.65	111.3	47714.04	110.5	70553.43	1 <u>12.</u> 1
19	1201363-11 10X	146888.32	110.3	133549.27	110.5	47537.51	110.1	69907.50	111,0
20	1201363-11D 10X	147663.04	110.8	134020.72	110.9	46711.69	108.2	68809.64	109.3
21	1201363-11L 50X	144033.01	108.1	129601.29	107.3	44240.60	102.5	68420.38	108.7
22	1201363-11MS	145715.70	109.4	134975.22	111.7	46708.37	108.2	69769.58	110.8
23	1201363-11MSD	142184.96	106.7	132007.27	109.2	45758.85	106.0	65493.38	104.0
24	1201358-2 50X	145808.29	109.4	132288.79	109.5	46811.84	108.4	68628.14	109.0
25	CCV	146845.75	110.2	134433.49	111.3	46213.19	107.0	70111.56	111.4
26	CCB	133125.40	99.9	119536,19	98.9	42773.01	99.1	62594.33	99.4
27	IP120202-2MB	134087.70	100.6	121492.59	100.5	43468.40	100.7	63585.57	101.0
28	IM120202-2LCS	147631.25	110.8	134432.31	111.3	47463.98	109.9	68272.94	108.4
29	1201354-1 10X	148315.22	111.3	136127.17	112.7	48042.51	111.3	71983.93	114.3
30	1201354-1D 10X	147110.14	110.4	133310.20	110.3	46694.77	108.1	71102.43	112.9
31	1201354-1L 50X	143098,34	107.4	129143.63	106.9	44143,52	102.2	68172.71	108.3

1/8 01 19

ISTD Table

		103 Rh (IS	TD)[1]	115 i n (IS	TD)[1]	195 Pt (IS	TD)[1]	209 Bi (IS	TD)[1]
	Sample Name	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%
32	1201354-1MS 10X	145560.23	109.3	131554.49	108.9	45972.43	106.5	69247.39	110.0
33	1201354-1MSD	144869.69	108.7	132294.69	109.5	46276.58	107.2	71582.62	113.7
34	7 777 7 2	145508.94	109.2	135141.71	111.8	46848.64	108.5	69254.31	110.0
35	ZZZZZZ	146549.06	110.0	133617.62	110.6	47664.39	110,4	70359.16	111.8
36	77777Z	144580.54	108.5	133854.15	110.8	46805.18	108.4	70918.42	112.6
37	CCV	145357.62	109.1	130612.46	108.1	46654.57	108.0	68778.95	109.2
38	CCB	132603.63	99.5	118692.82	98.2	42148.27	97.6	63117,08	100.3
39	ZZZZZZ	144742,92	108.6	131570.44	108.9	46691.82	108.1	70054.67	111.3
40	7777 77	144676.12	108.6	132134.39	109.4	46109.82	106.8	68923.57	109.5
41	ZZZZZZ	142285.29	106.8	131158.49	108.5	45751.73	106.0	70737.08	112.4
42	777777	143630.13	107.8	131922.32	109.2	46814.89	108.4	71333.95	11 3 .3
43	ZZZZZZ	146065.35	109.6	135070.71	111.8	47380.19	109.7	71451.66	113.5
44	ZZZZZZ	144688.27	108.6	133937.37	110.8	46952.59	108.7	71616.30	11 <u>3.</u> 8
45	Z7Z7Z7	147276.15	110.5	135054.23	111.8	46799.04	108.4	72838.25	115.7
46	ZZZZZZ	149682.92	112.4	135130.04	111.8	47527.23	110.1	71350.68	113.3
47	ZZZZZZ	147803.21	110.9	137550.67	113,8	47520.98	110.1	72185.00	114.7
48.	1201358-1 50X	147480.02	110.7	132179.74	109.4	46283.76	107.2	70969,19	112.7
49	CCV	145179.69	109.0	132528.22	109.7	46136.29	106.8	68028.28	108.1
50	CCB	131042_36	98.4	117546.56	97.3	42054.24	97.4	60840.10	96.6
51	1201354-12 10X	144393.13	108.4	132578.54	109.7	46698.37	108.1	69304.14	110.1
52	1201354-13 10X	146342.72	109.8	133497.95	110.5	45765,11	106.0	72117.73	114.6
53	1201354-2 100X	142000.17	106.6	130905.73	108.3	46015.99	106.6	67409.23	107.1
54	1201354-3 100X	143939.22	108,0	130241.38	107.8	45137.01	104.5	68641.28	109.0
55	1201354-4 10X	144402.43	108.4	131595.68	108.9	45812.27	106.1	70209.42	111.5
56	1201354-5 100X	139277.81	104.5	1 286 15. 04	106.4	44882.55	103.9	68430.50	108.7
57	1201354-6 100X	142313.72	106.8	131611.66	108.9	45691.69	105.8	68908.68	109.5
58	1201354-7 100X	144124.16	108.2	130431.68	107.9	46223.43	107.0	70805.35	112.5
59	1201354-8 100X	141994.99	106.6	128532.05	106.4	44752.64	103.6	69782.81	110.8
60	1201354-9 100X	142076.31	106.6	127392.51	105.4	45183.65	104.6	68296.89	108,5
61	CCV	142656.92	107.1	130498.65	108,0	46434.19	107.5	67804.32	107.7
62	CCB	127752.47	95.9	115186.84	95,3	41064.51	95.1	61055.33	97.0

1/9 01 15

ISTD Table

		103 Rh (IS	TD)[1]	115 In (ISTD) [1		[1] 195 Pt(ISTD)[1]		209 Bi(1STD)[1]	
	Sample Name	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%	CPS	Recovery%
63	1201354-10 10X	144193.66	108,2	130052.95	107.6	46734.85	108.2	72043,90	114.4
64	1201354-11 100X	140867.80	105,7	127381.9D	105.4	45313.95	104.9	68021.91	108.0
65	1201358-1 50X	142010.69	106.6	129766.97	107.4	45043.46	104.3	67968.77	108.0
66	ccv	143753,37	107.9	130668.77	108.1	46704.79	108.2	68953.43	109.5
67	CCB	128282.56	96.3	115899.70	95.9	41950.49	97.2	60763.69	96.5

Batch Folder:

C:¥ICPMH¥1¥DATA¥12B03m00.B¥

Analysis File:

12B03m00.betch.xml

DA Date-Time:

2/3/2012 1:04:07 PM

Calibration Title:

Calibration Method:

External Calibration

VIS Interpolation Fit:

Tune Step:

#1 hehe.u

Level	Standard Data File	Sample Name	Acq. DateTime
1	003CALB_12B03j00.D	blank	2/3/2012 10:00:57 AM
2	004CALS_12B03j00.D	H/1000	2/3/2012 10:03:18 AM
3	005CALS_12B03j00.D	H/100	2/3/2012 10:05:37 AM
4	006CALS_12B03j00.D	H/10	2/3/2012 10:07:55 AM
5	007CALS_12B03j00.D	HIGH	2/3/2012 10:10:11 AM
6			

	Rjot	Conc.	Calc Conc.	CPS	Ratio	Det.	RSD
1	Γ	0.000	0.000	496.70	0.0037	Р	26.6
2	<u></u>	0.500	0.519	2763.69	0.0190	ď	3.1
3	Γ.	5.000	4.954	22830.20	0.1496	Р	2.2
4	Γ	50.000	50.260	219037.12	1.4840	P	0.4
5	Γ	500.000	499.974	2183608.20	14.7292	Α	1.1
6	Г	100.000					

y = 0.0295 * x + 0.0037

R = 1,0000

DL = 0,1009

BEC = 0.1265

Weight: None

Min Conc: (None)

	Rict	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1	1	0.000	0.000	5.67	0.0000	P	44.4
2		0.100	0.094	75.67	0.0005	þ	5. 1
3		1.000	0.994	776.02	0.0051	P	1.6
4		10.000	9.646	7231.30	0.0490	P	1.3
5		100.000	100.035	75274.60	0.5077	P	0.7
6		20,000					

y = 0.0051 * x + 4.2523E-005

R = 1.0000

DL = 0.01117

BEC = 0.008379

Weight: None

Min Conc: ⟨None⟩

	Rjct	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1		0.000	0.000	3.20	0.0000	P	12.2
2		0.100	0.089	11.47	0.0001	P	33.6
3	П	1.000	0.982	96.27	0.0006	P	8.1
4	\Box	10.000	9,916	908.16	0.0062	P	3.6
5	Γ.	100.000	100.009	9167.52	0.0618	P	0.6
6	1	20.000					

y = 6.1806E-004 * x + 2.4013E-005

R = 1.0000

DL = 0.01416

BEC = 0.03885

Weight: None

Min Conc: (None)

	Rjct	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1		0.000	0.000	4.44	0.0000	P	43.0
2		0.010	0.013	82.23	0.0006	P	27.9
3		0.100	0.112	722.25	0.0047	P	6.1
4		1.000	1.043	6 463.64	0.0438	Þ	7.3
5		10.000	9.996	62249.47	0.4199	P	1.6
6		2.000					

y = 0.0420 * x + 3.3318E-005

R = 1.0000

DL = 0.001023

BEC = 0.0007932

Weight: None

	Rjct	Conc.	Caic Conc.	CPS	Ratio	Det.	RSD
1	Γ.	0.000	0.000	2.66	0.0000	P	87.0
2	П	0.030	0.039	57.28	0.0 00 4	P	13.3
3		0,300	0.312	462.81	0.0034	P	3.9
4	Γ	3.000	3.116	4461.47	0.0335	P	1.9
5		30.000	29.988	44082.74	0.3219	P	1.6
6		6.000					

y = 0.0107 * x + 2.2152E-005

R = 1.0000

DL = 0.005384

BEC = 0,002064

Weight: None
Min Conc: <None>

	Rict	Conc.	Calc Conc.	CPS	Ratio	Det.	RSD
1	Г	0.000	0.000	26.67	0.0002	Þ	86.6
2	Г	0.100	0.175	356.69	0.0027	Р	13,9
3	П	1.000	1.002	2013.56	0.0147	P	12.6
4		10.000	10.294	19820.33	0.1487	P	2.9
5		100.000	99.971	197514.22	1.4424	P	2.0
6		20.000					

y = 0.0144 * x + 2.1829E-004

R = 1.0000

DL = 0.03931

BEC = 0.01513

Weight: None

	Rjct	Conc.	Cale Conc.	CPS	Ratio	Det.	RSD
1	Г	0.000	0.000	106.67	0.0017	P	23.8
2	Γ.	0.050	0.050	320.02	0.0048	P	16.7
3	Γ.	0.500	0.509	2373.64	0.0329	P	4.3
4	Γ	5.000	5.115	22087.68	0.3158	P	3.7
5	Γ	50.000	49.988	215022.05	3.0713	P	2.2
6	П	10.000					

y = 0.0614 * x + 0.0017

R = 1.0000

DL = 0.01973

BEC = 0.02761

Weight: None

Min Conc: (None)

	Rict	Conc	Cale Conc.	CPS	Ratio	Det	RSD
1		0.000	0.000	73.34	0.0012	P	4 1 .5
2		0.050	0.059	283.35	0.0042	P	14.1
3	17	0.500	0.493	1943.55	0.0270	þ	0.8
4	Г	5.000	5.065	18606.02	0.2662	P	6.3
5	Γ.	50.000	49.994	183205.98	2.6171	P	2.8
6	П	10.000					

y = 0.0523 * x + 0.0012

R = 1.0000

DL = 0.0277

BEC = 0.02224

Weight: None

	Rict	Cane.	Calc Conc.	CPS	Ratio	Det.	RSD
1	77	0.000	0.000	396.69	0.0063	Р	24.4
2	П	0.050	0.059	1380.10	0.0206	Р	10.5
3	Г	0.500	0.495	9108.21	0.1264	Р	5.0
4	П	5.000	5,119	87278.75	1.2482	P	3.1
5	Γ.	50.000	49.988	849420.94	12.1333	P	2.5
6	Γ	10.000					

y = 0.2426 * x + 0.0063

R = 1.0000

DL = 0.01899

BEC = 0.02598

Weight: None

Min Conc: <None>

	Rjct	Cons.	Cale Cone.	CPS	Ratio	Det.	RSD
1]	0.000	0.000	10.00	0.0002	P	58.9
2	1.5	0.010	0.010	188.89	0.0040	P	19.1
3	Γ.	0.100	0.095	1722.35	0.0352	P	2.0
4	П	1.000	1.060	18197.02	0.3925	Р	3.2
5	Γ	10.000	9,994	183189.65	3.6996	P	1.1
6		2.000					

y = 0.3702 * x + 2.3386E-004

R = 1.0000

DL = 0.001116

BEC = 0.0006318

Weight: None

Header Information for Analytical Run: Hg120206-1

Analyst: Sheri Lafferty

4.4	me	20	~~	
Sta	пu	αı	uэ	

Stock A: 10ppm (ST120127-1) Stock B: 10ppm (ST120127-5)

Daily standards made by diluting stock solution 100X

Reagents:

See digestion log

Pipettes Used:

M-57 ---- 0.01mL to 0.1mL M-61 ---- 0.1mL to 1.0mL M-1010---1.0mL to 5.0mL

Method of Dilution:

2XDilution made by diluting 5.0ml of sample to 10ml final volume.
5XDilution made by diluting 2.0ml of sample to 10ml final volume
10XDilution made by diluting 1.0ml of sample to 10ml final volume
20XDilution made by diluting 0.5ml of sample to 10ml final volume
50XDilution made by diluting 0.2ml of sample to 10ml final volume
100XDilution made by diluting 0.1ml of sample to 10ml final volume
500XDilution made by diluting a 5X dilution 100X
1000X-Dilution made by diluting a 10X dilution 100X

Daily Maintenance:

- 1. Check/ Change peristalic pump tubing
- 2. Check gas liquid seperator for deposits, clean if necessary
- 3. Check/ Refill rinse water & stannous chloride reservoirs

Daily Maintenance done by: ___SL___

Monthly Maintenance:

- 1. Check/ Clean sample and reference cells
- 2. Check/ Change Nafion cartridge

Monthly Maintenance done by: St. 1/25/2012

Report Generated By CETAC QuickTrace

Analyst: sheri.lafferty

Worksheet file: C:\Program Files\QuickTrace\Worksheets\HG120206-1.wsz

Date Started: 2/6/2012 11:48:39 AM

Comment:

Results

Sample Name		Type Date/Time	Conc %RSD Flags (ppb)
Calibration Blank Replicates -25.2	-32.3 -32.€	STD 02/07/12 10:30:47 am 3 -32.3	0.00000 11.86
Standard #1 (0.20 ppb) Replicates 3950.1	3958.2 3942.1	STD 02/07/12 10:32:55 am 3911.5	0.20000 0.52
Standard #2 (0.50 ppb) Replicates 9606.6	9657.2 9765.2	STD 02/07/12 10:35:03 am 9910.0	0.50000 1.38
Standard #3 (1.0 ppb) Replicates 20354.9	20559.0 20727.1	STD 02/07/12 10:37:12 am 20835,5	1.00000 1.02
Standard #4 (2.0 ppb) Replicates 40000.3	40246.5 40430.9	STD 02/07/12 10:39:21 am 0 40545.9	2.00000 0.59
Standard #5 (5.0 ppb) Replicates 97772.9	98333.8 98785.5	STD 02/07/12 10:41:31 am 5 99115,3	5.00000 D.59
Standard #6 (10.0 ppb) Replicates 192218.1	193364.0 194288.2	STD 02/07/12 10:43:41 am 2 194965.7	10.00000 0.61

Equation: A = 632.260 + 19377.250C

R2: 0.99987 SEE: 868,5891

Flags:

ICV 02/07/12 10:45:52 am 1.06000 0.36

Replicates 21154.0 21236.6 21293.1 21332.5

% Recovery 106.42

Samp	e Name				Type Date/Time	Conc (ppb)	%RSD Fia	ags
ICB	Replicates	37,9	17.4	7.5	3.1 02/07/12 10:48:04 am	-0.03180	94.08	
CRA	Replicates	3983.5	4027.4	4058.9	UNK 02/07/12 10:50:11 am 4073.1	0.17600	0.98	
HG120	0206-1MB Replicates	33.9	32.7	36.4	UNK 02/07/12 10:52:18 am 33.4	-0.03090	4.71	
HG120	0206-1LCS Replicates	19884.8	20112.0	20208.0	UNK 02/07/12 10:54:26 am 20233.2	1.01000	0.79	
12013	54-1 Replicates	3468.2	3504.3	3527.0	UNK 02/07/12 10:56:34 am 3523.3	0.14800	0.77	
12013	54-2 Replicates	3740.7	3764.7	3778.3	UNK 02/07/12 10:58:42 am 3778.7	0.16200	0.46	
12013	54-3 Replicates	5995.0	6022.0	6034.3	UNK 02/07/12 11:00:50 am 6040.6	0.27800	0.33	
12013	54-4 Replicates	2285.3	2286.8	2288.4	UNK 02/07/12 11:02:59 am 2286.5	0.08540	0.06	
12013	54-5 Replicates	4111.2	4118.0	4108.8	UNK 02/07/12 11:05:08 am 4077.5	0.17900	0.44	
12013	54-6 Replicates	4219.4	4197.1	4216.2	UNK 02/07/12 11:07:17 am 4278.9	0.18600	0.84	
12013	54-7 Replicates	3160.8	3164.9	3206.0	UNK 02/07/12 11:09:27 am 3260.8	0.13200	1.45	
ccv	Replicates	39383.3	39177.0	39007.5	UNK 02/07/12 11:11:37 am 39090.3	1.99000	0.41	

Sampl	e Name				Туре	Date/Time	Conc (ppb)	%RSD	Flags
CCB	Replicates	-166.2	-167.5	-161.0	UNK -157.0	02/07/12 11:14:14 am)	-0.04100	2.98	
12013	54-8 Replicates	4816.6	4822.7	4815.1	UNK 4796.0	02/07/12 11:16:20 am 0	0.21600	0.24	
12013	54-9 Replicates	3224.8	3314.3	3378.9	UNK 3407.	02/07/12 11:18:27 am 1	0.13900	2.43	
12013	54-10 Replicates	3816.2	3818.2	3826.0	U N K 3827.	02/07/12 11:20:34 am 7	0.16500	0.15	
12013	54-11 Replicates	7795.4	7793.9	7734.0	UNK 7631.	02/07/12 11:22:42 am 7	0.36700	0.99	
12013	54-12 Replicates	1217.7	1207.9	1195.7	UNK 1188.	02/07/12 11:24:50 am 5	0.02940	1.07	
12013!	54-13 Replicates	2628.8	2621.5	2607.7	UNK 2600.	02/07/12 11:26:58 am 4	0.10200	0.49	
12013	54-13D Replicates	2997.9	3011.1	3017.0	UNK 3018.	02/07/12 11:29:06 am 6	0.12300	0.31	
12013	54-13L 5X Replicates	573.0	566.1	561.8	UNK 566.	02/07/12 11:31:15 am 8	-0.00337	0.82	
12013	54-13MS Replicates	42460.8	42556.5	42913.7	UNK 43398.	02/07/12 11:33:24 am 5	2.18000	0.99	
12013	54-13MSD Replicates	42872.4	43084.9	43229.0	UNK 43331.	02/07/1 2 1 1:35:33 am 1	2,19000	0.46	
ccv	Replicates	40434.2	40613.8	40732.8	UNK 40795.0	02/07/12 11:37:42 am 6	2.06000	0.39	

Samp	le Name				Туре	Date/Time	Conc (ppb)	%RSD Flags
CCB	Replicates	-4.9	-9.9	-16.7	UNK -16	02/07/12 11:39:52 am .4	-0.03320	47.54
CRA	Replicates	4049.2	4047.0	4041.7	UNK 4057	02/07/12 11:41:59 am .3	0.17600	0.16
ccv	Replicates	40599.8	40831.8	40998.0	UNK 41107	02/07/12 11:44:06 am .4	2.08000	0.54
ССВ	Replicates	-21.4	-18.6	-18.3	UNK -18	02/07/12 11:46:13 am .8	-0.03360	7.32

Miscellaneous

Percent Moisture

Method SOP642 Revision 9

Lab Name: ALS Environmental -- FC

Balance ID: 31

Out of Oven:

Date Extracted: 02/02/2012

Oven ID: 17

Date Analyzed: 02/02/2012

Analyst: Teresa Buettgenbac

In Oven:

2/1/2012

10:35

Validated By: tlb

Validation Date: 02/02/2012

2/2/2012

7:55

Validation Time: 8:28:23 AM

Run ID	Prep Batch ID	QC Batch ID	Lab ID	QC Type	Dish Wt	Wet Wt	Dry Wt	Dry Wt- Dish Wt	Percent Moisture	Percent Solids	RPD
EX120201-1A	EX120201-1	EX120201-1-1	1201354-1	DUP	1.283	10.4	10.44	9.15	12.0	88.0	4
EX120201-1A	EX120201-1	EX120201-1-1	1201354-1	SMP	1.291	10.23	10.24	8.95	12.5	87.5	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-10	SMP	1.296	10.97	9.287	7.99	27.2	72.8	
EX120201-1A	EX120201-1	EX120201-1-2	1201354-11	SMP	1.306	10.13	9.845	8.54	15.7	84.3	
EX120201-1A	EX120201-1	EX120201-1-2	1201354-12	SMP	1.287	10.41	10.53	9.24	11.2	88.8	
EX120201-1A	EX120201-1	EX120201-1-2	1201354-13	DUP	1.288	10.13	10.62	9.33	7.9	92.1	6
EX120201-1A	EX120201-1	EX120201-1-2	1201354-13	SMP	1.294	10.53	11.05	9.75	7.4	92.6	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-2	SMP	1.285	10.31	10.83	9.54	7.4	92.6	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-3	SMP	1.299	10.93	10.84	9.54	12.7	87.3	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-4	SMP	1.298	10.72	10.35	9.05	15.6	84.4	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-5	SMP	1.305	10.35	10.18	8.87	14.2	85.8	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-6	SMP	1.324	10.68	10.48	9.16	14.2	85.8	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-7	SMP	1.293	10.61	10.67	9.38	11.6	88.4	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-8	SMP	1.283	10.17	9.259	7.98	21.6	78.4	
EX120201-1A	EX120201-1	EX120201-1-1	1201354-9	SMP	1.281	10.71	11.01	9.73	9.2	90.8	
EX120201-1A	EX120201-1	EX120201-1-1	EX120201-1	МВ	1.294	1.294	1.294	0.00	100.0	0.0	
EX120201-1A	EX120201-1	EX120201-1-2	EX120201-1	мв	1.294	1.294	1.294	0.00	100.0	0.0	

QC Types

CAR	Carrier reference sample
LCS	Laboratory Control Sample
мв	Method Blank
MSD	Laboratory Matrix Spike Duplicate
RVS	Reporting Level Verification Standar
SYS	Sample Yield Spike

DUP	Laboratory Duplicate
LCSD	Laboratory Control Sample Duplicat
MS	Laboratory Matrix Spike
REP	Sample replicate
SMP	Field Sample

Comments:

DUP = Sample Duplicate

Wet Wt = Sample Wet Wt - Dish Wt

Dry Wt = Sample Dry Wt + Dish Wt Dry Wt - Dish Wt = Sample Dry Wt - Dish Wt

All weight values shown above are expressed in grams.

|Sample Value - Duplicate Value | X 100

(Sample Value + Duplicate Value)/2

% Solids = $\frac{Dry Weight}{Wet Weight}$ X 100

(Wet Weight - Dry Weight) % Moisture = Wet Weight

Page 1 of 1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC LIMS Version: 6.560

METALS DIGESTION WORKSHEET

ALS Laboratory Group

Digestion Date 2.2.13 HCI Lot No. 53303] Digestion Batch エアはんなのユースHNO3 Lot No. 大名ろろろと

Method: 3050 SOP/Rev: 800 R 15 Beaker Lot No. 1107184

Initial Prep 373 Final Prep 803 Avg. Beaker Wt. (g) 21.0 Prep Start Time 6705 Prep End Time 1700

Temp 95 Peroxide Lot No. 642514

Digestate Wt. (g) 105.11

Form 805r20.xls (02/10/11)

Note: Each Page is copied as completed and included with the workorder/run documentation; reviewed subsequently

Sample S	. 011110	06/20.xis (02/10/11)	HOW LOC					and included with the workorderman documentation, reviewed subsequently
10 35/7 1 75/7 5ee 100.6 126.1 NM 775-14 77		and the state of t						
- 10 Lins TK - 22 Targets Target	Grp.						pH	
- 1		1201354-1	MSM	See	100.6	136.1	NA	M5-4
- 1			1	Lims	1	1	1	TK-22 Targets
-3 -3 -4 -7 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		-Lang		1				
-3 -3 -4 -7 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		=tmsD						
-3 -4 -4 -5 -6 -7 -7 -8 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7				 	1-1-		1-1-	
-4 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	 			 	 	┼─┼	1-1-	
-5 -6 -7 -8 -9 -10 -11 -11 -12 -13 -13 -14 -13 -14 -13 -18 -18 -19 -19 -10 -11 -11 -11 -12 -13 -13 -13 -14 -13 -13 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18			 	 	1	┼	├- }-	
-6 -7 -7 -7 -79 -10 -11 -12 -13 -14 -13 -14 -13 -14 -15 -17 -10 -11 -11 -12 -13 -13 -13 -14 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18			 	 	 	-		
-7 -8 -9 -10 -11 -12 -13 120/35F-1					1	<u> </u>		
-5 -9 -10 -10 -11 -12 -13 Ac / 358-1 Ms -ms : x 2CCP TP 20202-2MG Mms -ms : x 2CCP TM120202-2CC DM120202-2CC DM120202-2CC TM2								
-9 -10 -11 -12 -13 -14 -13 -14 -15 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18								
-10 -11 -12 -13 Iac 1355-1								
-11 -12 -13 -13 -13 -13 -13 -13 -14 -13 -15 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18		-9						
-11 -12 -13 -13 -13 -13 -13 -13 -14 -13 -15 -15 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18		-10		1-1-	1 1			,
-12 -13 -13 -13 -13 -13 -14 -13 -15 -17 -18: X 2CCP TP 120201-2mB 178/ns -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3			1	1 1	+	 	1-1-	
TP 20202-2 AMB MMs - ALCS DM120202-24CS QC Lab Sample ID int Vol. (mL/s) (mL/s) Spiking Information QC Amount ST 120103-16 IML MS ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 11116-1 2mL Cath			 	 - -	1	 		:/
TP 20202-2 AMB MMs - ALCS DM120202-24CS QC Lab Sample ID int Vol. (mL/s) (mL/s) Spiking Information QC Amount ST 120103-16 IML MS ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 11116-1 2mL Cath				+	╂╌╌╂╴	 		
TP 20202-2 AMB MMs - ALCS DM120202-24CS QC Lab Sample ID int Vol. (mL/s) (mL/s) Spiking Information QC Amount ST 120103-16 IML MS ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 110916-7 2mL 2 ST 11116-1 2mL Cath		<u> </u>	1	1	1	 	+ + -	900
DM 120202-21(5) P QC Lab Sample ID Int VolW. Final Vol. (mL) (n) Spiking information (mL) (mL) (n) Spiking information (mL) (mL) (n) Spiking information (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL)			-		 	 	 	- m8: X 1041
DM120202-21C5 QC GPP Lab Sample ID Init volve (mL/g) (mL/g) Final ve. (mL/g) GPP Lab Sample ID QC Amount ST120103-16 IML MS ST110902-2 IML C ST110116-7 AML Cab			1001113			11_		
GIP Lab Sample ID Int Volve (mL/g) Finel Vol. (m		+ -alcs						
QC Amount STI20163-16 IML MS STI10902-2 IML C STI10916-7 2ML Z STI1116-1 AML Cat		IM120202-265	4	4	4	*	4	
QC Amount STI20163-16 IML MS STI10902-2 IML C STI10916-7 2ML Z STI1116-1 AML Cat								Init Volv. Finel Vol. Finel W.
STIZO103-16 IML M5 STILO902-2 IML C STILO916-7 AML Z STILL(-) AML Cat		·					Gra	Lab Sample ID (mL/g) (mL) (a)
57/10902-2 1ML C 57/10916-7 2ML Z 57/10916-1 2ML Cat				İ	1		1	QC Amount
57110902-2 1ML C 57110916-7 2ML Z 5711116-1 2ML Cat					1			ST120103-16 IML MS
3772 3710816-7 2ml Z 3710816-7 2ml Z 3711116-1 2ml Cat			_		+	1		
STRING-1			W -		-	 	1	3,1,0,102
STRING-1			1,0	-	1	1	1	55110816-7 2ml 2
			10.3]	-	 	 	STULLET AML Cat
			14.	 	 	 	 	
							ļ	
							1	

MERCURY DIGESTION - SOIL

Method 7471 SOP 812/Rev 15 Date Analyzed 2.7.12 File HG120206-1** Init. Aprep. (analysis)

Digestion Date 2.6.12 Spike Witness N/A Time Start 1050 Time Finish 1120 Bath Temp 95°C

Tube#	Solution ID	Spike * Solution	Spike Volume (mL)	Sample **** Aliquot (g)	Final ** Volume (mL)	Comments
STD 1	0 ppb	-	-	-	100.0	-
2	0.2 ppb	Α	0.2	•	100.0	
3	0.5 ppb	A	0.5	-	100.0	
4	1.0 ppb	A	1,0	-	100.0	
5	2.0 ppb	A	2.0	-	100.0	
6	5.0 ppb .	A	5.0	-	100.0	
7	10.0 ppb	A	10.0	-	100.0	
	ICV	В	1.0	-	100.0	
	ICB	-	-	-	100.0	
	CRA-0.2 ppb	A	0.2		100.0	
	SAMPLES - Pre	p. Batch	(D(s)	HG12020	1-00	(see LIMs Prep. Batch report for sample info. (IDs, Aliquots, etc.)
	CCVs	A	2.0	-	100.0	Z # prepared
	CCBs	-	_	-	100.0	_2_# prepared

^{****} Automated balance entry into LIMS.

See run header for maintenance performed.

Digestion Cups: 110 7216

Rengents: HNO3 K23022 HCI K29026 SnCi-RG120125-7 KMnO4-R6120120-1 Hydroxylamine R6120126-6

Balance(s) Used: 29

Pipet(s) Used: M57 M61M1010

Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently

^{***} See run report for run log information.

^{**} Laboratory DI water used to make-up to final volume.

^{*}A: 100 ppb Hg solution made from 100x dilution (1 mL/100 mL) of ST120127-1 ID

^{*}B: 100 ppb Hg solution made from 100x dilution (1 mL/100 mL) of ST(20/27-5 ID (2nd source)

APPENDIX E

LABORATORY DATA VALIDATION PACKAGES

Review of Eberline Analytical Data Package 12-01163

The subject data package was reviewed and the data appear valid.

The data package contained analytical results for 14 soil samples including one lab duplicate and one field duplicate. The lab blanks and spikes for the data package were within tolerances, and MDA's for all results were acceptable. The data package indicated a minimum 21 day holding time to allow for the ingrowth of radon daughters, and analytical results were reported for daughters of U-238 (Ra-226), Th-232, and K-40.

The data package contained analytical results for 11 samples from the JM site, and 12 background samples from the same property.

Ra-226 concentrations in all 11 site samples were significantly elevated ranging from 13 pCi/g to 317 pCi/g. All but two of the samples had a concentration in excess of 100 pCi/g. The background samples had Ra-226 concentrations of 2.6 and 2.7 pCi/g.

Th-232 ranged from 0.3 to 1.7 pCi/g, and K-40 ranged from 16 to 29 pCi/g. These concentrations are considered to be within the normal range of background concentrations.

DATA QUALITY ASSURANCE REVIEW

SITE NAME Johnny M Uranium Mine ORS

WORK ORDE	R NUMBER	20406.012.035.0694.01	TDD NUMBER	TO-0035-11-11-01
PROJECT NUM	MBER		SDG NUMBER	1201354
20406.012.035.0	694.01, SDG N	N®) has completed a QA o. 1201354, Johnny M Un oratory Group. Sample n	ranium Mine ORS.	Thirteen samples were
		SAMPLE NUM	IBERS	
JM-54-31-12102	8	JM-55-31-121028	JM-65-31-1	21028
JM-66-31-12102	8	JM-70-31-121028	JM-70-32-1	21028
JM-73-31-12102	8	JM-77-31-121028	JM-82-31-1	21028
JM-84-31-12102	8	JM-88-31-121028	JMBKGD-1	NE-31-120128
JMBKGD-NW-3	31-120128	-		
			<u> </u>	
following USEP Review (October Inorganic Data I Guidelines for C Control Guidanc	A Contract Labo , 1999), USEPA Review (July, 20 hlorinated Diox e for Removal A	to determine if Quality Coratory Program National Contract Laboratory Pro (02), USEPA Contract Lain/Furan Data Review (Activities (April, 1990), and April 13, 1989). Specific	l Functional Guideli ogram National Func boratory Program N august, 2002), Qualit ad the Regional Proto	nes for Organic Data ctional Guidelines for ational Functional y Assurance/Quality ocol for Holding Times,
REVIEWER	Gloria J. Swit	alski	DATE	May 5, 2012

Data Qualifiers

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifier may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, Q, and D.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

The L and H qualifier will only be employed when a single qualification is required. When more than one quality control parameter affects the analytical result and a conflict results in assigning a bias, the result will be flagged JK.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of analyte for which there is presumptive evidence to make a "tentative identification."
- D The concentration reported was determined in the re-analysis of the sample at a secondary dilution.

METALS DATA EVALUATION

1. Analytical Method:

Samples were prepared and analyzed for ICP metals using the procedures specified in **SW-846 Methods 6010B/6020A**. Samples were prepared and analyzed for mercury using the procedures specified in **SW-846 Method 7471A**.

2. Holding Times:

All samples met established holding time criteria of 180 days for ICP metals and 28 days for mercury. Samples were received within $4^{\circ}C\pm2^{\circ}C$. No qualifications are placed on the data.

3. Initial Calibration:

ICP initial calibration included a blank and one or more standards and initial calibration verification results fell within the control limits of 90 to 110 percent of the true values. Mercury initial calibration included a blank and six standards and the correlation coefficient was greater than 0.995. No qualifications are placed on the data.

4. Continuing Calibration:

All ICP results fell within the control limits of 90% to 110% of the true values. All mercury results fell within the control limits of 80% to 120% of the true values. No qualifications are placed on the data.

5. CRDL Standard:

All results for the CRDL standard were within the control limits of 70% to 130% of the true values or the sample results were greater than the CRDL action level. No qualifications are placed on the data.

6. Blanks:

A. Laboratory Blanks:

No target analytes were detected in the calibration and preparation blanks associated with this analytical package or the sample results were greater than the blank action concentration. No qualifications are placed on the data.

B. Field Blanks:

No field blank samples were submitted with this analytical package. No qualifications are placed on the data.

7. ICP Interference Check:

All results for the Interference Check Sample were within the control limits of 80% to 120% of the true values. No qualifications are placed on the data.

8. Laboratory Control Sample (LCS):

The recoveries for the LCS were within the established control limits. No qualifications are placed on the data.

9. Duplicate Sample Analysis:

A. Laboratory Duplicate Analysis:

Sample JM-54-31-120128 underwent duplicate analysis for ICP metals for the solid matrix. Sample JMBKGD-NW-31-120128 underwent duplicate analysis for mercury for the solid matrix. QC criteria are that the relative percent difference (RPD) values for the duplicate sample analysis be less than 35% for solid samples for concentrations greater than five times the reporting limit (RL). For sample concentrations less than five times the RL, the QC criteria are within \pm two times the RL for the solid matrix. QC criteria were not met for the following analytes:

ANALYTE	MATRIX	RPD	AFFECTED SAMPLES	QUALIFIER FLAG
Barium	Solid	74	All	JK
Sodium	Solid	138	All	JK/UJK
Zinc	Solid	71	All	JK

B. Field Duplicate Analysis:

The following sample pair was submitted as field duplicates for the solid matrix: JM-70-31-120128/JM-70-32-120128. QC criteria are that the RPD values for the field duplicate sample analysis be less than 50% for solid samples for concentrations greater than five times the RL. For sample concentrations less than five times the RL, the QC criteria is that the absolute difference between the samples is less than 3.5 times the RL for the solid matrix. QC criteria were not met for the following analyte:

FIELD DUPLICATE SAMPLE PAIR	ANALYTE	MATRIX	RPD	AFFECTED SAMPLES	QUALIFIER FLAG
JM-70-31-120128/ JM-70-32-120128	Arsenic	Solid	79	All	JK

10. Spiked Sample Analysis:

Sample JM-54-31-120128 underwent spike and spike duplicate analysis for ICP metals for the solid matrix. Sample JMBKGD-NW-31-120128 underwent spike and spike duplicate analysis for mercury for the solid matrix. The spike recoveries for the following analytes were outside of the 75%-125% QC recovery limits for analytes whose sample concentration did not exceed the spike concentration by a factor of 4 times or more:

ANALYTE	MATRIX	% RECOVERY	AFFECTED SAMPLES	QUALIFIER FLAG
Antimony	Solid	51/52	All	UJL
Barium	Solid	20/24	All	JL*

ANALYTE	MATRIX	% RECOVERY	AFFECTED SAMPLES	QUALIFIER FLAG
Calcium	Solid	65/OK	All	ЛL
Vanadium	Solid	142/154	All	ЈН
Zinc	Solid	-70/-71	All	JL*

^{*}These results were ultimately qualified JK due to high laboratory duplicate RPD as noted above and high serial dilution %D as noted below.

Post digestion spike recoveries were acceptable indicating a possible digestion problem.

11. ICP Serial Dilution:

Sample JM-54-31-120128 underwent serial dilution. The percent difference (%D) values for ICP serial dilution analysis were within the QC limits of 10% for all analytes with concentrations greater than 50 times their method detection limit (MDL) with the following exceptions:

ANALYTE	MATRIX	%D	AFFECTED SAMPLES	QUALIFIER FLAG
Barium	Solid	15	All	JK
Potassium	Solid	36	All	JK
Zinc	Solid	13	All	JK

12. Sample Quantitation and Reporting Limits:

Concentrations of all reported analytes were correctly calculated.

Some analytes in some samples were analyzed at a dilution to keep the concentration within the linear range of the instrument. Reporting limits in these samples are elevated as a result of the dilutions performed.

13. Laboratory Contact

The laboratory was contacted May 3, 2012 regarding a discrepancy between a collection time listed on the chain-of-custody and that used by the laboratory. An acceptable response was received on May 3, 2012.

14. Overall Assessment:

The barium, sodium, and zinc results in all samples were estimated due to high laboratory duplicate RPD.

The arsenic result in all samples was estimated due to high field duplicate RPD.

The antimony, barium, calcium, vanadium, and zinc results in all samples were estimated due to poor MS/MSD recoveries.

The barium, potassium, and zinc results in all samples were estimated due to high serial dilution %D.

The analytical data is acceptable for use with the qualifications listed above.

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JM-54-31-120128

Lab ID: 1201354-1

Sample Matrix: SOIL

% Moisture: 12.5

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot:

1.027 G Final Volume: 100ML

Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifie
7429-90-5	ALUMINUM	1	6600	22		
7440-36-0	ANTIMONY	1	2.2	2.2	10 115L	N
7440-38-2	ARSENIC	1	6.5	1.1	JY-	
7440-39-3	BARIUM	1	330	11	TK	*EN
7440-41-7	BERYLLIUM	1	0.56	0.56	U	
7440-43-9	CADMIUM	1	0.56	0.56	U .	· · · · · · · · · · · · · · · · · · ·
7440-70-2	CALCIUM	1	9600	110	JL.	Ν.
7440-47-3	CHROMIUM	1	5	1.1		
7440-48-4	COBALT	1	3.9	1.1		
7440-50-8	COPPER	1	7.4	1.1		
7439-89-6	IRON	1	13000	11		· · ·
7439-92-1	LEAD	1	16	0.33		
7439-95-4	MAGNESIUM	1	2500	110		
7439-96-5	MANGANESE	1	180	1.1		
7439-98-7	MOLYBDENUM	1	3.9	1.1		
7440-02-0	NICKEL	1	4.4	2.2		-
7440-09-7	POTASSIUM	1	1400	110	JK.	*E
7782-49-2	SELENIUM	1	11	0.56		*
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	810	110	TK.	•
7440-28-0	THALLIUM	1	2.1	1.1		
7440-31-5	TIN	1	5.6	5,6	U	
7440-62-2	VANADIUM	- 1	. 90	1.1	TH	N
7440-66-6	ZINC	1	120	2.2		*EN

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 1 of 26

8 5/4/12

LIMS Version: 6.560

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-55-31-120128

Lab ID: 1201354-2

Sample Matrix: SOIL

% Moisture: 7.4

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot:

1.041 G 100 ML

Final Volume: Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifie
7429-90-5	ALUMINUM	1	4300	21		
7440-36-0	ANTIMONY	1	2.1	2.1	4 WIL	
7440-38-2	ARSENIC	. 1	9.7	1.	JK	
7440-39-3	BARIUM	1	93	. 10	71	
7440-41-7	BERYLLIUM	. 1	0.52	0.52	U	
7440-43-9	CADMIUM	1	0.52	0.52	U	
7440-70-2	CALCIUM	1	11000	100	はし	
7440-47-3	CHROMIUM	. 1	2.9	1		
7440-48-4	COBALT	1	2.7	1		
7440-50-8	COPPER	1	. 5	1		
7439-89-6	IRON	, 1	9700	.10		
7439-92-1	LEAD	1	12	0.31		
7439-95-4	MAGNESIUM	1	1800	100		
7439-96-5	MANGANESE	1	200	1		
7439-98-7	MOLYBDENUM	1	7.3	1		
7440-02-0	NICKEL	1	2.6	2.1		
7440-09-7	POTASSIUM	1	620	100	JK.	· · · · · · · · · · · · · · · · · · ·
7782-49-2	SELENIUM	1	25	0.52		
7440-22-4	SILVER	1	1	1.	U	
7440-23-5	SODIUM	1	100	100	+ UK	
7440-28-0	THALLIUM	1	1.6	1	V X 1 4	
7440-31-5	TIN	1	5.2	5.2	U.	
7440-62-2	VANADIUM	1	99	1	HTS	
7440-66-6	ZINC	1	18	2.1	3K	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 3 of 26

LIMS Version: 6.560

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-65-31-120128

Lab ID: 1201354-3

Sample Matrix: SOIL

% Moisture: 12.7

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1

Cleanup: NONE Basis: Dry Weight Sample Aliquot:

1.001 G 100 ML

Final Volume: Result Units: MG/KG

Clean DF:

Date Analyzed: 02-Feb-12 File Name: 120202A.

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifler	EPA Qualifier
7429-90-5	ALUMINUM	1	4300	23		
7440-36-0	ANTIMONY	1	2.3	2.3	O VOL	
7440-38-2	ARSENIC	1	12	1.1	JL	
7440-39-3	BARIUM	1	120	11	JL	
7440-41-7	BERYLLIUM	1	0.57	0.57	U	
7440-43-9	CADMIUM	1	0.57	0.57	U	
7440-70-2	CALCIUM	1	11000	110	コレ	
7440-47-3	CHROMIUM	1	2.8	1.1		
7440-48-4	COBALT	1	2.3	1.1		
7440-50-8	COPPER	1	6.9	1.1		
7439-89-6	IRON	1	7500	11		
7439-92-1	LEAD	1	20	0.34		
7439-95-4	MAGNESIUM	. 1	1800	110		
7439-96-5	MANGANESE	1	160	1.1		
7439-98-7	MOLYBDENUM	1	13	1.1		
7440-02-0	NICKEL.	. 1	2.3	2.3	Ü	
7440-09-7	POTASSIUM	-1	640	110	4	
7782-49-2	SELENIUM	1	59	0.57		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	+ WK	
7440-28-0	THALLIUM	- 1	1.1	1.1	U	
7440-31-5	TIN	1	5.7	5.7	U	
7440-62-2	VANADIUM	1	190	1.1	TH	
7440-66-6	ZINC	1	14	2.3	JK	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

LIMS Version: 6.560

Page 5 of 26

\$ 514/12

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-66-31-120128

Lab ID: 1201354-4

Sample Matrix: SOIL

% Molsture: 15,6

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight

Sample Aliquot:

1.041 G

Final Volume: 100 ML Resuit Units: MG/KG

Clean DF:

File Name: 120202A.

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	3300	23		
7440-36-0	ANTIMONY	1	2.3	2.3	4 101	
7440-38-2	ARSENIC	. 1	4.3	1.1	JK	
7440-39-3	BARIUM	1	66	11	71	
7440-41-7	BERYLLIUM	1	0.57	0.57	U	
7440-43-9	CADMIUM	1	0.57	0.57	U	
7440-70-2	CALCIUM	1	13000	110	JL	
7440-47-3	CHROMIUM	1	2.5	1,1		
7440-48-4	COBALT	1	3.7	1.1		
7440-50-8	COPPER	1	3.2	1.1		
7439-89-6	IRON	1	6600	.11		
7439-92-1	LEAD	1	10	0.34		
7439-95-4	MAGNESIUM	1	1300	110		
7439-96-5	MANGANESE	1	170	1.1		
7439-98-7	MOLYBDENUM	1	3.7	1.1		
7440-02-0	NICKEL	1	3,1	2.3		
7440-09-7	POTASSIUM	1	560	110	JY	
7782-49-2	SELENIUM	. 1	15	0.57		
7440-22-4	SILVER	. 1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	to WK	
7440-28-0	THALLIUM	1:	1.1	1.1	U	
7440-31-5	TIN	1	5.7	5.7	U	
7440-62-2	VANADIUM	1	75	1.1	HE	
7440-66-6	ZINC	1	16	2.3	1X-	

Data Package ID: #1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental - FC

Page 7 of 26

& Ship

LIMS Version: 6.560

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-70-31-120128

Lab ID: 1201354-5

Sample Matrix: SOIL

% Moisture: 14.2

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12 Prep Method: SW 3050 Rev B Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.034 G

Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1,	4100	23	1	
7440-36-0	ANTIMONY	1	2.3	2.3	+ VIL	
7440-38-2	ARSENIC	1	14	1.1	JL	
7440-39-3	BARIUM	1	170	11	JL	
7440-41-7	BERYLLIUM	1	0.56	0.56	U	
7440-43-9	CADMIUM	.1	0.56	0.56	U	
7440-70-2	CALCIUM	1	9700	110	JL	
7440-47-3	CHROMIUM	1	3.6	1.1		
7440-48-4	COBALT	1	2.9	1.1		
7440-50-8	COPPER	1	5.3	1.1		
7439-89-6	IRON	1	11000	11		
7439-92-1	LEAD	1	16	0.34		
7439-95-4	MAGNESIUM	1	1700	110		
7439-96-5	MANGANESE	1	150	1.1		
7439-98-7	MOLYBDENUM	1	11	1.1		· · · · · · · · · · · · · · · · · · ·
7440-02-0	NICKEL	1	3.1	2.3		
7440-09-7	POTASSIUM	1	670	110	- 1K	
7782-49-2	SELENIUM	1	. 43	0.56		······································
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	4 WK	
7440-28-0	THALLIUM	1	1.1	1.1	U .	
7440-31-5	TIN	1	5.6	5.6	U	····
7440-62-2	VANADIUM	1	130	. 1.1	74	
7440-66-6	ZINC	1	18	2.3	JK.	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC LIMS Version: 6.560

Page 9 of 26

1 5/4/N

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-70-32-120128

Lab ID: 1201354-6

Sample Matrix: SOIL

% Moisture: 14.2

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot: 1.004 G

Final Volume: 1.004 G
Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	11	4000	23		
7440-36-0	ANTIMONY	1	2.3	2.3	4 VIL	
7440-38-2	ARSENIC	1	6.1	1,2	JK.	
7440-39-3	BARIUM	1	170	12	IK	
7440-41-7	BERYLLIUM	1	0.58	0.58	U	
7440-43-9	CADMIUM	1	0.58	0,58	U	
7440-70-2	CALCIUM	1	14000	120	IJL	
7440-47-3	CHROMIUM	1	3	1.2		" <u></u>
7440-48-4	COBALT	1	3.1	1.2		
7440-50-8	COPPER	. 1	4.6	1.2		
7439-89-6	IRON	1	8000	12		
7439-92-1	LEAD	1	15	0.35		
7439-95-4	MAGNESIUM	1	1700	120		
7439-96-5	MANGANESE	1	160	1.2		
7439-98-7	MOLYBDENUM	1	9.9	1.2		
7440-02-0	NICKEL:	1	3.2	2.3		-
7440-09-7	POTASSIUM	1	650	120	JK	
7782-49-2	SELENIUM	1	45	0.58	3.5	
7440-22-4	SILVER	1	1.2	1.2	U	
7440-23-5	SODIUM	1	130	120	JK	
7440-28-0	THALLIUM	1	1.2	1.2	U	
7440-31-5	TIN	1	5.8	5.8	U	
7440-62-2	VANADIUM	1	120	1.2	HL	
7440-66-6	ZINC	1	18	2.3	JK	

Data Package ID: #1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 11 of 26

LIMS Version: 6.560

& spales

17 of 195

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field iD: JM-73-31-120128

Lab ID: 1201354-7

Sample Matrix: SOIL

% Moisture: 11.6

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12
Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchiD: IP120202-2-1 Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Welght File Name: 120202A. Sample Allquot:

1.031 G 100 ML

Final Volume: 100 N Result Units: MG/KG

Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4400	22		
7440-36-0	ANTIMONY	1	2.2	2.2	o val	
7440-38-2	ARSENIC	1	8.5	1.1	JK	
7440-39-3	BARIUM	1	130	11	JK	
7440-41-7	BERYLLIUM	1	0.55	0.55		
7440-43-9	CADMIUM	1	0.55	0.55	U	
7440-70-2	CALCIUM	1	33000	110	JL	
7440-47-3	CHROMIUM	1	3.7	1.1		
7440-48-4	COBALT	1	3.3	1.1		
7440-50-8	COPPER	1	5.3	1.1		
7439-89-6	IRON	1	9100	11		
7439-92-1	LEAD	1	14	0.33		
7439-95-4	MAGNESIUM	1	1900	110		
7439-96-5	MANGANESE	1	200	1:1		
7439-98-7	MOLYBDENUM	1	4.7	1.1		
7440-02-0	NICKEL	1	4.8	22		
7440-09-7	POTASSIUM	1	820	110	JK	
7782-49-2	SELENIUM	1	33	0.55		
7440-22-4	SILVER	1	1.1	1.1	v .	
7440-23-5	SODIUM	1	110	110	4 MIX	
7440-28-0	THALLIUM	1	1.3	1.1		
7440-31-5	TIN	1	5.5	5.5	U	
7440-62-2	VANADIUM	1	93	1.1	TH	
7440-66-6	ZINC	1	22	2.2	2K	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 13 of 26

LIMS Version: 6.560

& SMIZ

18 of 195

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-77-31-120128

Lab ID: 1201354-8

Sample Matrix: SOIL

% Moisture: 21.6

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot:

1.012 G

Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifler
7429-90-5	ALUMINUM	1	6500	25		
7440-36-0	ANTIMONY	1	2.5	2.5	# VJL	
7440-38-2	ARSENIC	1	8.7	1.3	JY	
7440-39-3	BARIUM	. 1	91	13	JE	
7440-41-7	BERYLLIUM	1	0.63	0.63	U	
7440-43-9	CADMIUM	1	0.63	0.63	U.	
7440-70-2	CALCIUM	1	10000	130	カレ	
7440-47-3	CHROMIUM	1	5.9	1.3		·····
7440-48-4	COBALT	1	5.9	1.3		
7440-50-8	COPPER	1	9.9	1.3		·
7439-89-6	IRON	1	14000	13		
7439-92-1	LEAD	1	17	0.38		
7439-95-4	MAGNESIUM	1	2500	130		*************************************
7439-96-5	MANGANESE	1	200	1.3		
7439-98-7	MOLYBDENUM	1	13	1.3		
7440-02-0	NICKEL	1	7	2.5		
7440-09-7	POTASSIUM	1	1400	130	4K	
7782-49-2	SELENIUM	1	18	0.63	3.1	
7440-22-4	SILVER	.1	1.3	1.3	υ	· · · · · · · · · · · · · · · · · · ·
7440-23-5	SODIUM	1	. 130	130	_Y_	
7440-28-0	THALLIUM	1	2.1	1.3		
7440-31-5	TIN	1	6.3	6.3	U	
7440-62-2	VANADIUM	1	68	1.3	TH	
7440-66-6	ZINC	1	36	2.5	JY	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

LIMS Version: 6,560

Page 15 of 26

& spulm

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-82-31-120128

Lab ID: 1201354-9

Sample Matrix: SOIL

% Molsture: 9.2

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1 Run ID: IT120202-2A1

> Cleanup: NONE Basis: Dry Weight

File Name: 120202A.

Sample Allquot:

1.031 G

Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	4700	21		
7440-36-0	ANTIMONY	1	2.1	2.1	o val	
7440-38-2	ARSENIC	1	10	1.1	JL	
7440-39-3	BARIUM	1	78	11	JK	
7440-41-7	BERYLLIUM	. 1	0.53	0.53	ü	
7440-43-9	CADMIUM	1	0.53	0.53	U	
7440-70-2	CALCIUM	1	16000	110	ゴレ	
7440-47-3	CHROMIUM	1,	3.8	1.1		
7440-48-4	COBALT	1	3.2	1.1		
7440-50-8	COPPER	1	4.9	1.1		
7439-89-6	IRON	1	12000	11		
7439-92-1	LEAD	. 1	13	0.32		
7439-95-4	MAGNESIUM	1	2100	110		
7439-96-5	MANGANESE	1	200	1.1		
7439-98-7	MOLYBDENUM	1	7.6	1.1		
7440-02-0	NICKEL	1	4	2.1		
7440-09-7	POTASSIUM	1	820	110	7	
7782-49-2	SELENIUM	1	. 26	0.53		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110-	+ UV	
7440-28-0	THALLIUM	1	1.1	1.1	U	
7440-31-5	TIN	1	5.3	5.3	U	
7440-62-2	VANADIUM	. 1	160	1.1	THE	
7440-66-6	ZINC	1	24	2.1	JK	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

LIMS Version: 6.560

Page 17 of 26

& 5/4/n

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Field ID: JM-84-31-120128

Lab ID: 1201354-10

Sample Matrix: SOIL

% Moisture: 27.2

Date Collected: 28-Jan-12 Date Extracted: 02-Feb-12

Date Analyzed: 02-Feb-12

Prep Method: SW 3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot:

1.022 G Final Volume: 100 ML

Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	9000	27		
7440-36-0	ANTIMONY	1	2.7	2.7	& VJL	
7440-38-2	ARSENIC	1	6.5	1.3	JV	i
7440-39-3	BARIUM	1	100	13	JK	1.
7440-41-7	BERYLLIUM	1	0.77	0.67		
7440-43-9	CADMIUM	1	0.67	0.67	U	
7440-70-2	CALCIUM	1	18000	130	4 L	
7440-47-3	CHROMIUM	1	8.3	1.3		
7440-48-4	COBALT	1	7.9	1.3		
7440-50-8	COPPER	1	15	1.3		
7439-89-6	IRON	1	19000	13		
7439-92-1	LEAD	1	17	0.4		
7439-95-4	MAGNESIUM		3000	130		
7439-96-5	MANGANESE	1	270	1.3		
7439-98-7	MOLYBDENUM	1	1.3	1.3	U	
7440-02-0	NICKEL	1	11	2.7		
7440-09-7	POTASSIUM	1	2000	130	YE	
7782-49-2	SELENIUM	1	1.7	0.67		
7440-22-4	SILVER	1	1.3	1.3	U	
7440-23-5	SODIUM	1	130	130	OWK	
7440-28-0	THALLIUM	1	2.2	1.3		
7440-31 - 5	TIN	1	6.7	6.7	U	
7440-62-2	VANADIUM	1	29	1.3	42	
7440-66-6	ZINC.	1	50	2.7	JK	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC LIMS Version: 6.560

Page 19 of 26

& 84/7V

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JM-88-31-120128

Lab ID: 1201354-11

Sample Matrix: SOIL

% Moisture: 15.7

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1

Cleanup: NONE

Basis: Dry Weight File Name: 120202A.

Sample Aliquot:

1.007 G

Final Volume: 100 ML Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifie
7429-90-5	ALUMINUM	1	5600	24		
7440-36-0	ANTIMONY	1	2.4	2.4	y vith	
7440-38-2	ARSENIC	1	. 20	1.2	JK	
7440-39-3	BARIUM	1	87	12	JK	
7440-41-7	BERYLLIUM	1	0.59	0.59	U	
7440-43-9	CADMIUM	1	0.59	0.59	U	
7440-70-2	CALCIUM	1	8500	120	ゴレ	
7440-47-3	CHROMIUM	1	4	1.2		
7440-48-4	COBALT	1	4,5	1.2		
7440-50-8	COPPER	1	8.6	1.2		
7439-89-6	IRON	1	13000	12		
7439-92-1	LEAD	1	. 19	0.35		
7439-95-4	MAGNESIUM	1	2300	120		
7439-96-5	MANGANESE	1	230	1.2		
7439-98-7	MOLYBDENUM	1	22	1.2		
7440-02-0	NICKEL	1	5.1	2.4		
7440-09-7	POTASSIUM	1	1100	120	JY	
7782-49-2	SELENIUM	1	76	0.59		
7440-22-4	SILVER	1	1.2	1.2	U	
7440-23-5	SODIUM	. 1	120	120	4 WL	
7440-28-0	THALLIUM	.1	2.9	1,2		
7440-31-5	TIN	1	5.9	5.9	U	
7440-62-2	VANADIUM	1	160	1.2	7.11	
7440-66-6	ZINC	1	31	2.4	JK	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 21 of 26

LIMS Version: 6.560

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS T00035111101-120130-0002

Fleid ID: JMBKGD-NE-31-120128

Lab ID: 1201354-12

Sample Matrix: SOIL

% Moisture: 11.2

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basis: Dry Weight

File Name: 120202A.

Sample Aliquot:

1.033 G Final Volume: 100 ML

Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	3000	22		
7440-36-0	ANTIMONY	1	2.2	2.2	O IIIL	
7440-38-2	ARSENIC	1	1.8	1.1	JK	
7440-39-3	BARIUM	1	51	11	JK	
7440-41-7	BERYLLIUM	1	0.54	0.54	U	
7440-43-9	CADMIUM	1	0.54	0.54	U	
7440-70-2	CALCIUM	1	1100	110	ひし	· · · · · · · · · · · · · · · · · · ·
7440-47-3	CHROMIUM	1	3.5	1.1	,	
7440-48-4	COBALT	1	2.2	1.1		
7440-50-8	COPPER	1	3.5	1.1		"
7439-89 - 6	IRON	1	7800	11		· · · · · · · · · · · · · · · · · · ·
7439-92-1	LEAD	1	6.5	0,33		
7439-95-4	MAGNESIUM	1	970	110		
7439-96-5	MANGANESE	1	130	1,1		
7439-98-7	MOLYBDENUM	1	1.1	1,1	U	
7440-02-0	NICKEL	1	4	2.2		
7440-09-7	POTASSIUM	1	770	110	JK	
7782-49-2	SELENIUM	1	0.81	0.54		
7440-22-4	SILVER	1	1.1	1.1	U	
7440-23-5	SODIUM	1	110	110	to VIK	
7440-28-0	THALLIUM	1	1.7	1.1	V-3 :	
7440-31-5	TIN	1	5.4	5.4	U	
7440-62-2	VANADIUM	1	8.9	1.1	HZ	
7440-66-6	ZINC	1	19	2.2	JL	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 23 of 26

LIMS Version: 6.560

8 5/4/12

Method SW6010 Revision B Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1201354

Client Name: Weston Solutions, Inc.

ClientProject ID: Johnny M ORS TO0035111101-120130-0002

Field ID: JMBKGD-NW-31-120128

Lab ID: 1201354-13

Sample Matrix: SOIL

% Moisture: 7.4

Date Collected: 28-Jan-12

Date Extracted: 02-Feb-12 Date Analyzed: 02-Feb-12

Prep Method: SW3050 Rev B

Prep Batch: IP120202-2

QCBatchID: IP120202-2-1

Run ID: IT120202-2A1 Cleanup: NONE

Basts: Dry Weight File Name: 120202A.

Sample Aliquot:

1.014 G 100 ML

Final Volume: Result Units: MG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
7429-90-5	ALUMINUM	1	6100	21		
7440-36-0	ANTIMONY	1	2.1	2.1	ではし	
7440-38-2	ARSENIC	. 1	7	1.1	コド	
7440-39-3	BARIUM	1	100	· 11	JV	
7440-41-7	BERYLLIUM	1	0.64	0.53		
7440-43-9	CADMIUM	1	0.53	0.53	IJ	
7440-70-2	CALCIUM	1	4600	110	オレ	
7440-47-3	CHROMIUM	1	7.4	1.1		
7440-48-4	COBALT	1	7	1.1		
7440-50-8	COPPER	1.	9.9	1.1		
7439-89-6	IRON	. 5	27000	53		
7439-92-1	LEAD	5	11	1.6		
7439-95-4	MAGNESIUM	1	2800	110		•
7439-96-5	MANGANESE	1	270	1.1		
7439-98-7	MOLYBDENUM	1	1.1	1.1	U ·	
7440-02-0	NICKEL	1	7.7	2.1		
7440-09-7	POTASSIUM	1	2300	110	1K	
7782-49-2	SELENIUM	5	2.7	2.7	U	
7440-22-4	SILVER	1	1.1	1.1	U .	
7440-23-5	SODIUM	1	130	110	JK	
7440-28-0	THALLIUM	5	5.3	5.3	U	
7440-31-5	TIN	1	5.3	5.3	U	
7440-62-2	VANADIUM	5	19	5.3	THE	
7440-66-6	ZINC	1	40	2.1	JK.	

Data Package ID: it1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

Page 25 of 26

LIMS Version: 6.560

\$ 5/4/12

Total URANIUM

Method SW6020 Revision A

Sample Results

Lab Name: ALS Environmental -- FC Client Name: Weston Solutions, Inc.

Client Project ID: Johnny M ORS T00035111101-120130-0002

Work Order Number: 1201354
Reporting Basis: Dry Weight

Prep Method: SW3050B

Final Volume: 100 ml

Matrix: SOIL
Result Units: UG/KG

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Reporting Limit	Flag	Sample Allquot
JM-54-31-120128	1201354-1	01/28/2012	02/02/2012	.02/03/2012	12.5	10	38000	11		- 1.027
JM-55-31-120128	1201354-2	01/28/2012	02/02/2012	02/03/2012	7.4	100	140000	100		1.041
JM-65-31-120128	1201354-3	01/28/2012	02/02/2012	02/03/2012	12.7	100	440000	110		1.001
JM-66-31-120128	1201354-4	01/28/2012	02/02/2012	02/03/2012	15.6	10	43000	11		1.041
JM-70-31-120128	1201354-5	01/28/2012	02/02/2012	02/03/2012	14.2	100	250000	110		1,034
JM-70-32-120128	1201354-6	01/28/2012	02/02/2012	02/03/2012	14.2	100	290000	120		1.004
JM-73-31-120128	1201354-7	01/28/2012	02/02/2012	02/03/2012	11.6	100	140000	110		1.031
JM-77-31-120128	1201354-8	01/28/2012	02/02/2012	02/03/2012	21.6	100 -	330000	130	•	1.012
JM-82-31-120128	1201354-9	01/28/2012	02/02/2012	02/03/2012	9.2	100	150000	110		1.031 (
JM-84-31-120128	1201354-10	01/28/2012	02/02/2012	02/03/2012	27.2	10	32000	13		1.022 g
JM-88-31-120128	1201354-11	01/28/2012	02/02/2012	02/03/2012	15.7	100	330000	120		1.007 g
JMBKGD-NE-31-120128	1201354-12	01/28/2012	02/02/2012	02/03/2012	11.2	10	2100	11		1.033 (
JMBKGD-NW-31-120128	1201354-13	01/28/2012	02/02/2012	02/03/2012	7.4	10	1200	. 11		1.014

Comments:

1. ND or U = Not Detected at or above the client requested detection limit.

Data Package ID: im1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

LIMS Version: 6.560

Page 1 of 1

& July

25 of 195

Total MERCURY

Method SW7471 Revision A

Sample Results

Lab Name: ALS Environmental -- FC

Client Name: Weston Solutions, Inc.

Client Project ID: Johnny M ORS T00035111101-120130-0002

Work Order Number: 1201354

Reporting Basis: Dry Weight

Final Volume: 100 g

Reporting Basis: Dry Weight Matrix: SOIL

Prep Method: METHOD

Result Units: MG/KG

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Reporting Limit	Flag	Sample Aliquot
JM-54-31-120128	1201354-1	01/28/2012	02/06/2012	02/07/2012	12.5	1	0.037	0.037	U	0.614 g
JM-55-31-120128	1201354-2	01/28/2012	02/06/2012	02/07/2012	7.4	1	0.035	0.035	Ú	0.616 g
JM-65-31-120128	1201354-3	01/28/2012	02/06/2012	02/07/2012	12.7	1	0.053	0.038		0.603 g
JM-66-31-120128	1201354-4	01/28/2012	02/06/2012	02/07/2012	15.6	1	0.039	0.039	υ	0.613 g
JM-70-31-120128	1201354-5	01/28/2012	02/06/2012	02/07/2012	14.2	1	0.039	0.039	υ	0.605 g
JM-70-32-120128	1201354-6	01/28/2012	02/06/2012	02/07/2012	14.2	1	0.039	0.039	υ	0.6 g
JM-73-31-120128	1201354-7	01/28/2012	02/06/2012	02/07/2012	11.6	1	0.037	0.037	U	0.615 g
JM-77-31-120128	1201354-8	01/28/2012	02/06/2012	02/07/2012	21.6	1	0.046	0.042		0.604 g
JM-82-31-120128	1201354-9	01/28/2012	02/06/2012	02/07/2012	9.2	.1	0,036	0.036	U	0.6 08 g
JM-84-31-120128	1201354-10	01/28/2012	02/06/2012	02/07/2012	27.2	1	0.045	0.045	U	0.61 g
JM-88-31-120128	1201354-11	01/28/2012	02/06/2012	02/07/2012	15.7	1	0.072	0.039		0.602 g
JMBKGD-NE-31-120128	1201354-12	01/28/2012	02/06/2012	02/07/2012	11.2	1	0.037	0.037	U	0.614 g
JMBKGD-NW-31-120128	1201354-13	01/28/2012	02/06/2012	02/07/2012	7.4	1	0.036	0.036	U	0.608 g

Comments:

1. ND or U = Not Detected at or above the client requested detection limit.

Data Package ID: hg1201354-1

Date Printed: Wednesday, February 08, 2012

ALS Environmental -- FC

LIMS Version: 6.560

Page 1 of 1

& 6/4/1/V

26 of 195

APPENDIX F

REFERENCE DOCUMENTATION

URFO: DLJ Docket No. 40-8914 SUA-1482 04008914090E

MEMORANDUM FOR:

William Brown, Regional Counsel

Region IV

THRU:

A. Bill Beach, Director

Division of Radiation Safety and Safeguards

Region IV

FROM:

Ramon E. Hall, Director

Uranium Recovery Field Office

Division of Radiation Safety and Safeguards

Region IV

SUBJECT:

TERMINATION OF THE SOURCE MATERIAL LICENSE ISSUED TO

HECLA MINING COMPANY FOR THE JOHNNY M MINE, SAN MATEO, NEW

MEXICO

BACKGROUND

The Johnny M Mine located near San Mateo, New Mexico, was operated by Ranchers Exploration and Development (predecessor to Hecla) from early 1972 to late 1982. The mining sequence at the mine included backfilling of the mined-out areas with mill tailings returned to the site from the mill which processed the ore. To accomplish this, two surface injection locations were used for storage of the uranium tailings prior to disposal in the mine stopes. According to New Mexico records, these two areas covered approximately one acre at the north and one acre at the south injection site. The tailings were slurried and then pumped into the mine to prevent caving and "reduce the vulnerability of possible breaks in the integrity of the Dakota aquifer located above the mine." An estimated 286,000 tons of tailings were injected into the mine. Disposal depths ranged from 1134 feet to 1148 feet and from 1162 feet to 1183 feet below the surface (using the shaft for datum) or about 1100 to 1300 feet underground, depending on the terrain.

Reclamation of the mine property began in early 1982. The mine shaft was sealed with a four foot thick water ring reinforced concrete plug set between the Dakota and the Westwater members of the formation. The portal was sealed

URFO: PM DLJacoby/db

URFO: DD EFHawkins / Z / ZI / 90 URFO! D: RIV YOZ REHA11 12 21/90

with a 12-inch thick reinforced concrete plug, and a 20-inch diameter capped steel pipe was set in the concrete. The surface was then covered with earthen materials during site recontouring. The location of the shaft is not presently obvious due to the revegatated surface.

DISCUSSION

By letter dated September 28, 1988, Hecla requested an amendment to their licence to incorporate their proposed reclamation plan. The reclamation for the site consists of cleanup of the remaining surface contaminatation to appropriate standards, and leaves the underground tailings undisturbed. The contaminated material will be transported to and disposed of at the Quivira Mining Company's Pond 2 disposal area. After several revisions to the proposed plan, NRC was in agreement with the proposed cleanup plan submitted May 4, 1990, and an amendment was issued on October 12, 1990.

By letter dated October 18, 1990, Hecla requested that NRC terminate their license after the cleanup (reclamation) of the surface is complete. We are requesting that you review the situation and indicate if NRC will be able to terminate the license upon successful completion of the surface cleanup.

Issues to Consider

- 1. The siting criteria discussed in 10 CFR 40, Appendix A, Criterion 1 is met by underground disposal. Criterion 3 sets the "prime option" for disposal of tailings below grade in mines.
- 2. The Appendix A Criteria 4 and 6 controlling the attenuation of radon releases and the erosion protection design would not be applicable at the site after cleanup is completed as there would be no tailings remaining on the surface to protect.
- 3. The risk to workers would clearly be greater than the benefit to the public health and safety if cleanup of the buried tailings were required. The exception to this could possibly be the issue of ground water. The milling process produces fine grain tailings which have a greater surface area than the former ore. This allows trace metals, residual radionuclides, as well as anions and cations to easily go into solution. If necessary, NRC may want to consider application of supplement standards similar to those applied at Title I sites. Hecla has indicated that no shallow ground water has been identified at the site. Piezometric depth to the primary aquifer is reportedly 800 feet. The distance between the tailings filled stopes and the overlying Dakota aquifer is reportedly 130 to 150 feet. The mine reportedly is separated from the aquifer by a confining bed of "bentonitic clays."
- 4. The land owner is reportedly reluctant to sell the land. Therefore, Hecla does not propose to turn the land over to the government. Criterion 11 may provide for this situation by including an exclusion to title: "In some rare cases, such as may occur with deep burial where no ongoing site

surveillance will be required, surface land ownership transfer requirement may be waived." If the surface is cleaned to release standards, no site surveillance would be necessary for the tailings disposed of in the underground mine as per Criterion 12.

5. The State of New Mexico authorized the mine backfill at the Johnny M Mine. Also, the license for a similar mine backfill site, UNC's North Church Rock Mine, had been terminated by the State prior to return of the program to NRC.

RECOMMENDATION

Hecla's request regarding determination of the requirements of license termination prior to initiating surface cleanup at the site is prudent for all parties involved. We recommend that Hecla's license be terminated upon verification by NRC that surface cleanup efforts have been successful. Termination of the license should not require transfer of land title to the State of New Mexico or a federal government agency and should not require a long term surveillance fee. This recommendation is based on the 5 items discussed above.

Edward Adawhirs

JorRamon E. Hall, Director

Uranium Recovery Field Office
Division of Radiation Safety and
Safeguards
Region IV

cc: PLohaus

bcc:

Docket File No. 40-8914
PDR/DCS
URFO r/f
ABBeach, RIV
LLO Branch, LLWM
DLJacoby
BGarcia, RCPD, NM
EMontoya; NM
8914/090E/DLJ/90/12/13/M

APPENDIX G

TDD NO. TO-0035-11-11-01 AND AMENDMENTS A-E

EPAU.S. EPA Washington, DC 20460

START3 Technical Direction Document

TDD #: TO-0035-11-11-01 Contract: EP-W-06-042

Assessment/Inspection Activities -Enforcement Funds (0035) Weston Solutions, Inc.

= required field	Moved To EAS	Note: Remaining Amount includes \$0.00 in Reserve.	
TDD Name:	Johnny M Uranium Mine ORS	! Period:	Base Period
! Purpose:	Work Assignment Initiation		
! Priority:	High	! Start Date:	12/13/2011
Overtime:	Yes	! Completion Date:	02/15/2012
! Funding Category:	Removal	Invoice Unit:	
! Project/Site Name:	Johnny M Uranium Mine ORS	WorkArea:	ASSESSMENT/INSPECTIONS ACTIVITIES
Project Address:		Activity:	Expanded Site Inspections/Remedial Investigation (ESI/RI)
County:	McKinley	Work Area Code:	
City, State:	, NM	Activity Code:	
Zip:		EMERGENCY CODE:	☐ KAT ☐ RIT
! SSID:	A6AH	FPN:	
CERCLIS:	NMN0006607139	Performance Based:	No
Operable Unit:			
Authorized TDD Ce	eiling:	Cost/	Fee LOE (Hours)
	Previous Action(s):	\$(0.00
	This Action:	\$26,66	1.00 0.0
	New Total:	\$26.66	1.00

Specific Elements

Description of Work:

All activities performed in support of this TDD shall be in accordance with the contract and TO PWS.

Funding for this TDD is from a sweep of the dollars from the United Western TDD. The Grants Mining District provided significant uranium extraction and production in New Mexico from the 1950s until late into the 20th century. There are three mining sub-districts within the Grants Mining District: Ambrosia Lake, Laguna, and Marquez. Land ownership within these sub-districts consists of public, tribal and private property. These mining sub-districts contain 97 former legacy uranium mines and five mill sites. The EPA is currently assessing the mine sites for releases that may have impacted soil, surface water and groundwater. Under this TDD, the contractor will investigate mine water discharge locations, sample potentially impacted soil for elevated concentrations of elemental uranium and radionuclides, sample any surface water present for metals and radionuclides, and sample any accessible groundwater wells in the immediate area of the Johnny M Mine site in the Ambrosia Lake sub-district. The contractor will document mine site features (e.g. open mine portals, waste rock piles, mine operation-related structures, etc.) and sample locations with photographs, descriptions, and geospatially. A draft and final report will be written for the mine site. Coordinate with SAM, Lisa Price at price.lisa@epa.gov or 214-665-6744, upon receipt of the TDD.

Accounting and Appropriation Information

SFO: 22

Line	DCN	IFMS	Budget/FY	Appropriati on Code	Budget Org Code	Program Element	Object Class	Site Project	Cost Org Code	Amount
	ENC036 ENC035	XXX XXX	11 11			302EC7C 302EC7C			C001 C001	\$9,541.00 \$17,120.00

Funding Summary:	Funding
Previous:	\$0.00
This Action:	\$26,661.00
Total:	\$26,661.00

Funding Category Removal

Section

- Signed by Terri Lewis/DC/USEPA/US on 12/06/2011 12:49:27 PM, according to Jeff Criner/start6/rfw-s

: Lisa Price Date: 11/29/2011

Phone #:

Project Officer Section - Signed by Cora Stanley/R6/USEPA/US on 12/13/2011 09:32:41 AM, according to Jef

Project Officer: Linda Carter
Contracting Officer Section - Signed by Cora Stanley/R6/USEPA/US on 12/13/2011 09:32:41 AM, according to Contracting Officer: Cora Stanley

Contracting Officer: Cora Stanley

Date: 12/13/2011

Date: 12/13/2011

Contractor Section - Signed by Terri Lewis/DC/USEPA/US on 12/06/2011 12:49:27 PM, according to Jeff

Contractor Contact:

Date:

EPAU.S. EPA Washington, DC 20460

START3 Technical Direction Document

Assessment/Inspection Activities -Enforcement Funds (0035) Weston Solutions, Inc. TDD #: TO-0035-11-11-01 Amendment#:A Contract: EP-W-06-042

! = required field	Moved To EAS			
TDD Name:	Johnny M Uranium Mine ORS	! Period:	Base Period	
! Purpose:	Change Period of Performance	e		
! Priority:	High	! Start Date:	12/13/2011	
Overtime:	Yes	! Completion Date:	06/15/2012	
! Funding Category:	Removal	Invoice Unit:		
! Project/Site Name:	Johnny M Uranium Mine ORS	WorkArea:	ASSESSMENT/INSP ACTIVITIES	ECTIONS
Project Address:		Activity:	Expanded Site Inspecting Investigation (ESI/RI)	
County:	McKinley	Work Area Code:		
City, State:	, NM	Activity Code:		
Zip:		EMERGENCY CODE:	\square KAT \square RIT	
! SSID:	A6AH	FPN:		
CERCLIS:	NMN0006607139	Performance Based:	No	
Operable Unit:		·		
Authorized TDD Ce	eiling:	Cost/	/Fee	LOE (Hours)
	Previous Action(s):	\$26,66	1.00	0.0
	This Action:	\$	0.00	0.0
	New Total:	\$26,66	1.00	0.0

Specific Elements

Description of Work:

All activities performed in support of this TDD shall be in accordance with the contract and TO PWS.

Amendment A extends the period of performance to 6/15/2012 due to weather conditions preventing field investigation. There is no increase in cost/fee.

Funding for this TDD is from a sweep of the dollars from the United Western TDD. The Grants Mining District provided significant uranium extraction and production in New Mexico from the 1950s until late into the 20th century. There are three mining sub-districts within the Grants Mining District: Ambrosia Lake, Laguna, and Marquez. Land ownership within these sub-districts consists of public, tribal and private property. These mining sub-districts contain 97 former legacy uranium mines and five mill sites. The EPA is currently assessing the mine sites for releases that may have impacted soil, surface water and groundwater. Under this TDD, the contractor will investigate mine water discharge locations, sample potentially impacted soil for elevated concentrations of elemental uranium and radionuclides, sample any surface water present for metals and radionuclides, and sample any accessible groundwater wells in the immediate area of the Johnny M Mine site in the Ambrosia Lake sub-district. The contractor will document mine site features (e.g. open mine portals, waste rock piles, mine operation-related structures, etc.) and sample locations with photographs, descriptions, and geospatially. A draft and final report will be written for the mine site. Coordinate with SAM, Lisa Price at price.lisa@epa.gov or 214-665-6744, upon receipt of the TDD.

Accounting and Appropriation Information

SFO:	

										D1 01
Line	DCN	IFMS	Budget/ FY	Appropriati on Code	Budget Org Code	Program Element	Object Class	Site Project	Cost Org Code	Amount
1 2										\$0.00

Funding Summary:	Funding
Previous:	\$26,661.00
This Action:	\$0.00
Total:	\$26,661.00

Funding Category

Removal

_			
•	 tı.	^	•
		n	

- Signed by Lisa Price/R6/USEPA/US on 01/12/2012 03:49:31 PM, according to Cheng Wei Feng/start(

: Lisa Price Date: 01/12/2012

Phone #:

Project Officer Section - Signed by Linda Carter/R6/USEPA/US on 01/13/2012 07:15:41 AM, according to CI

Project Officer: Linda Carter Date: 01/12/2012

Contracting Officer Section - Signed by Cora Stanley/R6/USEPA/US on 01/12/2012 04:50:19 PM, according

Contracting Officer: Cora Stanley
Contractor Section Date: 01/12/2012

Contractor Contact: Date:

EPAU.S. EPA Washington, DC 20460

START3 Technical Direction Document

TDD #: TO-0035-11-11-01 Amendment#:B Contract: EP-W-06-042

Assessment/Inspection Activities -Enforcement Funds (0035) Weston Solutions, Inc.

= required field	☐ Moved To EAS		
TDD Name:	Johnny M Uranium Mine ORS	! Period:	Base Period
! Purpose:	Set/Revise Expenditure Limit		
! Priority:	High	! Start Date:	12/13/2011
Overtime:	Yes	! Completion Date:	06/15/2012
! Funding Category:	Removal	Invoice Unit:	
! Project/Site Name:	Johnny M Uranium Mine ORS	WorkArea:	ASSESSMENT/INSPECTIONS ACTIVITIES
Project Address:		Activity:	Expanded Site Inspections/Remedial Investigation (ESI/RI)
County:	McKinley	Work Area Code:	
City, State:	, NM	Activity Code:	
Zip:		EMERGENCY CODE:	☐ KAT ☐ RIT
! SSID:	A6AH	FPN:	
CERCLIS:	NMN0006607139	Performance Based:	No
Operable Unit:			
Authorized TDD Ce	eiling:	Cost/	Fee LOE (Hours)
	Previous Action(s):	\$26,66	1.00 0.0
	This Action:	\$3,00	0.00 0.00
	New Total:	\$29.66	1.00

Specific Elements

Description of Work:

All activities performed in support of this TDD shall be in accordance with the contract and TO PWS.

Amendment B is for adding \$3000 to the TDD; the additional funds are from the originally Ann Lee TDD. The total funding is \$29,661.

Amendment A extends the period of performance to 6/15/2012 due to weather conditions preventing field investigation. There is no increase in cost/fee.

Funding for this TDD is from a sweep of the dollars from the United Western TDD. The Grants Mining District provided significant uranium extraction and production in New Mexico from the 1950s until late into the 20th century. There are three mining sub-districts within the Grants Mining District: Ambrosia Lake, Laguna, and Marquez. Land ownership within these sub-districts consists of public, tribal and private property. These mining sub-districts contain 97 former legacy uranium mines and five mill sites. The EPA is currently assessing the mine sites for releases that may have impacted soil, surface water and groundwater. Under this TDD, the contractor will investigate mine water discharge locations, sample potentially impacted soil for elevated concentrations of elemental uranium and radionuclides, sample any surface water present for metals and radionuclides, and sample any accessible groundwater wells in the immediate area of the Johnny M Mine site in the Ambrosia Lake sub-district. The contractor will document mine site features (e.g. open mine portals, waste rock piles, mine operation-related structures, etc.) and sample locations with photographs, descriptions, and geospatially. A draft and final report will be written for the mine

site. Coordinate with SAM, Lisa Price at price.lisa@epa.gov or 214-665-6744, upon receipt of the TDD.

Accounting and Appropriation Information

SFO: 22

Line	DCN	IFMS	Budget/ FY	Appropriati on Code	Budget Org Code	Program Element	Object Class	Site Project	Cost Org Code	Amount
1	ENC012	XXX	11	T	06S	302EC7C	2505	A6AH00	C001	\$3,000.00

Funding Summary:	Funding
Previous:	\$26,661.00
This Action:	\$3,000.00
Total:	\$29,661.00

Funding Category

Removal

Enforcement

_			
~~	CI	റ	r
		Ю	

- Signed by Lisa Price/R6/USEPA/US on 02/28/2012 03:51:27 PM, according to Cheng Wei Feng/start(

: Lisa Price **Date**: 02/28/2012

Phone #:

Project Officer Section - Signed by Cora Stanley/R6/USEPA/US on 03/02/2012 10:11:27 AM, according to C

Project Officer: Linda Carter Date: 03/02/2012

Contracting Officer Section - Signed by Cora Stanley/R6/USEPA/US on 03/02/2012 10:11:27 AM, according

Contracting Officer: Cora Stanley Date: 03/02/2012

Contractor Section

Contractor Contact: Date:

EPAU.S. EPA Washington, DC 20460

START3 Technical Direction Document

TDD #: TO-0035-11-11-01 Amendment#:C Contract: EP-W-06-042

Assessment/Inspection Activities -Enforcement Funds (0035) Weston Solutions, Inc.

= required field				
TDD Name:	Johnny M Uranium Mine OR	Period:	Base Period	
! Purpose:	Set/Revise Expenditure Limit			
! Priority:	High	! Start Date:	12/13/2011	
Overtime:	No	! Completion Date:	06/15/2012	
! Funding Category:	Removal	Invoice Unit:		
! Project/Site Name:	Johnny M Uranium Mine OR	S WorkArea:	ASSESSMENT/INSPE ACTIVITIES	CTIONS
Project Address:		Activity:	Expanded Site Inspecti Investigation (ESI/RI)	ions/Remedial
County:	McKinley	Work Area Code:		
City, State:	, NM	Activity Code:		
Zip:		EMERGENCY CODE:	KAT 🗌 RIT	
! SSID:	A6AH	FPN:		
CERCLIS:	NMN0006607139	Performance Based:	No	
Operable Unit:				
Authorized TDD Ce	eiling:	Cost	/Fee	LOE (Hours)
	Previous Action(s):	\$29,66	1.00	0.0
	This Action:	(\$1,351	1.48)	0.0
	New Total:	\$28,30	9.52	0.0

Specific Elements

Description of Work:

All activities performed in support of this TDD shall be in accordance with the contract and TO PWS.

Amendment C <u>decreases</u> the dollar amount for the TDD by \$1351.48 per contractor's email dated 6/25/2012 and funding chart.

Amendment B is for adding \$3000 to the TDD; the additional funds are from the originally Ann Lee TDD. The total funding is \$29,661.

Amendment A extends the period of performance to 6/15/2012 due to weather conditions preventing field investigation. There is no increase in cost/fee.

Funding for this TDD is from a sweep of the dollars from the United Western TDD. The Grants Mining District provided significant uranium extraction and production in New Mexico from the 1950s until late into the 20th century. There are three mining sub-districts within the Grants Mining District: Ambrosia Lake, Laguna, and Marquez. Land ownership within these sub-districts consists of public, tribal and private property. These mining sub-districts contain 97 former legacy uranium mines and five mill sites. The EPA is currently assessing the mine sites for releases that may have impacted soil, surface water and groundwater. Under this TDD, the contractor will investigate mine water discharge locations, sample potentially impacted soil for elevated concentrations of elemental uranium and radionuclides, sample any surface water present for metals and radionuclides, and sample any accessible groundwater wells in the immediate area of the Johnny M Mine site in the Ambrosia

Lake sub-district. The contractor will document mine site features (e.g. open mine portals, waste rock piles, mine operation-related structures, etc.) and sample locations with photographs, descriptions, and geospatially. A draft and final report will be written for the mine site. Coordinate with SAM, Lisa Price at price.lisa@epa.gov or 214-665-6744, upon receipt of the TDD.

Accounting and Appropriation Information

SFO: 22

Line	DCN	IFMS	Budget / FY	Approp. Code	Budget Org Code	Program Element	Object Class	Site Project	Cost Org Code	Amount
1	ENC035	XXX	11	TCD	06S	302EC7C	2505	A6AHRP00	C001	\$-1,351.48

Date: 06/26/2012

Funding Summary:	Funding
Previous:	\$29,661.00
This Action:	\$-1,351.48
Total:	\$28,309.52

Funding Category Removal

Section

: Lisa Price by Linda Carter

Phone #:

Project Officer Section - Signed by Linda Carter/R6/USEPA/US on 06/26/2012 05:05:03 PM, according to Cheng

Project Officer: Linda Carter Date: 06/26/2012

Contracting Officer Section - Signed by Cora Stanley/R6/USEPA/US on 06/26/2012 02:56:24 PM, according to C

Contracting Officer: Cora Stanley Date: 06/26/2012

Contractor Section - Signed by Cecilia Shappee/start6/rfw-start/us on 06/27/2012 10:07:26 AM, according

No During the past three (3) calendar years has your company, or any of your employees that will be working at this site, previously performed work at this site /facility?

○ Yes

Contractor Contact: Cecilia Shappee Date: 06/27/2012

Table 3-1
Site Gamma Radiation Distribution
Johnny M Uranium Mine
Grants Legacy Mine Sites
Grants, McKinley County, New Mexico

Table 3-2 Stationary Gamma Measurements Summary Johnny M Uranium Mine Grants Legacy Mine Sites Grants, McKinley County, New Mexico

Stationary Location ID	Gamma Activity (Counts Per Minute)	Remark
JM-01-21-120128	11,346	
JM-02-21-120128	15,111	
JM-03-21-120128	15,653	
JM-04-21-120128	17,240	
JM-05-21-120128	16,733	
JM-06-21-120128	17,446	
JM-07-21-120128	17,899	
JM-08-21-120128	22,988	
JM-09-21-120128	12,233	
JM-10-21-120128	7,624	
JM-11-21-120128	7,991	
JM-12-21-120128	8,388	
JM-13-21-120128	6,907	
JM-14-21-120128	8,884	
JM-15-21-120128	18,836	
JM-16-21-120128	13,197	
JM-17-21-120128	26,452	>2X Background
JM-18-21-120128	10,441	
JM-19-21-120128	10,306	
JM-20-21-120128	12,742	
JM-21-21-120128	15,892	
JM-22-21-120128	13,068	
JM-23-21-120128	20,209	
JM-24-21-120128	21,234	
JM-25-21-120128	8,726	
JM-26-21-120128	7,357	
JM-27-21-120128	89,629	>2X Background
JM-28-21-120128	23,179	
JM-29-21-120128	16,466	
JM-30-21-120128	34,716	>2X Background
JM-31-21-120128	35,038	>2X Background
JM-32-21-120128	24,034	>2X Background
JM-33-21-120128	13,612	
JM-34-21-120128	9,059	
JM-35-21-120128	6,288	
JM-36-21-120128	15,608	
JM-37-21-120128	103,446	>2X Background
JM-38-21-120128	29,449	>2X Background
JM-39-21-120128	28,809	>2X Background
JM-40-21-120128	39,937	>2X Background

Table 3-2 Stationary Gamma Measurements Summary Johnny M Uranium Mine Grants Legacy Mine Sites Grants, McKinley County, New Mexico (Continued)

Stationary Location ID	Gamma Activity	Remark
	(Counts Per Minute)	
JM-41-21-120128	32,671	>2X Background
JM-42-21-120128	14,265	
JM-43-21-120128	9,338	
JM-44-21-120128	12,885	
JM-45-21-120128	11,575	
JM-46-21-120128	6,615	
JM-47-21-120128	35,205	>2X Background
JM-48-21-120128	34,040	>2X Background
JM-49-21-120128	36,084	>2X Background
JM-50-21-120128	30,876	>2X Background
JM-51-21-120128	21,572	
JM-52-21-120128	11,596	
JM-53-21-120128	33,069	>2X Background
JM-54-21-120128	251,115	Sample Collected; >2X Background
JM-55-21-120128	156,052	Sample Collected; >2X Background
JM-56-21-120128	87,152	>2X Background
JM-57-21-120128	42,189	>2X Background
JM-58-21-120128	158,596	>2X Background
JM-59-21-120128	181,572	>2X Background
JM-60-21-120128	177,434	>2X Background
JM-61-21-120128	45,968	>2X Background
JM-62-21-120128	27,285	>2X Background
JM-63-21-120128	187,179	>2X Background
JM-64-21-120128	261,988	>2X Background
JM-65-21-120128	342,018	Sample Collected; >2X Background
JM-66-21-120128	269,876	Sample Collected; >2X Background
JM-67-21-120128	39,167	>2X Background
JM-68-21-120128	89,914	>2X Background
JM-69-21-120128	167,740	>2X Background
JM-70-21-120128	381,092	Sample Collected; >2X Background
JM-71-21-120128	64,580	>2X Background
JM-72-21-120128	34,168	>2X Background
JM-73-21-120128	209,993	Sample Collected; >2X Background
JM-74-21-120128	225,252	>2X Background
JM-75-21-120128	79,640	>2X Background

Table 3-2 Stationary Gamma Measurements Summary Johnny M Uranium Mine Grants Legacy Mine Sites Grants, McKinley County, New Mexico (Continued)

Stationary Location ID	Gamma Activity (Counts Per Minute)	Remark
JM-76-21-120128	45,278	>2X Background
JM-77-21-120128	282,248	Sample Collected; >2X Background
JM-78-21-120128	245,596	>2X Background
JM-79-21-120128	122,636	>2X Background
JM-80-21-120128	33,214	>2X Background
JM-81-21-120128	N/A	Omitted due to location
JM-82-21-120128	228,461	Sample Collected; >2X Background
JM-83-21-120128	223,936	>2X Background
JM-84-21-120128	117,322	Sample Collected; >2X Background
JM-85-21-120128	96,349	>2X Background
JM-86-21-120128	63,323	>2X Background
JM-87-21-120128	24,853	>2X Background
JM-88-21-120128	265,129	Sample Collected; >2X Background
JM-89-21-120128	39,725	>2X Background
JM-90-21-120128	24,281	>2X Background
JM-91-21-120128	20,139	
JM-92-21-120128	21,147	
JM-93-21-120128	19,710	
JM-94-21-120128	18,110	
JM-95-21-120128	21,234	
JM-96-21-120128	17,775	
JM-97-21-120128	21,082	
JM-98-21-120128	17,879	
JM-99-21-120128	17,472	
JM-100-21-120128	16,495	
JMBKGD-NE-21-120129	9,938	Background Location; Sample Collected
JMBKGD-NW-21-120129	13,502	Background Location; Sample Collected

Table 3-3
Laboratory Results for Radioisotopes
Johnny M Uranium Mine
Grants Legacy Mine Sites
Grants, McKinley County, New Mexico

Location	Description	Ac ²²⁸	Bi ²¹⁴	Pb ²¹²	Pb ²¹⁴	K^{40}	Pa ^{234m}	Ra ²²⁶	Tl ²⁰⁸	Th ²³⁴	U^{235}	
	Soil	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	
JMBKGD-NE-31-120129	Background	1.41	2.64	1.05	2.41	16.1	5.52	2.64	0.448	2.7	0.0453	
JMBKGD-NW-31-120129	Background	1.67	2.74	2.11	2.93	27.7	5.25	2.74	1.87	6.09	0.177	
Background Average	Average Background Concentration	1.54	2.69	1.58	2.67	21.9	5.385	2.69	1.159	4.395	0.111	
JM-54-31-120128	On-Site	1.37	136	1.23	139	25.3	359	136	0.592	23.5	4.53	
JM-55-31-120128	On-Site	1.41	127	0.916	136	23.6	85.6	127	0.627	85.7	4.26	
JM-65-31-120128	On-Site	0.275	317	6.44	332	29	251	317	0	213	14.2	
JM-66-31-120128	On-Site	0.654	112	1.03	112	19.6	38.4	112	1.39	25.8	4.69	
JM-70-31-120128	On-Site	1.14	138	2.22	138	20.9	117	138	0.769	94.4	8.98	
JM-70-32-120128	On-Site	0.472	157	0.933	155	22.7	149	157	0.688	92.8	6.98	
JM-73-31-120128	On-Site	1.71	146	1.8	146	19.3	103	146	1.14	57	6.4	
JM-77-31-120128	On-Site	1.37	83.8	1.8	84.6	23.3	134	83.8	1.15	113	6.95	
JM-82-31-120128	On-Site	1.08	120	10.4	121	23.3	69.8	120	1.98	36.5	5.06	
JM-84-31-120128	On-Site	1.63	13	1.8	13.4	20.2	19.8	13	1.46	12.3	0.763	
JM-88-31-120128	On-Site	-0.556	234	5.67	242	27.2	207	234	1.75	193	14.6	

pCi/g: picoCuries per gram

Bold and highlighted values are greater than or equal to 3x the background average concentration.

Negative results are achieved because the difference between the sample and laboratory background standard derive a negative number. This is due to laboratory counting error, ultimately indicating a "non detect" result.

Table 3-4
Laboratory Results for Metals
Johnny M Uranium Mine
Grants Legacy Mine Sites
Grants, McKinley County, New Mexico

Location	Designation	Al	Sb	As	Ba	Be	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Hg	Mo	Ni	K	Se	Ag	Na	Tl	Sn	U	V	Zn
	Soil	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
JMBKGD-NE-31-120129	Background	3000	2.2U	1.8	51	0.54U	0.54U	1100	3.5	2.2	9.9	7800	6.5	970	130	0.037U	1.1U	4.0	770	0.81	1.1U	110U	1.7	5.4U	2.1	8.9	19
JMBKGD-NW-31-120129	Background	6100	2.1U	7	100	0.64	0.53U	4600	7.4	7	3.5	27000	11	2800	270	0.036U	1.1U	7.7	2300	2.7U	1.1U	130	5.3U	5.3U	1.2	19	40
Background Average	Average Background Concentration	4550	2.15	4.40	75.5	0.64	0.535	2850	5.45	4.6	6.7	17400	8.75	1885	200	0.365	1.1	5.85	1535	1.76	1.1	130	3.50	0.535	1.65	13.95	29.50
JM-54-31-120128	On-Site	6600	2.2U	6.5	330	0.56U	0.56U	9600	5	3.9	7.4	13000	16	2500	180	0.037U	3.9	4.4	1400	11	1.1U	810	2.1	5.6U	38	90	120
JM-55-31-120128	On-Site	4300	2.1U	9.7	93	0.52U	0.52U	11000	2.9	2.7	5	9700	12	1800	200	0.035U	7.3	2.6	620	25	1U	100U	1.6	5.2U	140	99	18
JM-65-31-120128	On-Site	4300	2.3U	12	120	0.57U		11000	2.8	2.3	6.9	7500	20	1800	160	0.053U	13	2.3U	640	59	1.1U	110U	1.1U	5.7U	440	190	14
JM-66-31-120128	On-Site	3300	2.3U	4.3	66	0.57U	0.57U	13000	2.5	3.7	3.2	6600	10	1300	170	0.039U	3.7	3.1	560	15	1.1U	110U	1.1U	5.7U	43	75	16
JM-70-31-120128	On-Site	4100	2.3U	14	170	0.56U	0.56U	9700	3.6	2.9	5.3	11000	16	1700	150	0.039U	11	3.1	670	43	1.1U	110U	1.1U	5.6U	250	130	18
JM-70-32-120128	On-Site	4000	2.3U	6.1	170	0.58U	0.58U	14000	3	3.1	4.6	8000	15	1700	160	0.039U	9.9	3.2	650	45	1.2U	130	1.2U	5.8U	290	120	18
JM-73-31-120128	On-Site	4400	2.2U	8.5	130	0.55U	0.55U	33000	3.7	3.3	5.3	9100	14	1900	200	0.037U	4.7	4.8	820	33	1.1U	110U	1.3	5.5U	140	93	22
JM-77-31-120128	On-Site	6500	2.5U	8.7	91	0.63U	0.63U	10000	5.9	5.9	9.9	14000	17	2500	200	0.046U	13	7	1400	18	1.3U	130	2.1	6.3U	330	68	36
JM-82-31-120128	On-Site	4700	2.1U	10	78	0.53U	0.53U	16000	3.8	3.2	4.9	12000	13	2100	200	0.036U	7.6	4	820	26	1.1U	110U	1.1U	5.3U	150	160	24
JM-84-31-120128	On-Site	9000	2.7U	6.5	100	0.77	0.67U	18000	8.3	7.9	15	19000	17	3000	270	0.045U	1.3U	11	2000	1.7	1.3U	130	2.2	6.7U	320	29	50
JM-88-31-120128	On-Site	5600	2.4U	20	87	0.59U	0.59U	8500	4	4.5	8.6	13000	19	2300	230	0.072U	22	5.1	1100	76	1.2U	120	2.9	5.9U	330	160	31

mg/kg: milligrams per kilogram

U - Sample was analyzed for but not detected

Bold and highlighted values are greater than or equal to 3x the background average concentration.

